Compare commits

...

203 Commits

Author SHA1 Message Date
Ralph Khreish
7d5ebf05e3 fix: mcp bug when expanding task (#957)
* fix: mcp bug when expanding task

* chore: fix format
2025-07-11 18:16:05 +02:00
Ralph Khreish
21392a1117 fix: more regression bugs (#956)
* fix: more regression bugs

* chore: fix format

* chore: fix unit tests

* chore: fix format
2025-07-11 14:23:54 +02:00
Ben Vargas
3e61d26235 fix: resolve path resolution and context gathering errors across multiple commands (#954)
* fix: resolve path resolution issues in parse-prd and analyze-complexity commands

This commit fixes critical path resolution regressions where commands were requiring files they create to already exist.

## Changes Made:

### 1. parse-prd Command (Lines 808, 828-835, 919-921)
**Problem**: Command required tasks.json to exist before it could create it (catch-22)
**Root Cause**: Default value in option definition meant options.output was always set
**Fixes**:
- Removed default value from --output option definition (line 808)
- Modified initTaskMaster to only include tasksPath when explicitly specified
- Added null handling for output path with fallback to default location

### 2. analyze-complexity Command (Lines 1637-1640, 1673-1680, 1695-1696)
**Problem**: Command required complexity report file to exist before creating it
**Root Cause**: Default value in option definition meant options.output was always set
**Fixes**:
- Removed default value from --output option definition (lines 1637-1640)
- Modified initTaskMaster to only include complexityReportPath when explicitly specified
- Added null handling for report path with fallback to default location

## Technical Details:

The core issue was that Commander.js option definitions with default values always populate the options object, making conditional checks like `if (options.output)` always true. By removing default values from option definitions, we ensure paths are only included in initTaskMaster when users explicitly provide them.

This approach is cleaner than using boolean flags (true/false) for required/optional, as it eliminates the path entirely when not needed, letting initTaskMaster use its default behavior.

## Testing:
- parse-prd now works on fresh projects without existing tasks.json
- analyze-complexity creates report file without requiring it to exist
- Commands maintain backward compatibility when paths are explicitly provided

Fixes issues reported in PATH-FIXES.md and extends the solution to other affected commands.

* fix: update expand-task test to match context gathering fix

The test was expecting gatheredContext to be a string, but the actual
implementation returns an object with a context property. Updated the
ContextGatherer mock to return the correct format and added missing
FuzzyTaskSearch mock.

---------

Co-authored-by: Ben Vargas <ben@example.com>
2025-07-11 05:46:28 +02:00
github-actions[bot]
dc5de53dcd docs: Auto-update and format models.md 2025-07-10 09:56:54 +00:00
Ralph Khreish
4312d3bd67 fix: models setup command not working (#952)
* fix: models command not working

* chore: re-order supported models to something that makes more sense

* chore: format
2025-07-10 11:56:41 +02:00
Chris Covington
0253f3ed87 Update the sync-readme command to a use markdown tables. (#859)
* Convert the sync-readme command to output markdown tables.

* chore: fix format

---------

Co-authored-by: Chris Covington <chris.covington@hey.com>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-07-10 10:03:15 +02:00
Joe Danziger
a65ad0a47c feat: Centralize AI prompts into JSON templates (#882)
* centralize prompt management

* add changeset

* add variant key to determine prompt version

* update tests and add prompt manager test

* determine internal path, don't use projectRoot

* add promptManager mock

* detailed prompt docs

* add schemas and validator packages

* add validate prompts command

* add schema validation

* update tests

* move schemas to src/prompts/schemas

* use this.promptsDir for better semantics

* add prompt schemas

* version schema files & update links

* remove validate command

* expect dependencies

* update docs

* fix test

* remove suggestmode to ensure clean keys

* remove default variant from research and update schema

* now handled by prompt manager

* add manual test to verify prompts

* remove incorrect batch variant

* consolidate variants

* consolidate analyze-complexity to just default variant

* consolidate parse-prd variants

* add eq handler for handlebars

* consolidate research prompt variants

* use brevity

* consolidate variants for update subtask

* add not handler

* consolidate variants for update-task

* consolidate update-tasks variants

* add conditional content to prompt when research used

* update prompt tests

* show correct research variant

* make variant names link to below

* remove changset

* restore gitignore

* Merge branch 'next' of https://github.com/eyaltoledano/claude-task-master into joedanz/centralize-prompts

# Conflicts:
#	package-lock.json
#	scripts/modules/task-manager/expand-task.js
#	scripts/modules/task-manager/parse-prd.js

remove unused

* add else

* update tests

* update biome optional dependencies

* responsive html output for mobile
2025-07-10 09:52:11 +02:00
Parthy
4bc8029080 refactor: streamline task path resolution in commands.js (#948)
- Replaced local `tasksPath` variable assignments with direct calls to `taskMaster.getTasksPath()` for consistency and clarity across multiple command functions.
- This change enhances maintainability by ensuring a single source of truth for task paths, reducing redundancy in path handling logic.
2025-07-10 09:25:56 +02:00
github-actions[bot]
31d395322f docs: Auto-update and format models.md 2025-07-10 07:25:01 +00:00
Ben Vargas
699e9eefb5 feat: add support for xAI Grok 4 model (#950)
- Add grok-4 to supported models with $3/$15 per 1M token pricing
- Enable main, fallback, and research roles for grok-4
- Update models.md documentation to include grok-4 in all tables
2025-07-10 09:24:48 +02:00
Joe Danziger
95c299df64 Unify and streamline profile system architecture (#853)
* move claude rules and commands to assets/claude

* update claude profile to copy assets/claude to .claude

* fix formatting

* feat(profiles): Implement unified profile system

- Convert Claude and Codex profiles to use createProfile() factory
- Remove simple vs complex profile distinction in rule transformer
- Unify convertAllRulesToProfileRules() to handle all profiles consistently
- Fix mcpConfigPath construction in base-profile.js for null mcpConfigName
- Update terminology from 'simpleProfiles' to 'assetOnlyProfiles' throughout
- Ensure Claude .claude directory copying works in both CLI and MCP contexts
- All profiles now follow same execution flow with proper lifecycle functions

Changes:
- src/profiles/claude.js: Convert to createProfile() factory pattern
- src/profiles/codex.js: Convert to createProfile() factory pattern
- src/utils/rule-transformer.js: Unified profile handling logic
- src/utils/profiles.js: Remove simple profile categorization
- src/profiles/base-profile.js: Fix mcpConfigPath construction
- scripts/modules/commands.js: Update variable naming
- tests/: Update all tests for unified system and terminology

Fixes Claude profile asset copying issue in MCP context.
All tests passing (617 passed, 11 skipped).

* re-checkin claude files

* fix formatting

* chore: clean up test Claude rules files

* chore: add changeset for unified profile system

* add claude files back

* add changeset

* restore proper gitignore

* remove claude agents file from root

* remove incorrect doc

* simplify profiles and update tests

* update changeset

* update changeset

* remove profile specific code

* streamline profiles with defaults and update tests

* update changeset

* add newline at end of gitignore

* restore changes

* streamline profiles with defaults; update tests and add vscode test

* update rule profile tests

* update wording for clearer profile management

* refactor and clarify terminology

* use original projectRoot var name

* revert param desc

* use updated claude assets from neno

* add "YOUR_" before api key here

* streamline codex profile

* add gemini profile

* update gemini profile

* update tests

* relocate function

* update rules interactive setup Gemini desc

* remove duplicative code

* add comma
2025-07-09 13:22:11 +02:00
Ralph Khreish
5f009a5e1f feat: improve add-task (#946)
* feat: improve add-task

* chore: format
2025-07-09 13:09:10 +02:00
github-actions[bot]
38e6f3798e docs: Auto-update and format models.md 2025-07-09 08:54:54 +00:00
Oren Me
b53065713c feat: add support for MCP Sampling as AI provider (#863)
* feat: support MCP sampling

* support provider registry

* use standard config options for MCP provider

* update fastmcp to support passing params to requestSampling

* move key name definition to base provider

* moved check for required api key to provider class

* remove unused code

* more cleanup

* more cleanup

* refactor provider

* remove not needed files

* more cleanup

* more cleanup

* more cleanup

* update docs

* fix tests

* add tests

* format fix

* clean files

* merge fixes

* format fix

* feat: add support for MCP Sampling as AI provider

* initial mcp ai sdk

* fix references to old provider

* update models

* lint

* fix gemini-cli conflicts

* ran format

* Update src/provider-registry/index.js

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>

* fix circular dependency

Circular Dependency Issue  FIXED
Root Cause: BaseAIProvider was importing from index.js, which includes commands.js and other modules that eventually import back to AI providers
Solution: Changed imports to use direct paths to avoid circular dependencies:
Updated base-provider.js to import log directly from utils.js
Updated gemini-cli.js to import log directly from utils.js
Result: Fixed 11 failing tests in mcp-provider.test.js

* fix gemini test

* fix(claude-code): recover from CLI JSON truncation bug (#913) (#920)

Gracefully handle SyntaxError thrown by @anthropic-ai/claude-code when the CLI truncates large JSON outputs (4–16 kB cut-offs).\n\nKey points:\n• Detect JSON parse error + existing buffered text in both doGenerate() and doStream() code paths.\n• Convert the failure into a recoverable 'truncated' finish state and push a provider-warning.\n• Allows Task Master to continue parsing long PRDs / expand-task operations instead of crashing.\n\nA patch changeset (.changeset/claude-code-json-truncation.md) is included for the next release.\n\nRef: eyaltoledano/claude-task-master#913

* docs: fix gemini-cli authentication documentation (#923)

Remove erroneous 'gemini auth login' command references and replace with correct 'gemini' command authentication flow. Update documentation to reflect proper OAuth setup process via the gemini CLI interactive interface.

* fix tests

* fix: update ai-sdk-provider-gemini-cli to 0.0.4 for improved authentication (#932)

- Fixed authentication compatibility issues with Google auth
- Added support for 'api-key' auth type alongside 'gemini-api-key'
- Resolved "Unsupported authType: undefined" runtime errors
- Updated @google/gemini-cli-core dependency to 0.1.9
- Improved documentation and removed invalid auth references
- Maintained backward compatibility while enhancing type validation

* call logging directly

Need to patch upstream fastmcp to allow easier access and bootstrap the TM mcp logger to use the fastmcp logger which today is only exposed in the tools handler

* fix tests

* removing logs until we figure out how to pass mcp logger

* format

* fix tests

* format

* clean up

* cleanup

* readme fix

---------

Co-authored-by: Oren Melamed <oren.m@gloat.com>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
Co-authored-by: Ben Vargas <ben@vargas.com>
2025-07-09 10:54:38 +02:00
Chris Covington
de28026b32 Phase 1 refactoring path resolution. (#877)
* feat: implement centralized path management system with initTaskMaster

This commit introduces a comprehensive refactoring of the TaskMaster CLI's path handling system, consolidating all path resolution logic into a centralized initTaskMaster function and TaskMaster class. This architectural change eliminates circular dependencies and provides consistent path management across all CLI commands.

Key changes:

• **Created new TaskMaster class and initTaskMaster factory function** in src/task-master.js
  - Centralized path resolution with boolean override logic (string = explicit path, true = required search, false/undefined = optional)
  - Built-in error handling with automatic process.exit() for missing required paths
  - Immutable path objects with getter methods for safe access

• **Replaced findProjectRoot() calls throughout CLI** in scripts/modules/commands.js
  - Updated all 25+ CLI commands to use initTaskMaster() instead of scattered path handling
  - Eliminated hundreds of lines of redundant path resolution and error handling code
  - Consistent project root validation and path discovery across all commands

• **Added comprehensive test suite** in tests/unit/task-master.test.js
  - 22 test cases covering project root detection, path resolution, override validation, and edge cases
  - Tests use temporary directories with proper cleanup and mock process.exit/console.error
  - Validates both successful scenarios and error conditions with proper exit codes

* bring Usage for Parse PRD back, and revamp initTaskMaster to throw errors not error/exit.

* fix(claude-code): recover from CLI JSON truncation bug (#913) (#920)

Gracefully handle SyntaxError thrown by @anthropic-ai/claude-code when the CLI truncates large JSON outputs (4–16 kB cut-offs).\n\nKey points:\n• Detect JSON parse error + existing buffered text in both doGenerate() and doStream() code paths.\n• Convert the failure into a recoverable 'truncated' finish state and push a provider-warning.\n• Allows Task Master to continue parsing long PRDs / expand-task operations instead of crashing.\n\nA patch changeset (.changeset/claude-code-json-truncation.md) is included for the next release.\n\nRef: eyaltoledano/claude-task-master#913

* docs: fix gemini-cli authentication documentation (#923)

Remove erroneous 'gemini auth login' command references and replace with correct 'gemini' command authentication flow. Update documentation to reflect proper OAuth setup process via the gemini CLI interactive interface.

* fix: .gitignore missing trailing newline during project initialization (#855)

* Support for Additional Anthropic Models on Bedrock (#870)

* Add additional Anthropic Models for Bedrock

* Update Models Docs from `scripts/modules/supported-models.json`

* feat(models): add additional Bedrock supported models

* docs: Auto-update and format models.md

* fix: Ensure projectRoot is a string (potential WSL fix) (#892)

* ensure projectRoot is a string

* add changeset

* Fix/spelling mistakes (#876)

* docs: Auto-update and format models.md

* fix: correct typos in documentation for parse-prd and taskmaster commands

- Updated the `parse-prd` documentation to fix the spelling of "multiple."
- Clarified the description of the `id` parameter in the `taskmaster` documentation to ensure proper syntax and readability.

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Fix `rules` command to use reliable project root detection like other commands (#908)

* update/fix projectRoot call for consistency

* internal naming consistency

* add changeset

* fix: Subtask generation fails on gemini-2.5-pro (#852)

* fix: clarify details format in task expansion prompt

* chore: add changeset

* fix: use tag-specific complexity reports (#857)

* fix(expand-task): Use tag-specific complexity reports

- Add getTagAwareFilePath utility function to resolve tag-specific file paths
- Update expandTask to use tag-aware complexity report paths
- Fix issue where expand-task always used default complexity report
- Add comprehensive tests for getTagAwareFilePath utility
- Ensure proper handling of file extensions and directory structures

Fixes #850: Expanding tasks not using tag-specific complexity reports

The expandTask function now correctly uses complexity reports specific
to the current tag context (e.g., task-complexity-report_feature-branch.json)
instead of always using the default task-complexity-report.json file.

