Files
claude-task-master/docs/configuration.md

652 lines
25 KiB
Markdown

# Configuration
Taskmaster uses two primary methods for configuration:
1. **`.taskmaster/config.json` File (Recommended - New Structure)**
- This JSON file stores most configuration settings, including AI model selections, parameters, logging levels, and project defaults.
- **Location:** This file is created in the `.taskmaster/` directory when you run the `task-master models --setup` interactive setup or initialize a new project with `task-master init`.
- **Migration:** Existing projects with `.taskmasterconfig` in the root will continue to work, but should be migrated to the new structure using `task-master migrate`.
- **Management:** Use the `task-master models --setup` command (or `models` MCP tool) to interactively create and manage this file. You can also set specific models directly using `task-master models --set-<role>=<model_id>`, adding `--ollama` or `--openrouter` flags for custom models. Manual editing is possible but not recommended unless you understand the structure.
- **Example Structure:**
```json
{
"models": {
"main": {
"provider": "anthropic",
"modelId": "claude-3-7-sonnet-20250219",
"maxTokens": 64000,
"temperature": 0.2,
"baseURL": "https://api.anthropic.com/v1"
},
"research": {
"provider": "perplexity",
"modelId": "sonar-pro",
"maxTokens": 8700,
"temperature": 0.1,
"baseURL": "https://api.perplexity.ai/v1"
},
"fallback": {
"provider": "anthropic",
"modelId": "claude-3-5-sonnet",
"maxTokens": 64000,
"temperature": 0.2
}
},
"global": {
"logLevel": "info",
"debug": false,
"defaultNumTasks": 10,
"defaultSubtasks": 5,
"defaultPriority": "medium",
"defaultTag": "master",
"projectName": "Your Project Name",
"ollamaBaseURL": "http://localhost:11434/api",
"azureBaseURL": "https://your-endpoint.azure.com/openai/deployments",
"vertexProjectId": "your-gcp-project-id",
"vertexLocation": "us-central1",
"responseLanguage": "English"
}
}
```
> For MCP-specific setup and troubleshooting, see [Provider-Specific Configuration](#provider-specific-configuration).
2. **Legacy `.taskmasterconfig` File (Backward Compatibility)**
- For projects that haven't migrated to the new structure yet.
- **Location:** Project root directory.
- **Migration:** Use `task-master migrate` to move this to `.taskmaster/config.json`.
- **Deprecation:** While still supported, you'll see warnings encouraging migration to the new structure.
## MCP Tool Loading Configuration
### TASK_MASTER_TOOLS Environment Variable
The `TASK_MASTER_TOOLS` environment variable controls which tools are loaded by the Task Master MCP server. This allows you to optimize token usage based on your workflow needs.
> Note
> Prefer setting `TASK_MASTER_TOOLS` in your MCP client's `env` block (e.g., `.cursor/mcp.json`) or in CI/deployment env. The `.env` file is reserved for API keys/endpoints; avoid persisting non-secret settings there.
#### Configuration Options
- **`all`** (default): Loads all 36 available tools (~21,000 tokens)
- Best for: Users who need the complete feature set
- Use when: Working with complex projects requiring all Task Master features
- Backward compatibility: This is the default to maintain compatibility with existing installations
- **`standard`**: Loads 15 commonly used tools (~10,000 tokens, 50% reduction)
- Best for: Regular task management workflows
- Tools included: All core tools plus project initialization, complexity analysis, task generation, and more
- Use when: You need a balanced set of features with reduced token usage
- **`core`** (or `lean`): Loads 7 essential tools (~5,000 tokens, 70% reduction)
- Best for: Daily development with minimal token overhead
- Tools included: `get_tasks`, `next_task`, `get_task`, `set_task_status`, `update_subtask`, `parse_prd`, `expand_task`
- Use when: Working in large contexts where token usage is critical
- Note: "lean" is an alias for "core" (same tools, token estimate and recommended use). You can refer to it as either "core" or "lean" when configuring.
