mirror of
https://github.com/karpathy/nanochat.git
synced 2026-01-30 04:22:02 +00:00
apply float32 cast before logits softcapping so the tanh is in fp32. torch compile fuses this correctly with no extra memory costs.
This commit is contained in:
@@ -265,13 +265,14 @@ class GPT(nn.Module):
|
||||
# training mode: compute and return the loss
|
||||
# TODO: experiment with Liger Kernels / chunked cross-entropy etc.
|
||||
logits = self.lm_head(x)
|
||||
logits = softcap * torch.tanh(logits / softcap) # logits softcap
|
||||
logits = logits.float() # use tf32/fp32 for logits
|
||||
logits = softcap * torch.tanh(logits / softcap) # logits softcap
|
||||
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1, reduction=loss_reduction)
|
||||
return loss
|
||||
else:
|
||||
# inference mode: compute and return the logits
|
||||
logits = self.lm_head(x)
|
||||
logits = logits.float() # use tf32/fp32 for logits
|
||||
logits = softcap * torch.tanh(logits / softcap) # logits softcap
|
||||
return logits
|
||||
|
||||
|
||||
Reference in New Issue
Block a user