This enables proper task expansion behavior when working with multiple
tag contexts, ensuring complexity analysis is tag-specific and accurate.

* chore: Add changeset for tag-specific complexity reports fix

* test(expand-task): Add tests for tag-specific complexity report integration

- Introduced a new test suite for verifying the integration of tag-specific complexity reports in the expandTask function.
- Added a test case to ensure the correct complexity report is used when available for a specific tag.
- Mocked file system interactions to simulate the presence of tag-specific complexity reports.

This enhances the test coverage for task expansion behavior, ensuring it accurately reflects the complexity analysis based on the current tag context.

* refactor(task-manager): unify and simplify tag-aware file path logic and tests

- Reformatted imports and cleaned up comments in test files for readability
- Centralized mocks: moved getTagAwareFilePath & slugifyTagForFilePath
  mocks to setup.js for consistency and maintainability
- Simplified utils/getTagAwareFilePath: replaced manual parsing with
  path.parse() & path.format(); improved extension handling
- Enhanced test mocks for path.parse, path.format & reset path.join
  in beforeEach to avoid interference
- All tests now pass consistently; no change in functionality

* fix: prevent tag corruption in bulk updates (#856)

* fix(task-manager): prevent tag corruption in bulk updates and add tag preservation test

- Fix writeJSON call in scripts/modules/task-manager/update-tasks.js (line 469) to include projectRoot and tag parameters.
- Ensure tagged task lists maintain data integrity during bulk updates, preventing task disappearance in tagged contexts.
- Update MCP tools to properly pass tag context through the call chain.
- Introduce a comprehensive test case to verify that all tags are preserved when updating tasks, covering both master and feature-branch scenarios.

Addresses an issue where bulk updates could corrupt tasks.json in tagged task list structures, reinforcing task management robustness.

* style(tests): format task data in update-tasks test

* fix: Critical writeJSON Context Fixes - Prevent Tag Corruption (#910)

* feat(tasks): Fix critical tag corruption bug in task management

- Fixed missing context parameters in writeJSON calls across add-task, remove-task, and add-subtask functions
- Added projectRoot and tag parameters to prevent data corruption in multi-tag environments
- Re-enabled generateTaskFiles calls to ensure markdown files are updated after operations
- Enhanced add_subtask MCP tool with tag parameter support
- Refactored addSubtaskDirect function to properly pass context to core logic
- Streamlined codebase by removing deprecated functionality

This resolves the critical bug where task operations in one tag context would corrupt or delete tasks from other tags in tasks.json.

* feat(task-manager): Enhance addSubtask with current tag support

- Added `getCurrentTag` utility to retrieve the current tag context for task operations.
- Updated `addSubtask` to use the current tag when reading and writing tasks, ensuring proper context handling.
- Refactored tests to accommodate changes in the `addSubtask` function, ensuring accurate mock implementations and expectations.
- Cleaned up test cases for better readability and maintainability.

This improves task management by preventing tag-related data corruption and enhances the overall functionality of the task manager.

* feat(remove-task): Add tag support for task removal and enhance error handling

- Introduced `tag` parameter in `removeTaskDirect` to specify context for task operations, improving multi-tag support.
- Updated logging to include tag context in messages for better traceability.
- Refactored task removal logic to streamline the process and improve error reporting.
- Added comprehensive unit tests to validate tag handling and ensure robust error management.

This enhancement prevents task data corruption across different tags and improves the overall reliability of the task management system.

* feat(add-task): Add projectRoot and tag parameters to addTask tests

- Updated `addTask` unit tests to include `projectRoot` and `tag` parameters for better context handling.
- Enhanced test cases to ensure accurate expectations and improve overall test coverage.

This change aligns with recent enhancements in task management, ensuring consistency across task operations.

* feat(set-task-status): Add tag parameter support and enhance task status handling

- Introduced `tag` parameter in `setTaskStatusDirect` and related functions to improve context management in multi-tag environments.
- Updated `writeJSON` calls to ensure task data integrity across different tags.
- Enhanced unit tests to validate tag preservation during task status updates, ensuring robust functionality.

This change aligns with recent improvements in task management, preventing data corruption and enhancing overall reliability.

* feat(tag-management): Enhance writeJSON calls to preserve tag context

- Updated `writeJSON` calls in `createTag`, `deleteTag`, `renameTag`, `copyTag`, and `enhanceTagsWithMetadata` to include `projectRoot` for better context management and to prevent tag corruption.
- Added comprehensive unit tests for tag management functions to ensure data integrity and proper tag handling during operations.

This change improves the reliability of tag management by ensuring that operations do not corrupt existing tags and maintains the overall structure of the task data.

* feat(expand-task): Update writeJSON to include projectRoot and tag context

- Modified `writeJSON` call in `expandTaskDirect` to pass `projectRoot` and `tag` parameters, ensuring proper context management when saving tasks.json.
- This change aligns with recent enhancements in task management, preventing potential data corruption and improving overall reliability.

* feat(fix-dependencies): Add projectRoot and tag parameters for enhanced context management

- Updated `fixDependenciesDirect` and `registerFixDependenciesTool` to include `projectRoot` and `tag` parameters, improving context handling during dependency fixes.
- Introduced a new unit test for `fixDependenciesCommand` to ensure proper preservation of projectRoot and tag data in JSON outputs.

This change enhances the reliability of dependency management by ensuring that context is maintained across operations, preventing potential data issues.

* fix(context): propagate projectRoot and tag through dependency, expansion, status-update and tag-management commands to prevent cross-tag data corruption

* test(fix-dependencies): Enhance unit tests for fixDependenciesCommand

- Refactored tests to use unstable mocks for utils, ui, and task-manager modules, improving isolation and reliability.
- Added checks for process.exit to ensure proper handling of invalid data scenarios.
- Updated test cases to verify writeJSON calls with projectRoot and tag parameters, ensuring accurate context preservation during dependency fixes.

This change strengthens the test suite for dependency management, ensuring robust functionality and preventing potential data issues.

* chore(plan): remove outdated fix plan for `writeJSON` context parameters

* feat: Add gemini-cli provider integration for Task Master (#897)

* feat: Add gemini-cli provider integration for Task Master

This commit adds comprehensive support for the Gemini CLI provider, enabling users
to leverage Google's Gemini models through OAuth authentication via the gemini CLI
tool. This integration provides a seamless experience for users who prefer using
their existing Google account authentication rather than managing API keys.

## Implementation Details

### Provider Class (`src/ai-providers/gemini-cli.js`)
- Created GeminiCliProvider extending BaseAIProvider
- Implements dual authentication support:
  - Primary: OAuth authentication via `gemini auth login` (authType: 'oauth-personal')
  - Secondary: API key authentication for compatibility (authType: 'api-key')
- Uses the npm package `ai-sdk-provider-gemini-cli` (v0.0.3) for SDK integration
- Properly handles authentication validation without console output

### Model Configuration (`scripts/modules/supported-models.json`)
- Added two Gemini models with accurate specifications:
  - gemini-2.5-pro: 72% SWE score, 65,536 max output tokens
  - gemini-2.5-flash: 71% SWE score, 65,536 max output tokens
- Both models support main, fallback, and research roles
- Configured with zero cost (free tier)

### System Integration
- Registered provider in PROVIDERS map (`scripts/modules/ai-services-unified.js`)
- Added to OPTIONAL_AUTH_PROVIDERS set for flexible authentication
- Added GEMINI_CLI constant to provider constants (`src/constants/providers.js`)
- Exported GeminiCliProvider from index (`src/ai-providers/index.js`)

### Command Line Support (`scripts/modules/commands.js`)
- Added --gemini-cli flag to models command for provider hint
- Integrated into model selection logic (setModel function)
- Updated error messages to include gemini-cli in provider list
- Removed unrelated azure/vertex changes to maintain PR focus

### Documentation (`docs/providers/gemini-cli.md`)
- Comprehensive provider documentation emphasizing OAuth-first approach
- Clear explanation of why users would choose gemini-cli over standard google provider
- Detailed installation, authentication, and configuration instructions
- Troubleshooting section with common issues and solutions

### Testing (`tests/unit/ai-providers/gemini-cli.test.js`)
- Complete test suite with 12 tests covering all functionality
- Tests for both OAuth and API key authentication paths
- Error handling and edge case coverage
- Updated mocks in ai-services-unified.test.js for integration testing

## Key Design Decisions

1. **OAuth-First Design**: The provider assumes users want to leverage their existing
   `gemini auth login` credentials, making this the default authentication method.

2. **Authentication Type Mapping**: Discovered through testing that the SDK expects:
   - 'oauth-personal' for OAuth/CLI authentication (not 'gemini-cli' or 'oauth')
   - 'api-key' for API key authentication (not 'gemini-api-key')

3. **Silent Operation**: Removed console.log statements from validateAuth to match
   the pattern used by other providers like claude-code.

4. **Limited Model Support**: Only gemini-2.5-pro and gemini-2.5-flash are available
   through the CLI, as confirmed by the package author.

## Usage

```bash
# Install gemini CLI globally
npm install -g @google/gemini-cli

# Authenticate with Google account
gemini auth login

# Configure Task Master to use gemini-cli
task-master models --set-main gemini-2.5-pro --gemini-cli

# Use Task Master normally
task-master new "Create a REST API endpoint"
```

## Dependencies
- Added `ai-sdk-provider-gemini-cli@^0.0.3` to package.json
- This package wraps the Google Gemini CLI Core functionality for Vercel AI SDK

## Testing
All tests pass (613 total), including the new gemini-cli provider tests.
Code has been formatted with biome to maintain consistency.

This implementation provides a clean, well-tested integration that follows Task Master's
existing patterns while offering users a convenient way to use Gemini models with their
existing Google authentication.

* feat: implement lazy loading for gemini-cli provider

- Move ai-sdk-provider-gemini-cli to optionalDependencies
- Implement dynamic import with loadGeminiCliModule() function
- Make getClient() async to support lazy loading
- Update base-provider to handle async getClient() calls
- Update tests to handle async getClient() method

This allows the application to start without the gemini-cli package
installed, only loading it when actually needed.

* feat(gemini-cli): replace regex-based JSON extraction with jsonc-parser

- Add jsonc-parser dependency for robust JSON parsing
- Replace simple regex approach with progressive parsing strategy:
  1. Direct parsing after cleanup
  2. Smart boundary detection with single-pass analysis
  3. Limited fallback for edge cases
- Optimize performance with early termination and strategic sampling
- Add comprehensive tests for variable declarations, trailing commas,
  escaped quotes, nested objects, and performance edge cases
- Improve reliability for complex JSON structures that Gemini commonly produces
- Fix code formatting with biome

This addresses JSON parsing failures in generateObject operations while
maintaining backward compatibility and significantly improving performance
for large responses.

* fix: update package-lock.json and fix formatting for CI/CD

- Add jsonc-parser to package-lock.json for proper npm ci compatibility
- Fix biome formatting issues in gemini-cli provider and tests
- Ensure all CI/CD checks pass

* feat(gemini-cli): implement comprehensive JSON output reliability system

- Add automatic JSON request detection via content analysis patterns
- Implement task-specific prompt simplification for improved AI compliance
- Add strict JSON enforcement through enhanced system prompts
- Implement response interception with intelligent JSON extraction fallback
- Add comprehensive test coverage for all new JSON handling methods
- Move debug logging to appropriate level for clean user experience

This multi-layered approach addresses gemini-cli's conversational response
tendencies, ensuring reliable structured JSON output for task expansion
operations. Achieves 100% success rate in end-to-end testing while
maintaining full backward compatibility with existing functionality.

Technical implementation includes:
• JSON detection via user message content analysis
• Expand-task prompt simplification with cleaner instructions
• System prompt enhancement with strict JSON enforcement
• Response processing with jsonc-parser-based extraction
• Comprehensive unit test coverage for edge cases
• Debug-level logging to prevent user interface clutter

Resolves: gemini-cli JSON formatting inconsistencies
Tested: All 46 test suites pass, formatting verified

* chore: add changeset for gemini-cli provider implementation

Adds minor version bump for comprehensive gemini-cli provider with:
- Lazy loading and optional dependency management
- Advanced JSON parsing with jsonc-parser
- Multi-layer reliability system for structured output
- Complete test coverage and CI/CD compliance

* refactor: consolidate optional auth provider logic

- Add gemini-cli to existing providersWithoutApiKeys array in config-manager
- Export providersWithoutApiKeys for reuse across modules
- Remove duplicate OPTIONAL_AUTH_PROVIDERS Set from ai-services-unified
- Update ai-services-unified to import and use centralized array
- Fix Jest mock to include new providersWithoutApiKeys export

This eliminates code duplication and provides a single source of truth
for which providers support optional authentication, addressing PR
reviewer feedback about existing similar functionality in src/constants.