- **Custom list**: Comma-separated list of specific tool names
- Best for: Specialized workflows requiring specific tools
- Example: `"get_tasks,next_task,set_task_status"`
- Use when: You know exactly which tools you need
#### How to Configure
1. **In MCP configuration files** (`.cursor/mcp.json`, `.vscode/mcp.json`, etc.) - **Recommended**:
```jsonc
{
"mcpServers": {
"task-master-ai": {
"env": {
"TASK_MASTER_TOOLS": "standard", // Set tool loading mode
// API keys can still use .env for security
}
}
}
}
```
2. **Via Claude Code CLI**:
```bash
claude mcp add task-master-ai --scope user \
--env TASK_MASTER_TOOLS="core" \
-- npx -y task-master-ai@latest
```
3. **In CI/deployment environment variables**:
```bash
export TASK_MASTER_TOOLS="standard"
node mcp-server/server.js
```
#### Tool Loading Behavior
- When `TASK_MASTER_TOOLS` is unset or empty, the system defaults to `"all"`
- Invalid tool names in a user-specified list are ignored (a warning is emitted for each)
- If every tool name in a custom list is invalid, the system falls back to `"all"`
- Tool names are case-insensitive (e.g., `"CORE"`, `"core"`, and `"Core"` are treated identically)
## Environment Variables (`.env` file or MCP `env` block - For API Keys Only)
- Used **exclusively** for sensitive API keys and specific endpoint URLs.
- **Location:**
- For CLI usage: Create a `.env` file in your project root.
- For MCP/Cursor usage: Configure keys in the `env` section of your `.cursor/mcp.json` file.
- **Required API Keys (Depending on configured providers):**
- `ANTHROPIC_API_KEY`: Your Anthropic API key.
- `PERPLEXITY_API_KEY`: Your Perplexity API key.
- `OPENAI_API_KEY`: Your OpenAI API key.
- `GOOGLE_API_KEY`: Your Google API key (also used for Vertex AI provider).
- `MISTRAL_API_KEY`: Your Mistral API key.
- `AZURE_OPENAI_API_KEY`: Your Azure OpenAI API key (also requires `AZURE_OPENAI_ENDPOINT`).
- `OPENROUTER_API_KEY`: Your OpenRouter API key.
- `XAI_API_KEY`: Your X-AI API key.
- **Optional Endpoint Overrides:**
- **Per-role `baseURL` in `.taskmasterconfig`:** You can add a `baseURL` property to any model role (`main`, `research`, `fallback`) to override the default API endpoint for that provider. If omitted, the provider's standard endpoint is used.
- **Environment Variable Overrides (`<PROVIDER>_BASE_URL`):** For greater flexibility, especially with third-party services, you can set an environment variable like `OPENAI_BASE_URL` or `MISTRAL_BASE_URL`. This will override any `baseURL` set in the configuration file for that provider. This is the recommended way to connect to OpenAI-compatible APIs.
- `AZURE_OPENAI_ENDPOINT`: Required if using Azure OpenAI key (can also be set as `baseURL` for the Azure model role).
- `OLLAMA_BASE_URL`: Override the default Ollama API URL (Default: `http://localhost:11434/api`).
- `VERTEX_PROJECT_ID`: Your Google Cloud project ID for Vertex AI. Required when using the 'vertex' provider.
- `VERTEX_LOCATION`: Google Cloud region for Vertex AI (e.g., 'us-central1'). Default is 'us-central1'.
- `GOOGLE_APPLICATION_CREDENTIALS`: Path to service account credentials JSON file for Google Cloud auth (alternative to API key for Vertex AI).
**Important:** Settings like model ID selections (`main`, `research`, `fallback`), `maxTokens`, `temperature`, `logLevel`, `defaultSubtasks`, `defaultPriority`, and `projectName` are **managed in `.taskmaster/config.json`** (or `.taskmasterconfig` for unmigrated projects), not environment variables.
## Tagged Task Lists Configuration (v0.17+)
Taskmaster includes a tagged task lists system for multi-context task management.
