* move claude rules and commands to assets/claude * update claude profile to copy assets/claude to .claude * fix formatting * feat(profiles): Implement unified profile system - Convert Claude and Codex profiles to use createProfile() factory - Remove simple vs complex profile distinction in rule transformer - Unify convertAllRulesToProfileRules() to handle all profiles consistently - Fix mcpConfigPath construction in base-profile.js for null mcpConfigName - Update terminology from 'simpleProfiles' to 'assetOnlyProfiles' throughout - Ensure Claude .claude directory copying works in both CLI and MCP contexts - All profiles now follow same execution flow with proper lifecycle functions Changes: - src/profiles/claude.js: Convert to createProfile() factory pattern - src/profiles/codex.js: Convert to createProfile() factory pattern - src/utils/rule-transformer.js: Unified profile handling logic - src/utils/profiles.js: Remove simple profile categorization - src/profiles/base-profile.js: Fix mcpConfigPath construction - scripts/modules/commands.js: Update variable naming - tests/: Update all tests for unified system and terminology Fixes Claude profile asset copying issue in MCP context. All tests passing (617 passed, 11 skipped). * re-checkin claude files * fix formatting * chore: clean up test Claude rules files * chore: add changeset for unified profile system * add claude files back * add changeset * restore proper gitignore * remove claude agents file from root * remove incorrect doc * simplify profiles and update tests * update changeset * update changeset * remove profile specific code * streamline profiles with defaults and update tests * update changeset * add newline at end of gitignore * restore changes * streamline profiles with defaults; update tests and add vscode test * update rule profile tests * update wording for clearer profile management * refactor and clarify terminology * use original projectRoot var name * revert param desc * use updated claude assets from neno * add "YOUR_" before api key here * streamline codex profile * add gemini profile * update gemini profile * update tests * relocate function * update rules interactive setup Gemini desc * remove duplicative code * add comma
2.1 KiB
2.1 KiB
Enhanced auto-implementation with intelligent code generation and testing.
Arguments: $ARGUMENTS
Intelligent Auto-Implementation
Advanced implementation with context awareness and quality checks.
1. Pre-Implementation Analysis
Before starting:
- Analyze task complexity and requirements
- Check codebase patterns and conventions
- Identify similar completed tasks
- Assess test coverage needs
- Detect potential risks
2. Smart Implementation Strategy
Based on task type and context:
Feature Tasks
- Research existing patterns
- Design component architecture
- Implement with tests
- Integrate with system
- Update documentation
Bug Fix Tasks
- Reproduce issue
- Identify root cause
- Implement minimal fix
- Add regression tests
- Verify side effects
Refactoring Tasks
- Analyze current structure
- Plan incremental changes
- Maintain test coverage
- Refactor step-by-step
- Verify behavior unchanged
3. Code Intelligence
Pattern Recognition
- Learn from existing code
- Follow team conventions
- Use preferred libraries
- Match style guidelines
Test-Driven Approach
- Write tests first when possible
- Ensure comprehensive coverage
- Include edge cases
- Performance considerations
4. Progressive Implementation
Step-by-step with validation:
Step 1/5: Setting up component structure ✓
Step 2/5: Implementing core logic ✓
Step 3/5: Adding error handling ⚡ (in progress)
Step 4/5: Writing tests ⏳
Step 5/5: Integration testing ⏳
Current: Adding try-catch blocks and validation...
5. Quality Assurance
Automated checks:
- Linting and formatting
- Test execution
- Type checking
- Dependency validation
- Performance analysis
6. Smart Recovery
If issues arise:
- Diagnostic analysis
- Suggestion generation
- Fallback strategies
- Manual intervention points
- Learning from failures
7. Post-Implementation
After completion:
- Generate PR description
- Update documentation
- Log lessons learned
- Suggest follow-up tasks
- Update task relationships
Result: High-quality, production-ready implementations.