* docs: Auto-update and format models.md

* Feat: Added automatic determination of task number based on complexity (#884)

- Added 'defaultNumTasks: 10' to default config, now used in 'parse-prd'
- Adjusted 'parse-prd' and 'expand-task' to:
  - Accept a 'numTasks' value of 0
  - Updated tool and command descriptions
  - Updated prompts to 'an appropriate number of' when value is 0
- Updated 'README-task-master.md' and 'command-reference.md' docs
- Added more tests for: 'parse-prd', 'expand-task' and 'config-manager'

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>

* feat: Support custom response language (#510)

* feat: Support custom response language

* fix: Add default values for response language in config-manager.js

* chore: Update configuration file and add default response language settings

* feat: Support MCP/CLI custom response language

* chore: Update test comments to English for consistency

* docs: Auto-update and format models.md

* chore: fix format

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>

* Feat: Implemented advanced settings for Claude Code AI provider (#872)

* Feat: Implemented advanced settings for Claude Code AI provider

- Added new 'claudeCode' property to default config
- Added getters and validation functions to 'config-manager.js'
- Added new 'isEmpty' utility to 'utils.js'
- Added new constants file 'commands.js' for AI_COMMAND_NAMES
- Updated Claude Code AI provider to use new config functions
- Updated 'claude-code-usage.md' documentation
- Added 'config-manager.test.js' tests to cover new settings

* chore: run format

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>

* fix: issues with release (#915)

Fix remove-task bug with mcp
Fix response-language using old config file .taskmaster

* fix(claude-code): recover from CLI JSON truncation bug (#913) (#920)

Gracefully handle SyntaxError thrown by @anthropic-ai/claude-code when the CLI truncates large JSON outputs (4–16 kB cut-offs).\n\nKey points:\n• Detect JSON parse error + existing buffered text in both doGenerate() and doStream() code paths.\n• Convert the failure into a recoverable 'truncated' finish state and push a provider-warning.\n• Allows Task Master to continue parsing long PRDs / expand-task operations instead of crashing.\n\nA patch changeset (.changeset/claude-code-json-truncation.md) is included for the next release.\n\nRef: eyaltoledano/claude-task-master#913

* docs: fix gemini-cli authentication documentation (#923)

Remove erroneous 'gemini auth login' command references and replace with correct 'gemini' command authentication flow. Update documentation to reflect proper OAuth setup process via the gemini CLI interactive interface.

* chore: run format

* fix: add initTaskMaster to new commands

Fixes CI and broken commands

* chore: format

---------

Co-authored-by: Chris Covington <chris.covington@hey.com>
Co-authored-by: Ben Vargas <ben@vargas.com>
Co-authored-by: Joe Danziger <joe@ticc.net>
Co-authored-by: Nicholas Spalding <nishedcob@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ofer Shaal <oshaal@phase2technology.com>
Co-authored-by: Shandy Hermawan <hrm.shandy05@gmail.com>
Co-authored-by: Parthy <52548018+mm-parthy@users.noreply.github.com>
Co-authored-by: Geoff Hammond <geoff@geoffhammond.com>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
Co-authored-by: shenysun <40556411+shenysun@users.noreply.github.com>
2025-07-08 09:59:21 +02:00
github-actions[bot]
f62eaad709 docs: Auto-update and format models.md 2025-07-08 06:37:53 +00:00
OTYAK
98d1c97436 feat: Add GROQ API key support and integrate GROQ provider (#930)
* feat: Add GROQ API key support and integrate GROQ provider

* feat: Add support for Groq provider
- Added a new changeset documenting the addition of Groq provider support.
-Ran npm run format

* feat: Add support for Groq provider
- Added a new changeset documenting the addition of Groq provider support.
-Ran npm run format
2025-07-08 08:37:38 +02:00
Ben Vargas
3334e409ae fix: update ai-sdk-provider-gemini-cli to 0.0.4 for improved authentication (#932)
- Fixed authentication compatibility issues with Google auth
- Added support for 'api-key' auth type alongside 'gemini-api-key'
- Resolved "Unsupported authType: undefined" runtime errors
- Updated @google/gemini-cli-core dependency to 0.1.9
- Improved documentation and removed invalid auth references
- Maintained backward compatibility while enhancing type validation
2025-07-07 21:50:17 +03:00
Ben Vargas
5b9416f673 docs: fix gemini-cli authentication documentation (#923)
Remove erroneous 'gemini auth login' command references and replace with correct 'gemini' command authentication flow. Update documentation to reflect proper OAuth setup process via the gemini CLI interactive interface.
2025-07-07 21:50:17 +03:00
Ben Vargas
6c88a4a749 fix(claude-code): recover from CLI JSON truncation bug (#913) (#920)
Gracefully handle SyntaxError thrown by @anthropic-ai/claude-code when the CLI truncates large JSON outputs (4–16 kB cut-offs).\n\nKey points:\n• Detect JSON parse error + existing buffered text in both doGenerate() and doStream() code paths.\n• Convert the failure into a recoverable 'truncated' finish state and push a provider-warning.\n• Allows Task Master to continue parsing long PRDs / expand-task operations instead of crashing.\n\nA patch changeset (.changeset/claude-code-json-truncation.md) is included for the next release.\n\nRef: eyaltoledano/claude-task-master#913
2025-07-07 21:50:17 +03:00
github-actions[bot]
e5d2b61297 Version Packages (#919) 2025-07-05 08:18:20 +03:00
Ralph Khreish
0726bc966c Merge pull request #917 from eyaltoledano/next 2025-07-04 07:23:21 +03:00
Ralph Khreish
7fea9968ef fix: issues with release (#915)
Fix remove-task bug with mcp
Fix response-language using old config file .taskmaster
2025-07-03 13:22:58 +02:00
Geoff Hammond
f7fbdd6755 Feat: Implemented advanced settings for Claude Code AI provider (#872)
* Feat: Implemented advanced settings for Claude Code AI provider

- Added new 'claudeCode' property to default config
- Added getters and validation functions to 'config-manager.js'
- Added new 'isEmpty' utility to 'utils.js'
- Added new constants file 'commands.js' for AI_COMMAND_NAMES
- Updated Claude Code AI provider to use new config functions
- Updated 'claude-code-usage.md' documentation
- Added 'config-manager.test.js' tests to cover new settings

* chore: run format

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-07-02 22:43:46 +02:00
shenysun
c99df64f65 feat: Support custom response language (#510)
* feat: Support custom response language

* fix: Add default values for response language in config-manager.js

* chore: Update configuration file and add default response language settings

* feat: Support MCP/CLI custom response language

* chore: Update test comments to English for consistency

* docs: Auto-update and format models.md

* chore: fix format

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-07-02 22:35:49 +02:00
Geoff Hammond
5eafc5ea11 Feat: Added automatic determination of task number based on complexity (#884)
- Added 'defaultNumTasks: 10' to default config, now used in 'parse-prd'
- Adjusted 'parse-prd' and 'expand-task' to:
  - Accept a 'numTasks' value of 0
  - Updated tool and command descriptions
  - Updated prompts to 'an appropriate number of' when value is 0
- Updated 'README-task-master.md' and 'command-reference.md' docs
- Added more tests for: 'parse-prd', 'expand-task' and 'config-manager'

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-07-02 22:12:27 +02:00
github-actions[bot]
a33d6ecfeb docs: Auto-update and format models.md 2025-07-02 19:46:30 +00:00
Ben Vargas
dd96f51179 feat: Add gemini-cli provider integration for Task Master (#897)
* feat: Add gemini-cli provider integration for Task Master

This commit adds comprehensive support for the Gemini CLI provider, enabling users
to leverage Google's Gemini models through OAuth authentication via the gemini CLI
tool. This integration provides a seamless experience for users who prefer using
their existing Google account authentication rather than managing API keys.

## Implementation Details

### Provider Class (`src/ai-providers/gemini-cli.js`)
- Created GeminiCliProvider extending BaseAIProvider
- Implements dual authentication support:
  - Primary: OAuth authentication via `gemini auth login` (authType: 'oauth-personal')
  - Secondary: API key authentication for compatibility (authType: 'api-key')
- Uses the npm package `ai-sdk-provider-gemini-cli` (v0.0.3) for SDK integration
- Properly handles authentication validation without console output

### Model Configuration (`scripts/modules/supported-models.json`)
- Added two Gemini models with accurate specifications:
  - gemini-2.5-pro: 72% SWE score, 65,536 max output tokens
  - gemini-2.5-flash: 71% SWE score, 65,536 max output tokens
- Both models support main, fallback, and research roles
- Configured with zero cost (free tier)

### System Integration
- Registered provider in PROVIDERS map (`scripts/modules/ai-services-unified.js`)
- Added to OPTIONAL_AUTH_PROVIDERS set for flexible authentication
- Added GEMINI_CLI constant to provider constants (`src/constants/providers.js`)
- Exported GeminiCliProvider from index (`src/ai-providers/index.js`)

### Command Line Support (`scripts/modules/commands.js`)
- Added --gemini-cli flag to models command for provider hint
- Integrated into model selection logic (setModel function)
- Updated error messages to include gemini-cli in provider list
- Removed unrelated azure/vertex changes to maintain PR focus

### Documentation (`docs/providers/gemini-cli.md`)
- Comprehensive provider documentation emphasizing OAuth-first approach
- Clear explanation of why users would choose gemini-cli over standard google provider
- Detailed installation, authentication, and configuration instructions
- Troubleshooting section with common issues and solutions

### Testing (`tests/unit/ai-providers/gemini-cli.test.js`)
- Complete test suite with 12 tests covering all functionality
- Tests for both OAuth and API key authentication paths
- Error handling and edge case coverage
- Updated mocks in ai-services-unified.test.js for integration testing

## Key Design Decisions

1. **OAuth-First Design**: The provider assumes users want to leverage their existing
   `gemini auth login` credentials, making this the default authentication method.

2. **Authentication Type Mapping**: Discovered through testing that the SDK expects:
   - 'oauth-personal' for OAuth/CLI authentication (not 'gemini-cli' or 'oauth')
   - 'api-key' for API key authentication (not 'gemini-api-key')

3. **Silent Operation**: Removed console.log statements from validateAuth to match
   the pattern used by other providers like claude-code.

4. **Limited Model Support**: Only gemini-2.5-pro and gemini-2.5-flash are available
   through the CLI, as confirmed by the package author.

## Usage

```bash
# Install gemini CLI globally
npm install -g @google/gemini-cli

# Authenticate with Google account
gemini auth login

# Configure Task Master to use gemini-cli
task-master models --set-main gemini-2.5-pro --gemini-cli

# Use Task Master normally
task-master new "Create a REST API endpoint"
```

## Dependencies
- Added `ai-sdk-provider-gemini-cli@^0.0.3` to package.json
- This package wraps the Google Gemini CLI Core functionality for Vercel AI SDK

## Testing
All tests pass (613 total), including the new gemini-cli provider tests.
Code has been formatted with biome to maintain consistency.

This implementation provides a clean, well-tested integration that follows Task Master's
existing patterns while offering users a convenient way to use Gemini models with their
existing Google authentication.

* feat: implement lazy loading for gemini-cli provider

- Move ai-sdk-provider-gemini-cli to optionalDependencies
- Implement dynamic import with loadGeminiCliModule() function
- Make getClient() async to support lazy loading
- Update base-provider to handle async getClient() calls
- Update tests to handle async getClient() method

This allows the application to start without the gemini-cli package
installed, only loading it when actually needed.

* feat(gemini-cli): replace regex-based JSON extraction with jsonc-parser

- Add jsonc-parser dependency for robust JSON parsing
- Replace simple regex approach with progressive parsing strategy:
  1. Direct parsing after cleanup
  2. Smart boundary detection with single-pass analysis
  3. Limited fallback for edge cases
- Optimize performance with early termination and strategic sampling
- Add comprehensive tests for variable declarations, trailing commas,
  escaped quotes, nested objects, and performance edge cases
- Improve reliability for complex JSON structures that Gemini commonly produces
- Fix code formatting with biome

This addresses JSON parsing failures in generateObject operations while
maintaining backward compatibility and significantly improving performance
for large responses.

* fix: update package-lock.json and fix formatting for CI/CD

- Add jsonc-parser to package-lock.json for proper npm ci compatibility
- Fix biome formatting issues in gemini-cli provider and tests
- Ensure all CI/CD checks pass

* feat(gemini-cli): implement comprehensive JSON output reliability system

- Add automatic JSON request detection via content analysis patterns
- Implement task-specific prompt simplification for improved AI compliance
- Add strict JSON enforcement through enhanced system prompts
- Implement response interception with intelligent JSON extraction fallback
- Add comprehensive test coverage for all new JSON handling methods
- Move debug logging to appropriate level for clean user experience

This multi-layered approach addresses gemini-cli's conversational response
tendencies, ensuring reliable structured JSON output for task expansion
operations. Achieves 100% success rate in end-to-end testing while
maintaining full backward compatibility with existing functionality.

Technical implementation includes:
• JSON detection via user message content analysis
• Expand-task prompt simplification with cleaner instructions
• System prompt enhancement with strict JSON enforcement
• Response processing with jsonc-parser-based extraction
• Comprehensive unit test coverage for edge cases
• Debug-level logging to prevent user interface clutter

Resolves: gemini-cli JSON formatting inconsistencies
Tested: All 46 test suites pass, formatting verified

* chore: add changeset for gemini-cli provider implementation

Adds minor version bump for comprehensive gemini-cli provider with:
- Lazy loading and optional dependency management
- Advanced JSON parsing with jsonc-parser
- Multi-layer reliability system for structured output
- Complete test coverage and CI/CD compliance

* refactor: consolidate optional auth provider logic

- Add gemini-cli to existing providersWithoutApiKeys array in config-manager
- Export providersWithoutApiKeys for reuse across modules
- Remove duplicate OPTIONAL_AUTH_PROVIDERS Set from ai-services-unified
- Update ai-services-unified to import and use centralized array
- Fix Jest mock to include new providersWithoutApiKeys export

This eliminates code duplication and provides a single source of truth
for which providers support optional authentication, addressing PR
reviewer feedback about existing similar functionality in src/constants.
2025-07-02 21:46:19 +02:00
Parthy
2852149a47 fix: Critical writeJSON Context Fixes - Prevent Tag Corruption (#910)
* feat(tasks): Fix critical tag corruption bug in task management

- Fixed missing context parameters in writeJSON calls across add-task, remove-task, and add-subtask functions
- Added projectRoot and tag parameters to prevent data corruption in multi-tag environments
- Re-enabled generateTaskFiles calls to ensure markdown files are updated after operations
- Enhanced add_subtask MCP tool with tag parameter support
- Refactored addSubtaskDirect function to properly pass context to core logic
- Streamlined codebase by removing deprecated functionality

This resolves the critical bug where task operations in one tag context would corrupt or delete tasks from other tags in tasks.json.

* feat(task-manager): Enhance addSubtask with current tag support

- Added `getCurrentTag` utility to retrieve the current tag context for task operations.
- Updated `addSubtask` to use the current tag when reading and writing tasks, ensuring proper context handling.
- Refactored tests to accommodate changes in the `addSubtask` function, ensuring accurate mock implementations and expectations.
- Cleaned up test cases for better readability and maintainability.