### Global Tag Settings
```json
"global": {
"defaultTag": "master"
}
```
- **`defaultTag`** (string): Default tag context for new operations (default: "master")
### Git Integration
Task Master provides manual git integration through the `--from-branch` option:
- **Manual Tag Creation**: Use `task-master add-tag --from-branch` to create a tag based on your current git branch name
- **User Control**: No automatic tag switching - you control when and how tags are created
- **Flexible Workflow**: Supports any git workflow without imposing rigid branch-tag mappings
## State Management File
Taskmaster uses `.taskmaster/state.json` to track tagged system runtime information:
```json
{
"currentTag": "master",
"lastSwitched": "2025-06-11T20:26:12.598Z",
"migrationNoticeShown": true
}
```
- **`currentTag`**: Currently active tag context
- **`lastSwitched`**: Timestamp of last tag switch
- **`migrationNoticeShown`**: Whether migration notice has been displayed
This file is automatically created during tagged system migration and should not be manually edited.
## Example `.env` File (for API Keys)
```
# Required API keys for providers configured in .taskmaster/config.json
ANTHROPIC_API_KEY=sk-ant-api03-your-key-here
PERPLEXITY_API_KEY=pplx-your-key-here
# OPENAI_API_KEY=sk-your-key-here
# GOOGLE_API_KEY=AIzaSy...
# AZURE_OPENAI_API_KEY=your-azure-openai-api-key-here
# etc.
# Optional Endpoint Overrides
# Use a specific provider's base URL, e.g., for an OpenAI-compatible API
# OPENAI_BASE_URL=https://api.third-party.com/v1
#
# Azure OpenAI Configuration
# AZURE_OPENAI_ENDPOINT=https://your-resource-name.openai.azure.com/ or https://your-endpoint-name.cognitiveservices.azure.com/openai/deployments
# OLLAMA_BASE_URL=http://custom-ollama-host:11434/api
# Google Vertex AI Configuration (Required if using 'vertex' provider)
# VERTEX_PROJECT_ID=your-gcp-project-id
```
## Troubleshooting
### Configuration Errors
- If Task Master reports errors about missing configuration or cannot find the config file, run `task-master models --setup` in your project root to create or repair the file.
- For new projects, config will be created at `.taskmaster/config.json`. For legacy projects, you may want to use `task-master migrate` to move to the new structure.
- Ensure API keys are correctly placed in your `.env` file (for CLI) or `.cursor/mcp.json` (for MCP) and are valid for the providers selected in your config file.
### If `task-master init` doesn't respond:
Try running it with Node directly:
```bash
node node_modules/claude-task-master/scripts/init.js
```
Or clone the repository and run:
```bash
git clone https://github.com/eyaltoledano/claude-task-master.git
cd claude-task-master
node scripts/init.js
```
## Provider-Specific Configuration
### MCP (Model Context Protocol) Provider
1. **Prerequisites**:
- An active MCP session with sampling capability
- MCP client with sampling support (e.g. VS Code)
- No API keys required (uses session-based authentication)
2. **Configuration**:
```json
{
"models": {
"main": {
"provider": "mcp",
"modelId": "mcp-sampling"
},
"research": {
"provider": "mcp",
"modelId": "mcp-sampling"
}
}
}
```
3. **Available Model IDs**:
- `mcp-sampling` - General text generation using MCP client sampling (supports all roles)
- `claude-3-5-sonnet-20241022` - High-performance model for general tasks (supports all roles)
- `claude-3-opus-20240229` - Enhanced reasoning model for complex tasks (supports all roles)
4. **Features**:
- ✅ **Text Generation**: Standard AI text generation via MCP sampling
- ✅ **Object Generation**: Full schema-driven structured output generation
- ✅ **PRD Parsing**: Parse Product Requirements Documents into structured tasks
- ✅ **Task Creation**: AI-powered task creation with validation
- ✅ **Session Management**: Automatic session detection and context handling
- ✅ **Error Recovery**: Robust error handling and fallback mechanisms
5. **Usage Requirements**:
- Must be running in an MCP context (session must be available)
- Session must provide `clientCapabilities.sampling` capability
6. **Best Practices**:
- Always configure a non-MCP fallback provider
- Use `mcp` for main/research roles when in MCP environments
- Test sampling capability before production use
7. **Setup Commands**:
```bash
# Set MCP provider for main role
task-master models set-main --provider mcp --model claude-3-5-sonnet-20241022
# Set MCP provider for research role
task-master models set-research --provider mcp --model claude-3-opus-20240229
# Verify configuration
task-master models list
```
8. **Troubleshooting**:
- "MCP provider requires session context" → Ensure running in MCP environment
- See the [MCP Provider Guide](./mcp-provider-guide.md) for detailed troubleshooting
### MCP Timeout Configuration
Long-running AI operations in taskmaster-ai can exceed the default 60-second MCP timeout. Operations like `parse_prd`, `expand_task`, `research`, and `analyze_project_complexity` may take 2-5 minutes to complete.
