Files
n8n-mcp/tests/benchmarks/README.md
czlonkowski b5210e5963 feat: add comprehensive performance benchmark tracking system
- Create benchmark test suites for critical operations:
  - Node loading performance
  - Database query performance
  - Search operations performance
  - Validation performance
  - MCP tool execution performance

- Add GitHub Actions workflow for benchmark tracking:
  - Runs on push to main and PRs
  - Uses github-action-benchmark for historical tracking
  - Comments on PRs with performance results
  - Alerts on >10% performance regressions
  - Stores results in GitHub Pages

- Create benchmark infrastructure:
  - Custom Vitest benchmark configuration
  - JSON reporter for CI results
  - Result formatter for github-action-benchmark
  - Performance threshold documentation

- Add supporting utilities:
  - SQLiteStorageService for benchmark database setup
  - MCPEngine wrapper for testing MCP tools
  - Test factories for generating benchmark data
  - Enhanced NodeRepository with benchmark methods

- Document benchmark system:
  - Comprehensive benchmark guide in docs/BENCHMARKS.md
  - Performance thresholds in .github/BENCHMARK_THRESHOLDS.md
  - README for benchmarks directory
  - Integration with existing test suite

The benchmark system will help monitor performance over time and catch regressions before they reach production.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-28 22:45:09 +02:00

121 lines
3.3 KiB
Markdown

# Performance Benchmarks
This directory contains performance benchmarks for critical operations in the n8n-mcp project.
## Running Benchmarks
### Local Development
```bash
# Run all benchmarks
npm run benchmark
# Watch mode for development
npm run benchmark:watch
# Interactive UI
npm run benchmark:ui
# Run specific benchmark file
npx vitest bench tests/benchmarks/node-loading.bench.ts
```
### CI/CD
Benchmarks run automatically on:
- Every push to `main` branch
- Every pull request
- Manual workflow dispatch
## Benchmark Suites
### 1. Node Loading Performance (`node-loading.bench.ts`)
- Package loading (n8n-nodes-base, @n8n/n8n-nodes-langchain)
- Individual node file loading
- Package.json parsing
### 2. Database Query Performance (`database-queries.bench.ts`)
- Node retrieval by type
- Category filtering
- Search operations (OR, AND, FUZZY modes)
- Node counting and statistics
- Insert/update operations
### 3. Search Operations (`search-operations.bench.ts`)
- Single and multi-word searches
- Exact phrase matching
- Fuzzy search performance
- Property search within nodes
- Complex filtering operations
### 4. Validation Performance (`validation-performance.bench.ts`)
- Node configuration validation (minimal, strict, ai-friendly)
- Expression validation
- Workflow validation
- Property dependency resolution
### 5. MCP Tool Execution (`mcp-tools.bench.ts`)
- Tool execution overhead
- Response formatting
- Complex query handling
## Performance Targets
| Operation | Target | Alert Threshold |
|-----------|--------|-----------------|
| Node loading | <100ms per package | >150ms |
| Database query | <5ms per query | >10ms |
| Search (simple) | <10ms | >20ms |
| Search (complex) | <50ms | >100ms |
| Validation (simple) | <1ms | >2ms |
| Validation (complex) | <10ms | >20ms |
| MCP tool execution | <50ms | >100ms |
## Benchmark Results
- Results are tracked over time using GitHub Actions
- Historical data available at: https://czlonkowski.github.io/n8n-mcp/benchmarks/
- Performance regressions >10% trigger automatic alerts
- PR comments show benchmark comparisons
## Writing New Benchmarks
```typescript
import { bench, describe } from 'vitest';
describe('My Performance Suite', () => {
bench('operation name', async () => {
// Code to benchmark
}, {
iterations: 100, // Number of times to run
warmupIterations: 10, // Warmup runs (not measured)
warmupTime: 500, // Warmup duration in ms
time: 3000 // Total benchmark duration in ms
});
});
```
## Best Practices
1. **Isolate Operations**: Benchmark specific operations, not entire workflows
2. **Use Realistic Data**: Load actual n8n nodes for realistic measurements
3. **Warmup**: Always include warmup iterations to avoid JIT compilation effects
4. **Memory**: Use in-memory databases for consistent results
5. **Iterations**: Balance between accuracy and execution time
## Troubleshooting
### Inconsistent Results
- Increase `warmupIterations` and `warmupTime`
- Run benchmarks in isolation
- Check for background processes
### Memory Issues
- Reduce `iterations` for memory-intensive operations
- Add cleanup in `afterEach` hooks
- Monitor memory usage during benchmarks
### CI Failures
- Check benchmark timeout settings
- Verify GitHub Actions runner resources
- Review alert thresholds for false positives