This improves task management by preventing tag-related data corruption and enhances the overall functionality of the task manager.

* feat(remove-task): Add tag support for task removal and enhance error handling

- Introduced `tag` parameter in `removeTaskDirect` to specify context for task operations, improving multi-tag support.
- Updated logging to include tag context in messages for better traceability.
- Refactored task removal logic to streamline the process and improve error reporting.
- Added comprehensive unit tests to validate tag handling and ensure robust error management.

This enhancement prevents task data corruption across different tags and improves the overall reliability of the task management system.

* feat(add-task): Add projectRoot and tag parameters to addTask tests

- Updated `addTask` unit tests to include `projectRoot` and `tag` parameters for better context handling.
- Enhanced test cases to ensure accurate expectations and improve overall test coverage.

This change aligns with recent enhancements in task management, ensuring consistency across task operations.

* feat(set-task-status): Add tag parameter support and enhance task status handling

- Introduced `tag` parameter in `setTaskStatusDirect` and related functions to improve context management in multi-tag environments.
- Updated `writeJSON` calls to ensure task data integrity across different tags.
- Enhanced unit tests to validate tag preservation during task status updates, ensuring robust functionality.

This change aligns with recent improvements in task management, preventing data corruption and enhancing overall reliability.

* feat(tag-management): Enhance writeJSON calls to preserve tag context

- Updated `writeJSON` calls in `createTag`, `deleteTag`, `renameTag`, `copyTag`, and `enhanceTagsWithMetadata` to include `projectRoot` for better context management and to prevent tag corruption.
- Added comprehensive unit tests for tag management functions to ensure data integrity and proper tag handling during operations.

This change improves the reliability of tag management by ensuring that operations do not corrupt existing tags and maintains the overall structure of the task data.

* feat(expand-task): Update writeJSON to include projectRoot and tag context

- Modified `writeJSON` call in `expandTaskDirect` to pass `projectRoot` and `tag` parameters, ensuring proper context management when saving tasks.json.
- This change aligns with recent enhancements in task management, preventing potential data corruption and improving overall reliability.

* feat(fix-dependencies): Add projectRoot and tag parameters for enhanced context management

- Updated `fixDependenciesDirect` and `registerFixDependenciesTool` to include `projectRoot` and `tag` parameters, improving context handling during dependency fixes.
- Introduced a new unit test for `fixDependenciesCommand` to ensure proper preservation of projectRoot and tag data in JSON outputs.

This change enhances the reliability of dependency management by ensuring that context is maintained across operations, preventing potential data issues.

* fix(context): propagate projectRoot and tag through dependency, expansion, status-update and tag-management commands to prevent cross-tag data corruption

* test(fix-dependencies): Enhance unit tests for fixDependenciesCommand

- Refactored tests to use unstable mocks for utils, ui, and task-manager modules, improving isolation and reliability.
- Added checks for process.exit to ensure proper handling of invalid data scenarios.
- Updated test cases to verify writeJSON calls with projectRoot and tag parameters, ensuring accurate context preservation during dependency fixes.

This change strengthens the test suite for dependency management, ensuring robust functionality and preventing potential data issues.

* chore(plan): remove outdated fix plan for `writeJSON` context parameters
2025-07-02 21:45:10 +02:00
Parthy
43e0025f4c fix: prevent tag corruption in bulk updates (#856)
* fix(task-manager): prevent tag corruption in bulk updates and add tag preservation test

- Fix writeJSON call in scripts/modules/task-manager/update-tasks.js (line 469) to include projectRoot and tag parameters.
- Ensure tagged task lists maintain data integrity during bulk updates, preventing task disappearance in tagged contexts.
- Update MCP tools to properly pass tag context through the call chain.
- Introduce a comprehensive test case to verify that all tags are preserved when updating tasks, covering both master and feature-branch scenarios.

Addresses an issue where bulk updates could corrupt tasks.json in tagged task list structures, reinforcing task management robustness.

* style(tests): format task data in update-tasks test
2025-07-02 12:53:12 +02:00
Parthy
598e687067 fix: use tag-specific complexity reports (#857)
* fix(expand-task): Use tag-specific complexity reports

- Add getTagAwareFilePath utility function to resolve tag-specific file paths
- Update expandTask to use tag-aware complexity report paths
- Fix issue where expand-task always used default complexity report
- Add comprehensive tests for getTagAwareFilePath utility
- Ensure proper handling of file extensions and directory structures

Fixes #850: Expanding tasks not using tag-specific complexity reports

The expandTask function now correctly uses complexity reports specific
to the current tag context (e.g., task-complexity-report_feature-branch.json)
instead of always using the default task-complexity-report.json file.

This enables proper task expansion behavior when working with multiple
tag contexts, ensuring complexity analysis is tag-specific and accurate.

* chore: Add changeset for tag-specific complexity reports fix

* test(expand-task): Add tests for tag-specific complexity report integration

- Introduced a new test suite for verifying the integration of tag-specific complexity reports in the expandTask function.
- Added a test case to ensure the correct complexity report is used when available for a specific tag.
- Mocked file system interactions to simulate the presence of tag-specific complexity reports.

This enhances the test coverage for task expansion behavior, ensuring it accurately reflects the complexity analysis based on the current tag context.

* refactor(task-manager): unify and simplify tag-aware file path logic and tests

- Reformatted imports and cleaned up comments in test files for readability
- Centralized mocks: moved getTagAwareFilePath & slugifyTagForFilePath
  mocks to setup.js for consistency and maintainability
- Simplified utils/getTagAwareFilePath: replaced manual parsing with
  path.parse() & path.format(); improved extension handling
- Enhanced test mocks for path.parse, path.format & reset path.join
  in beforeEach to avoid interference
- All tests now pass consistently; no change in functionality
2025-07-02 12:52:45 +02:00
Shandy Hermawan
f38abd6843 fix: Subtask generation fails on gemini-2.5-pro (#852)
* fix: clarify details format in task expansion prompt

* chore: add changeset
2025-07-02 07:16:09 +02:00
Joe Danziger
24e9206da0 Fix rules command to use reliable project root detection like other commands (#908)
* update/fix projectRoot call for consistency

* internal naming consistency

* add changeset
2025-07-02 07:05:30 +02:00
Ofer Shaal
8d9fcf2064 Fix/spelling mistakes (#876)
* docs: Auto-update and format models.md

* fix: correct typos in documentation for parse-prd and taskmaster commands

- Updated the `parse-prd` documentation to fix the spelling of "multiple."
- Clarified the description of the `id` parameter in the `taskmaster` documentation to ensure proper syntax and readability.

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-07-01 11:44:44 +02:00
Joe Danziger
56a415ef79 fix: Ensure projectRoot is a string (potential WSL fix) (#892)
* ensure projectRoot is a string

* add changeset
2025-07-01 10:55:48 +02:00
github-actions[bot]
f081bba83c docs: Auto-update and format models.md 2025-06-25 13:49:17 +00:00
Nicholas Spalding
6fd5e23396 Support for Additional Anthropic Models on Bedrock (#870)
* Add additional Anthropic Models for Bedrock

* Update Models Docs from `scripts/modules/supported-models.json`

* feat(models): add additional Bedrock supported models
2025-06-25 15:49:02 +02:00
Joe Danziger
e4456b11bc fix: .gitignore missing trailing newline during project initialization (#855) 2025-06-24 07:42:23 +03:00
github-actions[bot]
295087a5b8 docs: Auto-update and format models.md 2025-06-23 06:13:28 +00:00
Ralph Khreish
5f2b7323ad Merge pull request #849 from eyaltoledano/chore/update.next.june
Chore: rebase next after Release 0.18.0
2025-06-23 09:13:08 +03:00
Ralph Khreish
9ddc521757 chore: fix CI and weird conflicts 2025-06-23 09:11:30 +03:00
Ralph Khreish
e7087cf88f chore: fix format 2025-06-23 09:08:34 +03:00
Ralph Khreish
08f86f19c3 Merge remote-tracking branch 'origin/next' into chore/update.next.june 2025-06-23 09:06:52 +03:00
Joe Danziger
f272748965 Default to Cursor profile for MCP init when no rules specified (#846) 2025-06-23 08:57:42 +03:00
Ralph Khreish
15e15a1f17 chore: format fix 2025-06-23 08:57:42 +03:00
github-actions[bot]
3a30e9acd4 Version Packages 2025-06-23 08:57:42 +03:00
Ralph Khreish
15286c029d feat: make more compatible with "o" family models (#839) 2025-06-23 08:57:39 +03:00
neno
c39e5158b4 feat: Claude Code slash commands for Task Master (#774)
* Fix Cursor deeplink installation with copy-paste instructions (#723)

* fix: expand-task (#755)

* docs: Update o3 model price (#751)

* docs: Auto-update and format models.md

* docs: Auto-update and format models.md

* feat: Add Claude Code task master commands

Adds Task Master slash commands for Claude Code under /project:tm/ namespace

---------

Co-authored-by: Joe Danziger <joe@ticc.net>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
Co-authored-by: Volodymyr Zahorniak <7808206+zahorniak@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: neno-is-ooo <204701868+neno-is-ooo@users.noreply.github.com>
2025-06-23 08:57:38 +03:00
github-actions[bot]
4bda8f4d76 chore: rc version bump 2025-06-23 08:57:36 +03:00
Joe Danziger
49976e864b Call rules interactive setup during init (#833) 2025-06-23 08:57:34 +03:00
Joe Danziger
30b873a7da store tasks in git by default (#835) 2025-06-23 08:57:34 +03:00
Ralph Khreish
ab37859a7e fix: update task by id (#834) 2025-06-23 08:57:32 +03:00
Joe Danziger
e704ba12fd feat: Enhanced project initialization with Git worktree detection (#743)
* Fix Cursor deeplink installation with copy-paste instructions (#723)

* detect git worktree

* add changeset

* add aliases and git flags

* add changeset

* rename and update test

* add store tasks in git functionality

* update changeset

* fix newline

* remove unused import

* update command wording

* update command option text
2025-06-23 08:56:43 +03:00
Joe Danziger
64b2d8f79e Rename Roo Code "Boomerang" role to "Orchestrator" (#831) 2025-06-23 08:56:42 +03:00
Ralph Khreish
bbb4bbcc11 Feature/compatibleapisupport (#830)
* add compatible platform api support

* Adjust the code according to the suggestions

* Fully revised as requested: restored all required checks, improved compatibility, and converted all comments to English.

* feat: Add support for compatible API endpoints via baseURL

* chore: Add changeset for compatible API support

* chore: cleanup

* chore: improve changeset

* fix: package-lock.json

* fix: package-lock.json

---------

Co-authored-by: He-Xun <1226807142@qq.com>
2025-06-23 08:56:39 +03:00
Ben Vargas
8e38348203 chore: add changeset for Claude Code provider feature 2025-06-23 08:56:36 +03:00
Ben Vargas
01b651bddc revert: remove maxTokens update functionality from init
This functionality was out of scope for the Claude Code provider PR.
The automatic updating of maxTokens values in config.json during
initialization is a general improvement that should be in a separate PR.

Additionally, Claude Code ignores maxTokens and temperature parameters
anyway, making this change irrelevant for the Claude Code integration.

Removed:
- scripts/modules/update-config-tokens.js
- Import and usage in scripts/init.js
2025-06-23 08:56:34 +03:00
Ben Vargas
0840ad8316 feat: make @anthropic-ai/claude-code an optional dependency
This change makes the Claude Code SDK package optional, preventing installation failures for users who don't need Claude Code functionality.

Changes:
- Added @anthropic-ai/claude-code to optionalDependencies in package.json
- Implemented lazy loading in language-model.js to only import the SDK when actually used
- Updated documentation to explain the optional installation requirement
- Applied formatting fixes to ensure code consistency

Benefits:
- Users without Claude Code subscriptions don't need to install the dependency
- Reduces package size for users who don't use Claude Code
- Prevents installation failures if the package is unavailable
- Provides clear error messages when the package is needed but not installed

The implementation uses dynamic imports to load the SDK only when doGenerate() or doStream() is called, ensuring the provider can be instantiated without the package present.
2025-06-23 08:56:30 +03:00
Ben Vargas
5c726dc542 feat: add Claude Code provider support
Implements Claude Code as a new AI provider that uses the Claude Code CLI
without requiring API keys. This enables users to leverage Claude models
through their local Claude Code installation.

Key changes:
- Add complete AI SDK v1 implementation for Claude Code provider
  - Custom SDK with streaming/non-streaming support
  - Session management for conversation continuity
  - JSON extraction for object generation mode
  - Support for advanced settings (maxTurns, allowedTools, etc.)

- Integrate Claude Code into Task Master's provider system
  - Update ai-services-unified.js to handle keyless authentication
  - Add provider to supported-models.json with opus/sonnet models
  - Ensure correct maxTokens values are applied (opus: 32000, sonnet: 64000)

- Fix maxTokens configuration issue
  - Add max_tokens property to getAvailableModels() output
  - Update setModel() to properly handle claude-code models
  - Create update-config-tokens.js utility for init process

- Add comprehensive documentation
  - User guide with configuration examples
  - Advanced settings explanation and future integration options

The implementation maintains full backward compatibility with existing
providers while adding seamless Claude Code support to all Task Master
commands.
2025-06-23 08:56:28 +03:00
ejones40
21d988691b Add pyproject.toml as project root marker (#804)
* feat: Add pyproject.toml as project root marker - Added 'pyproject.toml' to the project markers array in findProjectRoot() - Enables Task Master to recognize Python projects using pyproject.toml - Improves project root detection for modern Python development workflows - Maintains compatibility with existing Node.js and Git-based detection

* chore: add changeset

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-06-23 08:56:26 +03:00
Ralph Khreish
21839b1cd6 Fix/expand command tag corruption (#827)
* fix(expand): Fix tag corruption in expand command - Fix tag parameter passing through MCP expand-task flow - Add tag parameter to direct function and tool registration - Fix contextGatherer method name from _buildDependencyContext to _buildDependencyGraphs - Add comprehensive test coverage for tag handling in expand-task - Ensures tagged task structure is preserved during expansion - Prevents corruption when tag is undefined. Fixes expand command causing tag corruption in tagged task lists. All existing tests pass and new test coverage added.