#### Adding Timeout Configuration
Add a `timeout` parameter to your MCP configuration to extend the timeout limit. The timeout configuration works identically across MCP clients including Cursor, Windsurf, and RooCode:
```json
{
"mcpServers": {
"task-master-ai": {
"command": "npx",
"args": ["-y", "--package=task-master-ai", "task-master-ai"],
"timeout": 300,
"env": {
"ANTHROPIC_API_KEY": "your-anthropic-api-key"
}
}
}
}
```
**Configuration Details:**
- **`timeout: 300`** - Sets timeout to 300 seconds (5 minutes)
- **Value range**: 1-3600 seconds (1 second to 1 hour)
- **Recommended**: 300 seconds provides sufficient time for most AI operations
- **Format**: Integer value in seconds (not milliseconds)
#### Automatic Setup
When adding taskmaster rules for supported editors, the timeout configuration is automatically included:
```bash
# Automatically includes timeout configuration
task-master rules add cursor
task-master rules add roo
task-master rules add windsurf
task-master rules add vscode
```
#### Troubleshooting Timeouts
If you're still experiencing timeout errors:
1. **Verify configuration**: Check that `timeout: 300` is present in your MCP config
2. **Restart editor**: Restart your editor after making configuration changes
3. **Increase timeout**: For very complex operations, try `timeout: 600` (10 minutes)
4. **Check API keys**: Ensure required API keys are properly configured
**Expected behavior:**
- **Before fix**: Operations fail after 60 seconds with `MCP request timed out after 60000ms`
- **After fix**: Operations complete successfully within the configured timeout limit
### Google Vertex AI Configuration
Google Vertex AI is Google Cloud's enterprise AI platform and requires specific configuration:
1. **Prerequisites**:
- A Google Cloud account with Vertex AI API enabled
- Either a Google API key with Vertex AI permissions OR a service account with appropriate roles
- A Google Cloud project ID
2. **Authentication Options**:
- **API Key**: Set the `GOOGLE_API_KEY` environment variable
- **Service Account**: Set `GOOGLE_APPLICATION_CREDENTIALS` to point to your service account JSON file
3. **Required Configuration**:
- Set `VERTEX_PROJECT_ID` to your Google Cloud project ID
- Set `VERTEX_LOCATION` to your preferred Google Cloud region (default: us-central1)
4. **Example Setup**:
```bash
# In .env file
GOOGLE_API_KEY=AIzaSyXXXXXXXXXXXXXXXXXXXXXXXXX
VERTEX_PROJECT_ID=my-gcp-project-123
VERTEX_LOCATION=us-central1
```
Or using service account:
```bash
# In .env file
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json
VERTEX_PROJECT_ID=my-gcp-project-123
VERTEX_LOCATION=us-central1
```
5. **In .taskmaster/config.json**:
```json
"global": {
"vertexProjectId": "my-gcp-project-123",
"vertexLocation": "us-central1"
}
```
### Azure OpenAI Configuration
Azure OpenAI provides enterprise-grade OpenAI models through Microsoft's Azure cloud platform and requires specific configuration:
1. **Prerequisites**:
- An Azure account with an active subscription
- Azure OpenAI service resource created in the Azure portal
- Azure OpenAI API key and endpoint URL
- Deployed models (e.g., gpt-4o, gpt-4o-mini, gpt-4.1, etc) in your Azure OpenAI resource
2. **Authentication**:
- Set the `AZURE_OPENAI_API_KEY` environment variable with your Azure OpenAI API key
- Configure the endpoint URL using one of the methods below
3. **Configuration Options**:
**Option 1: Using Global Azure Base URL (affects all Azure models)**
```json
// In .taskmaster/config.json
{
"models": {
"main": {
"provider": "azure",
"modelId": "gpt-4o",
"maxTokens": 16000,
"temperature": 0.7
},
"fallback": {
"provider": "azure",
"modelId": "gpt-4o-mini",
"maxTokens": 10000,
"temperature": 0.7
}
},
"global": {
"azureBaseURL": "https://your-resource-name.azure.com/openai/deployments"
}
}
```
**Option 2: Using Per-Model Base URLs (recommended for flexibility)**
```json
// In .taskmaster/config.json
{
"models": {
"main": {
"provider": "azure",
"modelId": "gpt-4o",
"maxTokens": 16000,
"temperature": 0.7,
"baseURL": "https://your-resource-name.azure.com/openai/deployments"
},
"research": {
"provider": "perplexity",
"modelId": "sonar-pro",
"maxTokens": 8700,
"temperature": 0.1
},
"fallback": {
"provider": "azure",
"modelId": "gpt-4o-mini",
"maxTokens": 10000,
"temperature": 0.7,
"baseURL": "https://your-resource-name.azure.com/openai/deployments"
}
}
}
```
4. **Environment Variables**:
```bash
# In .env file
AZURE_OPENAI_API_KEY=your-azure-openai-api-key-here
# Optional: Override endpoint for all Azure models
AZURE_OPENAI_ENDPOINT=https://your-resource-name.azure.com/openai/deployments
```
5. **Important Notes**:
- **Model Deployment Names**: The `modelId` in your configuration should match the **deployment name** you created in Azure OpenAI Studio, not the underlying model name
- **Base URL Priority**: Per-model `baseURL` settings override the global `azureBaseURL` setting
- **Endpoint Format**: When using per-model `baseURL`, use the full path including `/openai/deployments`
6. **Troubleshooting**:
**"Resource not found" errors:**
- Ensure your `baseURL` includes the full path: `https://your-resource-name.openai.azure.com/openai/deployments`
- Verify that your deployment name in `modelId` exactly matches what's configured in Azure OpenAI Studio
- Check that your Azure OpenAI resource is in the correct region and properly deployed
**Authentication errors:**
- Verify your `AZURE_OPENAI_API_KEY` is correct and has not expired
- Ensure your Azure OpenAI resource has the necessary permissions
- Check that your subscription has not been suspended or reached quota limits
**Model availability errors:**
- Confirm the model is deployed in your Azure OpenAI resource
- Verify the deployment name matches your configuration exactly (case-sensitive)
- Ensure the model deployment is in a "Succeeded" state in Azure OpenAI Studio
- Ensure youre not getting rate limited by `maxTokens` maintain appropriate Tokens per Minute Rate Limit (TPM) in your deployment.
### Codex CLI Provider
The Codex CLI provider integrates Task Master with OpenAI's Codex CLI, allowing you to use ChatGPT subscription models via OAuth authentication.
1. **Prerequisites**:
- Node.js >= 18
- Codex CLI >= 0.42.0 (>= 0.44.0 recommended)
- ChatGPT subscription: Plus, Pro, Business, Edu, or Enterprise (for OAuth access to GPT-5 models)
2. **Installation**:
```bash
npm install -g @openai/codex
```
3. **Authentication** (OAuth - Primary Method):
```bash
codex login
```
This will open a browser window for OAuth authentication with your ChatGPT account. Once authenticated, Task Master will automatically use these credentials.
4. **Optional API Key Method**:
While OAuth is the primary and recommended authentication method, you can optionally set an OpenAI API key:
```bash
# In .env file
OPENAI_API_KEY=sk-your-openai-api-key-here
```
**Note**: The API key will only be injected if explicitly provided. OAuth is always preferred.
5. **Configuration**:
```json
// In .taskmaster/config.json
{
"models": {
"main": {
"provider": "codex-cli",
"modelId": "gpt-5-codex",
"maxTokens": 128000,
"temperature": 0.2
},
"fallback": {
"provider": "codex-cli",
"modelId": "gpt-5",
"maxTokens": 128000,
"temperature": 0.2
}
},
"codexCli": {
"allowNpx": true,
"skipGitRepoCheck": true,
"approvalMode": "on-failure",
"sandboxMode": "workspace-write"
}
}
```
6. **Available Models**:
- `gpt-5` - Latest GPT-5 model (272K max input, 128K max output)
- `gpt-5-codex` - GPT-5 optimized for agentic software engineering (272K max input, 128K max output)
7. **Codex CLI Settings (`codexCli` section)**:
The `codexCli` section in your configuration file supports the following options:
- **`allowNpx`** (boolean, default: `false`): Allow fallback to `npx @openai/codex` if CLI not found on PATH
- **`skipGitRepoCheck`** (boolean, default: `false`): Skip git repository safety check (recommended for CI/non-repo usage)
- **`approvalMode`** (string): Control command execution approval
- `"untrusted"`: Require approval for all commands
- `"on-failure"`: Only require approval after a command fails (default)
- `"on-request"`: Approve only when explicitly requested
- `"never"`: Never require approval (not recommended)
- **`sandboxMode`** (string): Control filesystem access
- `"read-only"`: Read-only access
- `"workspace-write"`: Allow writes to workspace (default)
- `"danger-full-access"`: Full filesystem access (use with caution)
- **`codexPath`** (string, optional): Custom path to codex CLI executable
- **`cwd`** (string, optional): Working directory for Codex CLI execution
- **`fullAuto`** (boolean, optional): Fully automatic mode (equivalent to `--full-auto` flag)
- **`dangerouslyBypassApprovalsAndSandbox`** (boolean, optional): Bypass all safety checks (dangerous!)
- **`color`** (string, optional): Color handling - `"always"`, `"never"`, or `"auto"`
- **`outputLastMessageFile`** (string, optional): Write last agent message to specified file
- **`verbose`** (boolean, optional): Enable verbose logging
- **`env`** (object, optional): Additional environment variables for Codex CLI
8. **Command-Specific Settings** (optional):
You can override settings for specific Task Master commands:
```json
{
"codexCli": {
"allowNpx": true,
"approvalMode": "on-failure",
"commandSpecific": {
"parse-prd": {
"approvalMode": "never",
"verbose": true
},
"expand": {
"sandboxMode": "read-only"
}
}
}
}
```
9. **Codebase Features**:
The Codex CLI provider is codebase-capable, meaning it can analyze and interact with your project files. Codebase analysis features are automatically enabled when using `codex-cli` as your provider and `enableCodebaseAnalysis` is set to `true` in your global configuration (default).
10. **Setup Commands**:
```bash
# Set Codex CLI for main role
task-master models --set-main gpt-5-codex --codex-cli
# Set Codex CLI for fallback role
task-master models --set-fallback gpt-5 --codex-cli
# Verify configuration
task-master models
```
11. **Troubleshooting**:
**"codex: command not found" error:**
- Install Codex CLI globally: `npm install -g @openai/codex`
- Verify installation: `codex --version`
- Alternatively, enable `allowNpx: true` in your codexCli configuration
**"Not logged in" errors:**
- Run `codex login` to authenticate with your ChatGPT account
- Verify authentication status: `codex` (opens interactive CLI)
**"Old version" warnings:**
- Check version: `codex --version`
- Upgrade: `npm install -g @openai/codex@latest`
- Minimum version: 0.42.0, recommended: >= 0.44.0
**"Model not available" errors:**
- Only `gpt-5` and `gpt-5-codex` are available via OAuth subscription
- Verify your ChatGPT subscription is active
- For other OpenAI models, use the standard `openai` provider with an API key
**API key not being used:**
- API key is only injected when explicitly provided
- OAuth authentication is always preferred
- If you want to use an API key, ensure `OPENAI_API_KEY` is set in your `.env` file
12. **Important Notes**:
- OAuth subscription required for model access (no API key needed for basic operation)
- Limited to OAuth-available models only (`gpt-5` and `gpt-5-codex`)
- Pricing information is not available for OAuth models (shows as "Unknown" in cost calculations)
- See [Codex CLI Provider Documentation](./providers/codex-cli.md) for more details