* test(e2e): Add comprehensive tag-aware expand testing to verify tag corruption fix - Add new test section for feature-expand tag creation and testing - Verify tag preservation during expand, force expand, and expand --all operations - Test that master tag remains intact and feature-expand tag receives subtasks correctly - Fix file path references to use correct .taskmaster/tasks/tasks.json location - Fix config file check to use .taskmaster/config.json instead of .taskmasterconfig - All tag corruption verification tests pass successfully in E2E test

* fix(changeset): Update E2E test improvements changeset to properly reflect tag corruption fix verification

* chore(changeset): combine duplicate changesets for expand tag corruption fix

Merge eighty-breads-wonder.md into bright-llamas-enter.md to consolidate
the expand command fix and its comprehensive E2E testing enhancements
into a single changeset entry.

* Delete .changeset/eighty-breads-wonder.md

* Version Packages

* chore: fix package.json

* fix(expand): Enhance context handling in expandAllTasks function
- Added `tag` to context destructuring for better context management.
- Updated `readJSON` call to include `contextTag` for improved data integrity.
- Ensured the correct tag is passed during task expansion to prevent tag corruption.

---------

Co-authored-by: Parththipan Thaniperumkarunai <parththipan.thaniperumkarunai@milkmonkey.de>
Co-authored-by: Parthy <52548018+mm-parthy@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2025-06-23 08:56:26 +03:00
Ralph Khreish
6160089b8e fix(bedrock): improve AWS credential handling and add model definitions (#826)
* fix(bedrock): improve AWS credential handling and add model definitions

- Change error to warning when AWS credentials are missing in environment
- Allow fallback to system configuration (aws config files or instance profiles)
- Remove hardcoded region and profile parameters in Bedrock client
- Add Claude 3.7 Sonnet and DeepSeek R1 model definitions for Bedrock
- Update config manager to properly handle Bedrock provider

* chore: cleanup and format and small refactor

---------

Co-authored-by: Ray Krueger <raykrueger@gmail.com>
2025-06-23 08:56:18 +03:00
Nathan Marley
82bb50619f fix: switch to ESM export to avoid mixed format (#633)
* fix: switch to ESM export to avoid mixed format

The CLI entrypoint was using `module.exports` alongside ESM `import` statements,
resulting in an invalid mixed module format. Replaced the CommonJS export with
a proper ESM `export` to maintain consistency and prevent module resolution issues.

* chore: add changeset

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-06-23 08:56:06 +03:00
Ralph Khreish
898f15e699 fix: providers config for azure, bedrock, and vertex (#822)
* fix: providers config for azure, bedrock, and vertex

* chore: improve changelog

* chore: fix CI
2025-06-23 08:56:02 +03:00
Joe Danziger
1a157567dc feat: Flexible brand rules management (#460)
* chore(docs): update docs and rules related to model management.

* feat(ai): Add OpenRouter AI provider support

Integrates the OpenRouter AI provider using the Vercel AI SDK adapter (@openrouter/ai-sdk-provider). This allows users to configure and utilize models available through the OpenRouter platform.

- Added src/ai-providers/openrouter.js with standard Vercel AI SDK wrapper functions (generateText, streamText, generateObject).

- Updated ai-services-unified.js to include the OpenRouter provider in the PROVIDER_FUNCTIONS map and API key resolution logic.

- Verified config-manager.js handles OpenRouter API key checks correctly.

- Users can configure OpenRouter models via .taskmasterconfig using the task-master models command or MCP models tool. Requires OPENROUTER_API_KEY.

- Enhanced error handling in ai-services-unified.js to provide clearer messages when generateObjectService fails due to lack of underlying tool support in the selected model/provider endpoint.

* feat(cli): Add --status/-s filter flag to show command and get-task MCP tool

Implements the ability to filter subtasks displayed by the `task-master show <id>` command using the `--status` (or `-s`) flag. This is also available in the MCP context.

- Modified `commands.js` to add the `--status` option to the `show` command definition.

- Updated `utils.js` (`findTaskById`) to handle the filtering logic and return original subtask counts/arrays when filtering.

- Updated `ui.js` (`displayTaskById`) to use the filtered subtasks for the table, display a summary line when filtering, and use the original subtask list for the progress bar calculation.

- Updated MCP `get_task` tool and `showTaskDirect` function to accept and pass the `status` parameter.

- Added changeset entry.

* fix(tasks): Improve next task logic to be subtask-aware

* fix(tasks): Enable removing multiple tasks/subtasks via comma-separated IDs

- Refactors the core `removeTask` function (`task-manager/remove-task.js`) to accept and iterate over comma-separated task/subtask IDs.

- Updates dependency cleanup and file regeneration logic to run once after processing all specified IDs.

- Adjusts the `remove-task` CLI command (`commands.js`) description and confirmation prompt to handle multiple IDs correctly.

- Fixes a bug in the CLI confirmation prompt where task/subtask titles were not being displayed correctly.

- Updates the `remove_task` MCP tool description to reflect the new multi-ID capability.

This addresses the previously known issue where only the first ID in a comma-separated list was processed.

Closes #140

* Update README.md (#342)

* Update Discord badge (#337)

* refactor(init): Improve robustness and dependencies; Update template deps for AI SDKs; Silence npm install in MCP; Improve conditional model setup logic; Refactor init.js flags; Tweak Getting Started text; Fix MCP server launch command; Update default model in config template

* Refactor: Improve MCP logging, update E2E & tests

Refactors MCP server logging and updates testing infrastructure.

- MCP Server:

  - Replaced manual logger wrappers with centralized `createLogWrapper` utility.

  - Updated direct function calls to use `{ session, mcpLog }` context.

  - Removed deprecated `model` parameter from analyze, expand-all, expand-task tools.

  - Adjusted MCP tool import paths and parameter descriptions.

- Documentation:

  - Modified `docs/configuration.md`.

  - Modified `docs/tutorial.md`.

- Testing:

  - E2E Script (`run_e2e.sh`):

    - Removed `set -e`.

    - Added LLM analysis function (`analyze_log_with_llm`) & integration.

    - Adjusted test run directory creation timing.

    - Added debug echo statements.

  - Deleted Unit Tests: Removed `ai-client-factory.test.js`, `ai-client-utils.test.js`, `ai-services.test.js`.

  - Modified Fixtures: Updated `scripts/task-complexity-report.json`.

- Dev Scripts:

  - Modified `scripts/dev.js`.

* chore(tests): Passes tests for merge candidate
- Adjusted the interactive model default choice to be 'no change' instead of 'cancel setup'
- E2E script has been perfected and works as designed provided there are all provider API keys .env in the root
- Fixes the entire test suite to make sure it passes with the new architecture.
- Fixes dependency command to properly show there is a validation failure if there is one.
- Refactored config-manager.test.js mocking strategy and fixed assertions to read the real supported-models.json
- Fixed rule-transformer.test.js assertion syntax and transformation logic adjusting replacement for search which was too broad.
- Skip unstable tests in utils.test.js (log, readJSON, writeJSON error paths) due to SIGABRT crash. These tests trigger a native crash (SIGABRT), likely stemming from a conflict between internal chalk usage within the functions and Jest's test environment, possibly related to ESM module handling.

* chore(wtf): removes chai. not sure how that even made it in here. also removes duplicate test in scripts/.

* fix: ensure API key detection properly reads .env in MCP context

Problem:
- Task Master model configuration wasn't properly checking for API keys in the project's .env file when running through MCP
- The isApiKeySet function was only checking session.env and process.env but not inspecting the .env file directly
- This caused incorrect API key status reporting in MCP tools even when keys were properly set in .env

Solution:
- Modified resolveEnvVariable function in utils.js to properly read from .env file at projectRoot
- Updated isApiKeySet to correctly pass projectRoot to resolveEnvVariable
- Enhanced the key detection logic to have consistent behavior between CLI and MCP contexts
- Maintains the correct precedence: session.env → .env file → process.env

Testing:
- Verified working correctly with both MCP and CLI tools
- API keys properly detected in .env file in both contexts
- Deleted .cursor/mcp.json to confirm introspection of .env as fallback works

* fix(update): pass projectRoot through update command flow

Modified ai-services-unified.js, update.js tool, and update-tasks.js direct function to correctly pass projectRoot. This enables the .env file API key fallback mechanism for the update command when running via MCP, ensuring consistent key resolution with the CLI context.

* fix(analyze-complexity): pass projectRoot through analyze-complexity flow

Modified analyze-task-complexity.js core function, direct function, and analyze.js tool to correctly pass projectRoot. Fixed import error in tools/index.js. Added debug logging to _resolveApiKey in ai-services-unified.js. This enables the .env API key fallback for analyze_project_complexity.

* fix(add-task): pass projectRoot and fix logging/refs

Modified add-task core, direct function, and tool to pass projectRoot for .env API key fallback. Fixed logFn reference error and removed deprecated reportProgress call in core addTask function. Verified working.

* fix(parse-prd): pass projectRoot and fix schema/logging

Modified parse-prd core, direct function, and tool to pass projectRoot for .env API key fallback. Corrected Zod schema used in generateObjectService call. Fixed logFn reference error in core parsePRD. Updated unit test mock for utils.js.

* fix(update-task): pass projectRoot and adjust parsing

Modified update-task-by-id core, direct function, and tool to pass projectRoot. Reverted parsing logic in core function to prioritize `{...}` extraction, resolving parsing errors. Fixed ReferenceError by correctly destructuring projectRoot.

* fix(update-subtask): pass projectRoot and allow updating done subtasks

Modified update-subtask-by-id core, direct function, and tool to pass projectRoot for .env API key fallback. Removed check preventing appending details to completed subtasks.

* fix(mcp, expand): pass projectRoot through expand/expand-all flows

Problem: expand_task & expand_all MCP tools failed with .env keys due to missing projectRoot propagation for API key resolution. Also fixed a ReferenceError: wasSilent is not defined in expandTaskDirect.

Solution: Modified core logic, direct functions, and MCP tools for expand-task and expand-all to correctly destructure projectRoot from arguments and pass it down through the context object to the AI service call (generateTextService). Fixed wasSilent scope in expandTaskDirect.

Verification: Tested expand_task successfully in MCP using .env keys. Reviewed expand_all flow for correct projectRoot propagation.

* chore: prettier

* fix(expand-all): add projectRoot to expandAllTasksDirect invokation.

* fix(update-tasks): Improve AI response parsing for 'update' command

Refactors the JSON array parsing logic within
in .

The previous logic primarily relied on extracting content from markdown
code blocks (json or javascript), which proved brittle when the AI
response included comments or non-JSON text within the block, leading to
parsing errors for the  command.

This change modifies the parsing strategy to first attempt extracting
content directly between the outermost '[' and ']' brackets. This is
more robust as it targets the expected array structure directly. If
bracket extraction fails, it falls back to looking for a strict json
code block, then prefix stripping, before attempting a raw parse.

This approach aligns with the successful parsing strategy used for
single-object responses in  and resolves the
parsing errors previously observed with the  command.

* refactor(mcp): introduce withNormalizedProjectRoot HOF for path normalization

Added HOF to mcp tools utils to normalize projectRoot from args/session. Refactored get-task tool to use HOF. Updated relevant documentation.

* refactor(mcp): apply withNormalizedProjectRoot HOF to update tool

Problem: The  MCP tool previously handled project root acquisition and path resolution within its  method, leading to potential inconsistencies and repetition.

Solution: Refactored the  tool () to utilize the new  Higher-Order Function (HOF) from .

Specific Changes:
- Imported  HOF.
- Updated the Zod schema for the  parameter to be optional, as the HOF handles deriving it from the session if not provided.
- Wrapped the entire  function body with the  HOF.
- Removed the manual call to  from within the  function body.
- Destructured the  from the  object received by the wrapped  function, ensuring it's the normalized path provided by the HOF.
- Used the normalized  variable when calling  and when passing arguments to .

This change standardizes project root handling for the  tool, simplifies its  method, and ensures consistent path normalization. This serves as the pattern for refactoring other MCP tools.

* fix: apply to all tools withNormalizedProjectRoot to fix projectRoot issues for linux and windows

* fix: add rest of tools that need wrapper

* chore: cleanup tools to stop using rootFolder and remove unused imports

* chore: more cleanup

* refactor: Improve update-subtask, consolidate utils, update config

This commit introduces several improvements and refactorings across MCP tools, core logic, and configuration.

**Major Changes:**

1.  **Refactor updateSubtaskById:**
    - Switched from generateTextService to generateObjectService for structured AI responses, using a Zod schema (subtaskSchema) for validation.
    - Revised prompts to have the AI generate relevant content based on user request and context (parent/sibling tasks), while explicitly preventing AI from handling timestamp/tag formatting.
    - Implemented **local timestamp generation (new Date().toISOString()) and formatting** (using <info added on ...> tags) within the function *after* receiving the AI response. This ensures reliable and correctly formatted details are appended.
    - Corrected logic to append only the locally formatted, AI-generated content block to the existing subtask.details.

2.  **Consolidate MCP Utilities:**
    - Moved/consolidated the withNormalizedProjectRoot HOF into mcp-server/src/tools/utils.js.
    - Updated MCP tools (like update-subtask.js) to import withNormalizedProjectRoot from the new location.

3.  **Refactor Project Initialization:**
    - Deleted the redundant mcp-server/src/core/direct-functions/initialize-project-direct.js file.
    - Updated mcp-server/src/core/task-master-core.js to import initializeProjectDirect from its correct location (./direct-functions/initialize-project.js).

**Other Changes:**

-   Updated .taskmasterconfig fallback model to claude-3-7-sonnet-20250219.
-   Clarified model cost representation in the models tool description (taskmaster.mdc and mcp-server/src/tools/models.js).

* fix: displayBanner logging when silentMode is active (#385)

* fix: improve error handling, test options, and model configuration

- Enhance error validation in parse-prd.js and update-tasks.js
- Fix bug where mcpLog was incorrectly passed as logWrapper
- Improve error messages and response formatting
- Add --skip-verification flag to E2E tests
- Update MCP server config that ships with init to match new API key structure
- Fix task force/append handling in parse-prd command
- Increase column width in update-tasks display

* chore: fixes parse prd to show loading indicator in cli.

* fix(parse-prd): suggested fix for mcpLog was incorrect. reverting to my previously working code.

* chore(init): No longer ships readme with task-master init (commented out for now). No longer looking for task-master-mcp, instead checked for task-master-ai - this should prevent the init sequence from needlessly adding another mcp server with task-master-mcp to the mpc.json which a ton of people probably ran into.

* chore: restores 3.7 sonnet as the main role.

* fix(add/remove-dependency): dependency mcp tools were failing due to hard-coded tasks path in generate task files.

* chore: removes tasks json backup that was temporarily created.

* fix(next): adjusts mcp tool response to correctly return the next task/subtask. Also adds nextSteps to the next task response.

* chore: prettier

* chore: readme typos

* fix(config): restores sonnet 3.7 as default main role.

* Version Packages

* hotfix: move production package to "dependencies" (#399)

* Version Packages

* Fix: issues with 0.13.0 not working (#402)

* Exit prerelease mode and version packages

* hotfix: move production package to "dependencies"

* Enter prerelease mode and version packages

* Enter prerelease mode and version packages

* chore: cleanup

* chore: improve pre.json and add pre-release workflow

* chore: fix package.json

* chore: cleanup

* chore: improve pre-release workflow

* chore: allow github actions to commit

* extract fileMap and conversionConfig into brand profile

* extract into brand profile

* add windsurf profile

* add remove brand rules function

* fix regex

* add rules command to add/remove rules for a specific brand

* fix post processing for roo

* allow multiples

* add cursor profile

* update test for new structure

* move rules to assets

* use assets/rules for rules files

* use standardized setupMCP function

* fix formatting

* fix formatting

* add logging

* fix escapes

* default to cursor

* allow init with certain rulesets; no more .windsurfrules

* update docs

* update log msg

* fix formatting

* keep mdc extension for cursor

* don't rewrite .mdc to .md inside the files

* fix roo init (add modes)

* fix cursor init (don't use roo transformation by default)

* use more generic function names

* update docs

* fix formatting

* update function names

* add changeset

* add rules to mcp initialize project

* register tool with mcp server

* update docs

* add integration test

* fix cursor initialization

* rule selection

* fix formatting

* fix MCP - remove yes flag

* add import

* update roo tests

* add/update tests

* remove test

* add rules command test

* update MCP responses, centralize rules profiles & helpers

* fix logging and MCP response messages

* fix formatting

* incorrect test

* fix tests

* update fileMap

* fix file extension transformations

* fix formatting

* add rules command test

* test already covered

* fix formatting

* move renaming logic into profiles

* make sure dir is deleted (DS_Store)

* add confirmation for rules removal

* add force flag for rules remove

* use force flag for test

* remove yes parameter

* fix formatting

* import brand profiles from rule-transformer.js

* update comment

* add interactive rules setup

* optimize

* only copy rules specifically listed in fileMap

* update comment

* add cline profile

* add brandDir to remove ambiguity and support Cline

* specify whether to create mcp config and filename

* add mcpConfigName value for parh

* fix formatting

* remove rules just for this repository - only include rules to be distributed

* update error message

* update "brand rules" to "rules"

* update to minor

* remove comment

* remove comments

* move to /src/utils

* optimize imports

* move rules-setup.js to /src/utils

* move rule-transformer.js to /src/utils

* move confirmation to /src/ui/confirm.js

* default to all rules

* use profile js for mcp config settings

* only run rules interactive setup if not provided via command line

* update comments

* initialize with all brands if nothing specified

* update var name

* clean up

* enumerate brands for brand rules

* update instructions

* add test to check for brand profiles

* fix quotes

* update semantics and terminology from 'brand rules' to 'rules profiles'

* fix formatting

* fix formatting

* update function name and remove copying of cursor rules, now handled by rules transformer

* update comment

* rename to mcp-config-setup.js

* use enums for rules actions

* add aggregate reporting for rules add command

* add missing log message

* use simpler path

* use base profile with modifications for each brand

* use displayName and don't select any defaults in setup

* add confirmation if removing ALL rules profiles, and add --force flag on rules remove

* Use profile-detection instead of rules-detection

* add newline at end of mcp config

* add proper formatting for mcp.json

* update rules

* update rules

* update rules

* add checks for other rules and other profile folder items before removing

* update confirmation for rules remove

* update docs

* update changeset

* fix for filepath at bottom of rule

* Update cline profile and add test; adjust other rules tests

* update changeset

* update changeset

* clarify init for all profiles if not specified

* update rule text

* revert text

* use "rule profiles" instead of "rules profiles"

* use standard tool mappings for windsurf

* add Trae support

* update changeset

* update wording

* update to 'rule profile'

* remove unneeded exports to optimize loc

* combine to /src/utils/profiles.js; add codex and claude code profiles

* rename function and add boxen

* add claude and codex integration tests

* organize tests into profiles folder

* mock fs for transformer tests

* update UI

* add cline and trae integration tests

* update test

* update function name

* update formatting

* Update change set with new profiles

* move profile integration tests to subdirectory

* properly create temp directories in /tmp folder

* fix formatting

* use taskmaster subfolder for the 2 TM rules

* update wording

* ensure subdirectory exists

* update rules from next

* update from next

* update taskmaster rule

* add details on new rules command and init

* fix mcp init

* fix MCP path to assets

* remove duplication

* remove duplication

* MCP server path fixes for rules command

* fix for CLI roo rules add/remove

* update tests

* fix formatting

* fix pattern for interactive rule profiles setup

* restore comments

* restore comments

* restore comments

* remove unused import, fix quotes

* add missing integration tests

* add VS Code profile and tests

* update docs and rules to include vscode profile

* add rules subdirectory support per-profile

* move profiles to /src

* fix formatting

* rename to remove ambiguity

* use --setup for rules interactive setup

* Fix Cursor deeplink installation with copy-paste instructions (#723)

* change roo boomerang to orchestrator; update tests that don't use modes

* fix newline

* chore: cleanup

---------

Co-authored-by: Eyal Toledano <eyal@microangel.so>
Co-authored-by: Yuval <yuvalbl@users.noreply.github.com>
Co-authored-by: Marijn van der Werf <marijn.vanderwerf@gmail.com>
Co-authored-by: Eyal Toledano <eutait@gmail.com>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2025-06-23 08:54:29 +03:00
Riccardo (Ricky) Esclapon
eb8a3a85a1 Update SWE scores (#657) 2025-06-23 08:52:35 +03:00
Joe Danziger
59a4ec9e1a Default to Cursor profile for MCP init when no rules specified (#846) 2025-06-22 21:24:09 +02:00
github-actions[bot]
ef1deec947 Version Packages (#842) 2025-06-22 00:00:00 +03:00
Ralph Khreish
b40139ca05 Release 0.18.0 (#840)
* Update SWE scores (#657)

* docs: Auto-update and format models.md

* feat: Flexible brand rules management (#460)

* chore(docs): update docs and rules related to model management.

* feat(ai): Add OpenRouter AI provider support

Integrates the OpenRouter AI provider using the Vercel AI SDK adapter (@openrouter/ai-sdk-provider). This allows users to configure and utilize models available through the OpenRouter platform.

- Added src/ai-providers/openrouter.js with standard Vercel AI SDK wrapper functions (generateText, streamText, generateObject).

- Updated ai-services-unified.js to include the OpenRouter provider in the PROVIDER_FUNCTIONS map and API key resolution logic.

- Verified config-manager.js handles OpenRouter API key checks correctly.

- Users can configure OpenRouter models via .taskmasterconfig using the task-master models command or MCP models tool. Requires OPENROUTER_API_KEY.

- Enhanced error handling in ai-services-unified.js to provide clearer messages when generateObjectService fails due to lack of underlying tool support in the selected model/provider endpoint.

* feat(cli): Add --status/-s filter flag to show command and get-task MCP tool

Implements the ability to filter subtasks displayed by the `task-master show <id>` command using the `--status` (or `-s`) flag. This is also available in the MCP context.

- Modified `commands.js` to add the `--status` option to the `show` command definition.

- Updated `utils.js` (`findTaskById`) to handle the filtering logic and return original subtask counts/arrays when filtering.

- Updated `ui.js` (`displayTaskById`) to use the filtered subtasks for the table, display a summary line when filtering, and use the original subtask list for the progress bar calculation.

- Updated MCP `get_task` tool and `showTaskDirect` function to accept and pass the `status` parameter.

- Added changeset entry.

* fix(tasks): Improve next task logic to be subtask-aware

* fix(tasks): Enable removing multiple tasks/subtasks via comma-separated IDs

- Refactors the core `removeTask` function (`task-manager/remove-task.js`) to accept and iterate over comma-separated task/subtask IDs.

- Updates dependency cleanup and file regeneration logic to run once after processing all specified IDs.

- Adjusts the `remove-task` CLI command (`commands.js`) description and confirmation prompt to handle multiple IDs correctly.

- Fixes a bug in the CLI confirmation prompt where task/subtask titles were not being displayed correctly.

- Updates the `remove_task` MCP tool description to reflect the new multi-ID capability.

This addresses the previously known issue where only the first ID in a comma-separated list was processed.

Closes #140

* Update README.md (#342)

* Update Discord badge (#337)

* refactor(init): Improve robustness and dependencies; Update template deps for AI SDKs; Silence npm install in MCP; Improve conditional model setup logic; Refactor init.js flags; Tweak Getting Started text; Fix MCP server launch command; Update default model in config template

* Refactor: Improve MCP logging, update E2E & tests

Refactors MCP server logging and updates testing infrastructure.

- MCP Server:

  - Replaced manual logger wrappers with centralized `createLogWrapper` utility.

  - Updated direct function calls to use `{ session, mcpLog }` context.

  - Removed deprecated `model` parameter from analyze, expand-all, expand-task tools.

  - Adjusted MCP tool import paths and parameter descriptions.

- Documentation:

  - Modified `docs/configuration.md`.

  - Modified `docs/tutorial.md`.

- Testing:

  - E2E Script (`run_e2e.sh`):

    - Removed `set -e`.

    - Added LLM analysis function (`analyze_log_with_llm`) & integration.

    - Adjusted test run directory creation timing.

    - Added debug echo statements.

  - Deleted Unit Tests: Removed `ai-client-factory.test.js`, `ai-client-utils.test.js`, `ai-services.test.js`.

  - Modified Fixtures: Updated `scripts/task-complexity-report.json`.

- Dev Scripts:

  - Modified `scripts/dev.js`.

* chore(tests): Passes tests for merge candidate
- Adjusted the interactive model default choice to be 'no change' instead of 'cancel setup'
- E2E script has been perfected and works as designed provided there are all provider API keys .env in the root
- Fixes the entire test suite to make sure it passes with the new architecture.
- Fixes dependency command to properly show there is a validation failure if there is one.
- Refactored config-manager.test.js mocking strategy and fixed assertions to read the real supported-models.json
- Fixed rule-transformer.test.js assertion syntax and transformation logic adjusting replacement for search which was too broad.
- Skip unstable tests in utils.test.js (log, readJSON, writeJSON error paths) due to SIGABRT crash. These tests trigger a native crash (SIGABRT), likely stemming from a conflict between internal chalk usage within the functions and Jest's test environment, possibly related to ESM module handling.

* chore(wtf): removes chai. not sure how that even made it in here. also removes duplicate test in scripts/.

* fix: ensure API key detection properly reads .env in MCP context

Problem:
- Task Master model configuration wasn't properly checking for API keys in the project's .env file when running through MCP
- The isApiKeySet function was only checking session.env and process.env but not inspecting the .env file directly
- This caused incorrect API key status reporting in MCP tools even when keys were properly set in .env

Solution:
- Modified resolveEnvVariable function in utils.js to properly read from .env file at projectRoot
- Updated isApiKeySet to correctly pass projectRoot to resolveEnvVariable
- Enhanced the key detection logic to have consistent behavior between CLI and MCP contexts
- Maintains the correct precedence: session.env → .env file → process.env

Testing:
- Verified working correctly with both MCP and CLI tools
- API keys properly detected in .env file in both contexts
- Deleted .cursor/mcp.json to confirm introspection of .env as fallback works

* fix(update): pass projectRoot through update command flow

Modified ai-services-unified.js, update.js tool, and update-tasks.js direct function to correctly pass projectRoot. This enables the .env file API key fallback mechanism for the update command when running via MCP, ensuring consistent key resolution with the CLI context.

* fix(analyze-complexity): pass projectRoot through analyze-complexity flow

Modified analyze-task-complexity.js core function, direct function, and analyze.js tool to correctly pass projectRoot. Fixed import error in tools/index.js. Added debug logging to _resolveApiKey in ai-services-unified.js. This enables the .env API key fallback for analyze_project_complexity.

* fix(add-task): pass projectRoot and fix logging/refs

Modified add-task core, direct function, and tool to pass projectRoot for .env API key fallback. Fixed logFn reference error and removed deprecated reportProgress call in core addTask function. Verified working.

* fix(parse-prd): pass projectRoot and fix schema/logging

Modified parse-prd core, direct function, and tool to pass projectRoot for .env API key fallback. Corrected Zod schema used in generateObjectService call. Fixed logFn reference error in core parsePRD. Updated unit test mock for utils.js.

* fix(update-task): pass projectRoot and adjust parsing

Modified update-task-by-id core, direct function, and tool to pass projectRoot. Reverted parsing logic in core function to prioritize `{...}` extraction, resolving parsing errors. Fixed ReferenceError by correctly destructuring projectRoot.

* fix(update-subtask): pass projectRoot and allow updating done subtasks

Modified update-subtask-by-id core, direct function, and tool to pass projectRoot for .env API key fallback. Removed check preventing appending details to completed subtasks.

* fix(mcp, expand): pass projectRoot through expand/expand-all flows

Problem: expand_task & expand_all MCP tools failed with .env keys due to missing projectRoot propagation for API key resolution. Also fixed a ReferenceError: wasSilent is not defined in expandTaskDirect.

Solution: Modified core logic, direct functions, and MCP tools for expand-task and expand-all to correctly destructure projectRoot from arguments and pass it down through the context object to the AI service call (generateTextService). Fixed wasSilent scope in expandTaskDirect.

Verification: Tested expand_task successfully in MCP using .env keys. Reviewed expand_all flow for correct projectRoot propagation.

* chore: prettier

* fix(expand-all): add projectRoot to expandAllTasksDirect invokation.

* fix(update-tasks): Improve AI response parsing for 'update' command

Refactors the JSON array parsing logic within
in .

The previous logic primarily relied on extracting content from markdown
code blocks (json or javascript), which proved brittle when the AI
response included comments or non-JSON text within the block, leading to
parsing errors for the  command.

This change modifies the parsing strategy to first attempt extracting
content directly between the outermost '[' and ']' brackets. This is
more robust as it targets the expected array structure directly. If
bracket extraction fails, it falls back to looking for a strict json
code block, then prefix stripping, before attempting a raw parse.

This approach aligns with the successful parsing strategy used for
single-object responses in  and resolves the
parsing errors previously observed with the  command.

* refactor(mcp): introduce withNormalizedProjectRoot HOF for path normalization

Added HOF to mcp tools utils to normalize projectRoot from args/session. Refactored get-task tool to use HOF. Updated relevant documentation.

* refactor(mcp): apply withNormalizedProjectRoot HOF to update tool

Problem: The  MCP tool previously handled project root acquisition and path resolution within its  method, leading to potential inconsistencies and repetition.

Solution: Refactored the  tool () to utilize the new  Higher-Order Function (HOF) from .

Specific Changes:
- Imported  HOF.
- Updated the Zod schema for the  parameter to be optional, as the HOF handles deriving it from the session if not provided.
- Wrapped the entire  function body with the  HOF.
- Removed the manual call to  from within the  function body.
- Destructured the  from the  object received by the wrapped  function, ensuring it's the normalized path provided by the HOF.
- Used the normalized  variable when calling  and when passing arguments to .

This change standardizes project root handling for the  tool, simplifies its  method, and ensures consistent path normalization. This serves as the pattern for refactoring other MCP tools.

* fix: apply to all tools withNormalizedProjectRoot to fix projectRoot issues for linux and windows

* fix: add rest of tools that need wrapper

* chore: cleanup tools to stop using rootFolder and remove unused imports

* chore: more cleanup

* refactor: Improve update-subtask, consolidate utils, update config

This commit introduces several improvements and refactorings across MCP tools, core logic, and configuration.

**Major Changes:**

1.  **Refactor updateSubtaskById:**
    - Switched from generateTextService to generateObjectService for structured AI responses, using a Zod schema (subtaskSchema) for validation.
    - Revised prompts to have the AI generate relevant content based on user request and context (parent/sibling tasks), while explicitly preventing AI from handling timestamp/tag formatting.
    - Implemented **local timestamp generation (new Date().toISOString()) and formatting** (using <info added on ...> tags) within the function *after* receiving the AI response. This ensures reliable and correctly formatted details are appended.
    - Corrected logic to append only the locally formatted, AI-generated content block to the existing subtask.details.

2.  **Consolidate MCP Utilities:**
    - Moved/consolidated the withNormalizedProjectRoot HOF into mcp-server/src/tools/utils.js.
    - Updated MCP tools (like update-subtask.js) to import withNormalizedProjectRoot from the new location.

3.  **Refactor Project Initialization:**
    - Deleted the redundant mcp-server/src/core/direct-functions/initialize-project-direct.js file.
    - Updated mcp-server/src/core/task-master-core.js to import initializeProjectDirect from its correct location (./direct-functions/initialize-project.js).

**Other Changes:**

-   Updated .taskmasterconfig fallback model to claude-3-7-sonnet-20250219.
-   Clarified model cost representation in the models tool description (taskmaster.mdc and mcp-server/src/tools/models.js).

* fix: displayBanner logging when silentMode is active (#385)

* fix: improve error handling, test options, and model configuration

- Enhance error validation in parse-prd.js and update-tasks.js
- Fix bug where mcpLog was incorrectly passed as logWrapper
- Improve error messages and response formatting
- Add --skip-verification flag to E2E tests
- Update MCP server config that ships with init to match new API key structure
- Fix task force/append handling in parse-prd command
- Increase column width in update-tasks display

* chore: fixes parse prd to show loading indicator in cli.

* fix(parse-prd): suggested fix for mcpLog was incorrect. reverting to my previously working code.

* chore(init): No longer ships readme with task-master init (commented out for now). No longer looking for task-master-mcp, instead checked for task-master-ai - this should prevent the init sequence from needlessly adding another mcp server with task-master-mcp to the mpc.json which a ton of people probably ran into.

* chore: restores 3.7 sonnet as the main role.

* fix(add/remove-dependency): dependency mcp tools were failing due to hard-coded tasks path in generate task files.

* chore: removes tasks json backup that was temporarily created.

* fix(next): adjusts mcp tool response to correctly return the next task/subtask. Also adds nextSteps to the next task response.

* chore: prettier

* chore: readme typos

* fix(config): restores sonnet 3.7 as default main role.

* Version Packages

* hotfix: move production package to "dependencies" (#399)

* Version Packages

* Fix: issues with 0.13.0 not working (#402)

* Exit prerelease mode and version packages

* hotfix: move production package to "dependencies"

* Enter prerelease mode and version packages

* Enter prerelease mode and version packages

* chore: cleanup

* chore: improve pre.json and add pre-release workflow

* chore: fix package.json

* chore: cleanup

* chore: improve pre-release workflow

* chore: allow github actions to commit

* extract fileMap and conversionConfig into brand profile

* extract into brand profile

* add windsurf profile

* add remove brand rules function

* fix regex

* add rules command to add/remove rules for a specific brand

* fix post processing for roo

* allow multiples

* add cursor profile

* update test for new structure

* move rules to assets

* use assets/rules for rules files

* use standardized setupMCP function

* fix formatting

* fix formatting

* add logging

* fix escapes

* default to cursor

* allow init with certain rulesets; no more .windsurfrules

* update docs

* update log msg

* fix formatting

* keep mdc extension for cursor

* don't rewrite .mdc to .md inside the files

* fix roo init (add modes)

* fix cursor init (don't use roo transformation by default)

* use more generic function names

* update docs

* fix formatting

* update function names

* add changeset

* add rules to mcp initialize project

* register tool with mcp server

* update docs

* add integration test

* fix cursor initialization

* rule selection

* fix formatting

* fix MCP - remove yes flag

* add import

* update roo tests

* add/update tests

* remove test

* add rules command test

* update MCP responses, centralize rules profiles & helpers

* fix logging and MCP response messages

* fix formatting

* incorrect test

* fix tests

* update fileMap

* fix file extension transformations

* fix formatting

* add rules command test

* test already covered

* fix formatting

* move renaming logic into profiles

* make sure dir is deleted (DS_Store)

* add confirmation for rules removal

* add force flag for rules remove

* use force flag for test

* remove yes parameter

* fix formatting

* import brand profiles from rule-transformer.js

* update comment

* add interactive rules setup

* optimize

* only copy rules specifically listed in fileMap

* update comment

* add cline profile

* add brandDir to remove ambiguity and support Cline

* specify whether to create mcp config and filename

* add mcpConfigName value for parh

* fix formatting

* remove rules just for this repository - only include rules to be distributed

* update error message

* update "brand rules" to "rules"

* update to minor

* remove comment

* remove comments

* move to /src/utils

* optimize imports

* move rules-setup.js to /src/utils

* move rule-transformer.js to /src/utils

* move confirmation to /src/ui/confirm.js

* default to all rules

* use profile js for mcp config settings

* only run rules interactive setup if not provided via command line

* update comments

* initialize with all brands if nothing specified

* update var name

* clean up

* enumerate brands for brand rules

* update instructions

* add test to check for brand profiles

* fix quotes

* update semantics and terminology from 'brand rules' to 'rules profiles'

* fix formatting

* fix formatting

* update function name and remove copying of cursor rules, now handled by rules transformer

* update comment

* rename to mcp-config-setup.js

* use enums for rules actions

* add aggregate reporting for rules add command

* add missing log message

* use simpler path

* use base profile with modifications for each brand

* use displayName and don't select any defaults in setup

* add confirmation if removing ALL rules profiles, and add --force flag on rules remove

* Use profile-detection instead of rules-detection

* add newline at end of mcp config

* add proper formatting for mcp.json

* update rules

* update rules

* update rules

* add checks for other rules and other profile folder items before removing

* update confirmation for rules remove

* update docs

* update changeset

* fix for filepath at bottom of rule

* Update cline profile and add test; adjust other rules tests

* update changeset

* update changeset

* clarify init for all profiles if not specified

* update rule text

* revert text

* use "rule profiles" instead of "rules profiles"

* use standard tool mappings for windsurf

* add Trae support

* update changeset

* update wording

* update to 'rule profile'

* remove unneeded exports to optimize loc

* combine to /src/utils/profiles.js; add codex and claude code profiles

* rename function and add boxen

* add claude and codex integration tests

* organize tests into profiles folder

* mock fs for transformer tests

* update UI

* add cline and trae integration tests

* update test

* update function name

* update formatting

* Update change set with new profiles

* move profile integration tests to subdirectory

* properly create temp directories in /tmp folder

* fix formatting

* use taskmaster subfolder for the 2 TM rules

* update wording

* ensure subdirectory exists

* update rules from next

* update from next

* update taskmaster rule

* add details on new rules command and init

* fix mcp init

* fix MCP path to assets

* remove duplication

* remove duplication

* MCP server path fixes for rules command

* fix for CLI roo rules add/remove

* update tests

* fix formatting

* fix pattern for interactive rule profiles setup

* restore comments

* restore comments

* restore comments

* remove unused import, fix quotes

* add missing integration tests

* add VS Code profile and tests

* update docs and rules to include vscode profile

* add rules subdirectory support per-profile

* move profiles to /src

* fix formatting

* rename to remove ambiguity

* use --setup for rules interactive setup

* Fix Cursor deeplink installation with copy-paste instructions (#723)

* change roo boomerang to orchestrator; update tests that don't use modes

* fix newline

* chore: cleanup

---------

Co-authored-by: Eyal Toledano <eyal@microangel.so>
Co-authored-by: Yuval <yuvalbl@users.noreply.github.com>
Co-authored-by: Marijn van der Werf <marijn.vanderwerf@gmail.com>
Co-authored-by: Eyal Toledano <eutait@gmail.com>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* fix: providers config for azure, bedrock, and vertex (#822)

* fix: providers config for azure, bedrock, and vertex

* chore: improve changelog

* chore: fix CI

* fix: switch to ESM export to avoid mixed format (#633)

* fix: switch to ESM export to avoid mixed format

The CLI entrypoint was using `module.exports` alongside ESM `import` statements,
resulting in an invalid mixed module format. Replaced the CommonJS export with
a proper ESM `export` to maintain consistency and prevent module resolution issues.

* chore: add changeset

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>

* fix: Fix external provider support (#726)

* fix(bedrock): improve AWS credential handling and add model definitions (#826)

* fix(bedrock): improve AWS credential handling and add model definitions

- Change error to warning when AWS credentials are missing in environment
- Allow fallback to system configuration (aws config files or instance profiles)
- Remove hardcoded region and profile parameters in Bedrock client
- Add Claude 3.7 Sonnet and DeepSeek R1 model definitions for Bedrock
- Update config manager to properly handle Bedrock provider

* chore: cleanup and format and small refactor

---------

Co-authored-by: Ray Krueger <raykrueger@gmail.com>

* docs: Auto-update and format models.md

* Version Packages

* chore: fix package.json

* Fix/expand command tag corruption (#827)

* fix(expand): Fix tag corruption in expand command - Fix tag parameter passing through MCP expand-task flow - Add tag parameter to direct function and tool registration - Fix contextGatherer method name from _buildDependencyContext to _buildDependencyGraphs - Add comprehensive test coverage for tag handling in expand-task - Ensures tagged task structure is preserved during expansion - Prevents corruption when tag is undefined. Fixes expand command causing tag corruption in tagged task lists. All existing tests pass and new test coverage added.

* test(e2e): Add comprehensive tag-aware expand testing to verify tag corruption fix - Add new test section for feature-expand tag creation and testing - Verify tag preservation during expand, force expand, and expand --all operations - Test that master tag remains intact and feature-expand tag receives subtasks correctly - Fix file path references to use correct .taskmaster/tasks/tasks.json location - Fix config file check to use .taskmaster/config.json instead of .taskmasterconfig - All tag corruption verification tests pass successfully in E2E test

* fix(changeset): Update E2E test improvements changeset to properly reflect tag corruption fix verification

* chore(changeset): combine duplicate changesets for expand tag corruption fix

Merge eighty-breads-wonder.md into bright-llamas-enter.md to consolidate
the expand command fix and its comprehensive E2E testing enhancements
into a single changeset entry.

* Delete .changeset/eighty-breads-wonder.md

* Version Packages

* chore: fix package.json

* fix(expand): Enhance context handling in expandAllTasks function
- Added `tag` to context destructuring for better context management.
- Updated `readJSON` call to include `contextTag` for improved data integrity.
- Ensured the correct tag is passed during task expansion to prevent tag corruption.

---------

Co-authored-by: Parththipan Thaniperumkarunai <parththipan.thaniperumkarunai@milkmonkey.de>
Co-authored-by: Parthy <52548018+mm-parthy@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* Add pyproject.toml as project root marker (#804)

* feat: Add pyproject.toml as project root marker - Added 'pyproject.toml' to the project markers array in findProjectRoot() - Enables Task Master to recognize Python projects using pyproject.toml - Improves project root detection for modern Python development workflows - Maintains compatibility with existing Node.js and Git-based detection

* chore: add changeset

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>

* feat: add Claude Code provider support

Implements Claude Code as a new AI provider that uses the Claude Code CLI
without requiring API keys. This enables users to leverage Claude models
through their local Claude Code installation.

Key changes:
- Add complete AI SDK v1 implementation for Claude Code provider
  - Custom SDK with streaming/non-streaming support
  - Session management for conversation continuity
  - JSON extraction for object generation mode
  - Support for advanced settings (maxTurns, allowedTools, etc.)

- Integrate Claude Code into Task Master's provider system
  - Update ai-services-unified.js to handle keyless authentication
  - Add provider to supported-models.json with opus/sonnet models
  - Ensure correct maxTokens values are applied (opus: 32000, sonnet: 64000)

- Fix maxTokens configuration issue
  - Add max_tokens property to getAvailableModels() output
  - Update setModel() to properly handle claude-code models
  - Create update-config-tokens.js utility for init process

- Add comprehensive documentation
  - User guide with configuration examples
  - Advanced settings explanation and future integration options

The implementation maintains full backward compatibility with existing
providers while adding seamless Claude Code support to all Task Master
commands.

* fix(docs): correct invalid commands in claude-code usage examples

- Remove non-existent 'do', 'estimate', and 'analyze' commands
- Replace with actual Task Master commands: next, show, set-status
- Use correct syntax for parse-prd and analyze-complexity

* feat: make @anthropic-ai/claude-code an optional dependency

This change makes the Claude Code SDK package optional, preventing installation failures for users who don't need Claude Code functionality.

Changes:
- Added @anthropic-ai/claude-code to optionalDependencies in package.json
- Implemented lazy loading in language-model.js to only import the SDK when actually used
- Updated documentation to explain the optional installation requirement
- Applied formatting fixes to ensure code consistency

Benefits:
- Users without Claude Code subscriptions don't need to install the dependency
- Reduces package size for users who don't use Claude Code
- Prevents installation failures if the package is unavailable
- Provides clear error messages when the package is needed but not installed

The implementation uses dynamic imports to load the SDK only when doGenerate() or doStream() is called, ensuring the provider can be instantiated without the package present.

* test: add comprehensive tests for ClaudeCodeProvider

Addresses code review feedback about missing automated tests for the ClaudeCodeProvider.

## Changes

- Added unit tests for ClaudeCodeProvider class covering constructor, validateAuth, and getClient methods
- Added unit tests for ClaudeCodeLanguageModel testing lazy loading behavior and error handling
- Added integration tests verifying optional dependency behavior when @anthropic-ai/claude-code is not installed

## Test Coverage

1. **Unit Tests**:
   - ClaudeCodeProvider: Basic functionality, no API key requirement, client creation
   - ClaudeCodeLanguageModel: Model initialization, lazy loading, error messages, warning generation

2. **Integration Tests**:
   - Optional dependency behavior when package is not installed
   - Clear error messages for users about missing package
   - Provider instantiation works but usage fails gracefully

All tests pass and provide comprehensive coverage for the claude-code provider implementation.

* revert: remove maxTokens update functionality from init

This functionality was out of scope for the Claude Code provider PR.
The automatic updating of maxTokens values in config.json during
initialization is a general improvement that should be in a separate PR.

Additionally, Claude Code ignores maxTokens and temperature parameters
anyway, making this change irrelevant for the Claude Code integration.

Removed:
- scripts/modules/update-config-tokens.js
- Import and usage in scripts/init.js

* docs: add Claude Code support information to README

- Added Claude Code to the list of supported providers in Requirements section
- Noted that Claude Code requires no API key but needs Claude Code CLI
- Added example of configuring claude-code/sonnet model
- Created dedicated Claude Code Support section with key information
- Added link to detailed Claude Code setup documentation

This ensures users are aware of the Claude Code option as a no-API-key
alternative for using Claude models.

* style: apply biome formatting to test files

* fix(models): add missing --claude-code flag to models command

The models command was missing the --claude-code provider flag, preventing users from setting Claude Code models via CLI. While the backend already supported claude-code as a provider hint, there was no command-line flag to trigger it.

Changes:
- Added --claude-code option to models command alongside existing provider flags
- Updated provider flags validation to include claudeCode option
- Added claude-code to providerHint logic for all three model roles (main, research, fallback)
- Updated error message to include --claude-code in list of mutually exclusive flags
- Added example usage in help text

This allows users to properly set Claude Code models using commands like:
  task-master models --set-main sonnet --claude-code
  task-master models --set-main opus --claude-code

Without this flag, users would get "Model ID not found" errors when trying to set claude-code models, as the system couldn't determine the correct provider for generic model names like "sonnet" or "opus".

* chore: add changeset for Claude Code provider feature

* docs: Auto-update and format models.md

* readme: add troubleshooting note for MCP tools not working

* Feature/compatibleapisupport (#830)

* add compatible platform api support

* Adjust the code according to the suggestions

* Fully revised as requested: restored all required checks, improved compatibility, and converted all comments to English.

* feat: Add support for compatible API endpoints via baseURL

* chore: Add changeset for compatible API support

* chore: cleanup

* chore: improve changeset

* fix: package-lock.json

* fix: package-lock.json

---------

Co-authored-by: He-Xun <1226807142@qq.com>

* Rename Roo Code "Boomerang" role to "Orchestrator" (#831)

* feat: Enhanced project initialization with Git worktree detection (#743)

* Fix Cursor deeplink installation with copy-paste instructions (#723)

* detect git worktree

* add changeset

* add aliases and git flags

* add changeset

* rename and update test

* add store tasks in git functionality

* update changeset

* fix newline

* remove unused import

* update command wording

* update command option text

* fix: update task by id (#834)

* store tasks in git by default (#835)

* Call rules interactive setup during init (#833)

* chore: rc version bump

* feat: Claude Code slash commands for Task Master (#774)

* Fix Cursor deeplink installation with copy-paste instructions (#723)

* fix: expand-task (#755)

* docs: Update o3 model price (#751)

* docs: Auto-update and format models.md

* docs: Auto-update and format models.md

* feat: Add Claude Code task master commands

Adds Task Master slash commands for Claude Code under /project:tm/ namespace

---------

Co-authored-by: Joe Danziger <joe@ticc.net>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
Co-authored-by: Volodymyr Zahorniak <7808206+zahorniak@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: neno-is-ooo <204701868+neno-is-ooo@users.noreply.github.com>

* feat: make more compatible with "o" family models (#839)

* docs: Auto-update and format models.md

* docs: Add comprehensive Azure OpenAI configuration documentation (#837)

* docs: Add comprehensive Azure OpenAI configuration documentation

- Add detailed Azure OpenAI configuration section with prerequisites, authentication, and setup options
- Include both global and per-model baseURL configuration examples
- Add comprehensive troubleshooting guide for common Azure OpenAI issues
- Update environment variables section with Azure OpenAI examples
- Add Azure OpenAI models to all model tables (Main, Research, Fallback)
- Include prominent Azure configuration example in main documentation
- Fix azureBaseURL format to use correct Azure OpenAI endpoint structure

Addresses common Azure OpenAI setup challenges and provides clear guidance for new users.

* refactor: Move Azure models from docs/models.md to scripts/modules/supported-models.json

- Remove Azure model entries from documentation tables
- Add Azure provider section to supported-models.json with gpt-4o, gpt-4o-mini, and gpt-4-1
- Maintain consistency with existing model configuration structure

* docs: Auto-update and format models.md

* Version Packages

* chore: format fix

---------

Co-authored-by: Riccardo (Ricky) Esclapon <32306488+ries9112@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Joe Danziger <joe@ticc.net>
Co-authored-by: Eyal Toledano <eyal@microangel.so>
Co-authored-by: Yuval <yuvalbl@users.noreply.github.com>
Co-authored-by: Marijn van der Werf <marijn.vanderwerf@gmail.com>
Co-authored-by: Eyal Toledano <eutait@gmail.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Nathan Marley <nathan@glowberrylabs.com>
Co-authored-by: Ray Krueger <raykrueger@gmail.com>
Co-authored-by: Parththipan Thaniperumkarunai <parththipan.thaniperumkarunai@milkmonkey.de>
Co-authored-by: Parthy <52548018+mm-parthy@users.noreply.github.com>
Co-authored-by: ejones40 <ethan.jones@fortyau.com>
Co-authored-by: Ben Vargas <ben@vargas.com>
Co-authored-by: V4G4X <34249137+V4G4X@users.noreply.github.com>
Co-authored-by: He-Xun <1226807142@qq.com>
Co-authored-by: neno <github@meaning.systems>
Co-authored-by: Volodymyr Zahorniak <7808206+zahorniak@users.noreply.github.com>
Co-authored-by: neno-is-ooo <204701868+neno-is-ooo@users.noreply.github.com>
Co-authored-by: Jitesh Thakur <56656484+Jitha-afk@users.noreply.github.com>
2025-06-21 13:54:17 -07:00
Ralph Khreish
403d7b00ca chore: format fix 2025-06-21 23:35:23 +03:00
Ralph Khreish
b78614b44e Merge branch 'main' into next 2025-06-21 23:02:17 +03:00
github-actions[bot]
19d795d63f Version Packages 2025-06-21 23:01:03 +03:00
github-actions[bot]
07ec89ab17 docs: Auto-update and format models.md 2025-06-21 19:50:31 +00:00
Jitesh Thakur
eaa7f24280 docs: Add comprehensive Azure OpenAI configuration documentation (#837)
* docs: Add comprehensive Azure OpenAI configuration documentation

- Add detailed Azure OpenAI configuration section with prerequisites, authentication, and setup options
- Include both global and per-model baseURL configuration examples
- Add comprehensive troubleshooting guide for common Azure OpenAI issues
- Update environment variables section with Azure OpenAI examples
- Add Azure OpenAI models to all model tables (Main, Research, Fallback)
- Include prominent Azure configuration example in main documentation
- Fix azureBaseURL format to use correct Azure OpenAI endpoint structure

Addresses common Azure OpenAI setup challenges and provides clear guidance for new users.

* refactor: Move Azure models from docs/models.md to scripts/modules/supported-models.json

- Remove Azure model entries from documentation tables
- Add Azure provider section to supported-models.json with gpt-4o, gpt-4o-mini, and gpt-4-1
- Maintain consistency with existing model configuration structure
2025-06-21 21:50:20 +02:00
github-actions[bot]
b3d43c5992 docs: Auto-update and format models.md 2025-06-21 19:50:10 +00:00
Ralph Khreish
c5de4f8b68 feat: make more compatible with "o" family models (#839) 2025-06-21 21:50:00 +02:00
neno
b9299c5af0 feat: Claude Code slash commands for Task Master (#774)
* Fix Cursor deeplink installation with copy-paste instructions (#723)

* fix: expand-task (#755)

* docs: Update o3 model price (#751)

* docs: Auto-update and format models.md

* docs: Auto-update and format models.md

* feat: Add Claude Code task master commands

Adds Task Master slash commands for Claude Code under /project:tm/ namespace

---------

Co-authored-by: Joe Danziger <joe@ticc.net>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
Co-authored-by: Volodymyr Zahorniak <7808206+zahorniak@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: neno-is-ooo <204701868+neno-is-ooo@users.noreply.github.com>
2025-06-21 20:48:20 +02:00
github-actions[bot]
122a0465d8 chore: rc version bump 2025-06-21 02:43:13 +00:00
Joe Danziger
cf2c06697a Call rules interactive setup during init (#833) 2025-06-20 22:05:25 +02:00
Joe Danziger
727f1ec4eb store tasks in git by default (#835) 2025-06-20 18:49:38 +02:00
Ralph Khreish
648353794e fix: update task by id (#834) 2025-06-20 18:11:17 +02:00
Joe Danziger
a2a3229fd0 feat: Enhanced project initialization with Git worktree detection (#743)
* Fix Cursor deeplink installation with copy-paste instructions (#723)

* detect git worktree

* add changeset

* add aliases and git flags

* add changeset

* rename and update test

* add store tasks in git functionality

* update changeset

* fix newline

* remove unused import

* update command wording

* update command option text
2025-06-20 17:58:50 +02:00
Joe Danziger
b592dff8bc Rename Roo Code "Boomerang" role to "Orchestrator" (#831) 2025-06-20 17:20:14 +03:00
Ralph Khreish
e9d1bc2385 Feature/compatibleapisupport (#830)
* add compatible platform api support

* Adjust the code according to the suggestions

* Fully revised as requested: restored all required checks, improved compatibility, and converted all comments to English.

* feat: Add support for compatible API endpoints via baseURL

* chore: Add changeset for compatible API support

* chore: cleanup

* chore: improve changeset

* fix: package-lock.json

* fix: package-lock.json

---------

Co-authored-by: He-Xun <1226807142@qq.com>
2025-06-20 16:18:03 +02:00
V4G4X
030694bb96 readme: add troubleshooting note for MCP tools not working 2025-06-20 15:28:00 +02:00
github-actions[bot]
3e0f696c49 docs: Auto-update and format models.md 2025-06-20 13:25:33 +00:00
Ben Vargas
4b0c9d9af6 chore: add changeset for Claude Code provider feature 2025-06-20 16:25:22 +03:00
Ben Vargas
3fa91f56e5 fix(models): add missing --claude-code flag to models command
The models command was missing the --claude-code provider flag, preventing users from setting Claude Code models via CLI. While the backend already supported claude-code as a provider hint, there was no command-line flag to trigger it.

Changes:
- Added --claude-code option to models command alongside existing provider flags
- Updated provider flags validation to include claudeCode option
- Added claude-code to providerHint logic for all three model roles (main, research, fallback)
- Updated error message to include --claude-code in list of mutually exclusive flags
- Added example usage in help text

This allows users to properly set Claude Code models using commands like:
  task-master models --set-main sonnet --claude-code
  task-master models --set-main opus --claude-code

Without this flag, users would get "Model ID not found" errors when trying to set claude-code models, as the system couldn't determine the correct provider for generic model names like "sonnet" or "opus".
2025-06-20 16:25:22 +03:00
Ben Vargas
e69ac5d5cf style: apply biome formatting to test files 2025-06-20 16:25:22 +03:00
Ben Vargas
c60c9354a4 docs: add Claude Code support information to README
- Added Claude Code to the list of supported providers in Requirements section
- Noted that Claude Code requires no API key but needs Claude Code CLI
- Added example of configuring claude-code/sonnet model
- Created dedicated Claude Code Support section with key information
- Added link to detailed Claude Code setup documentation

This ensures users are aware of the Claude Code option as a no-API-key
alternative for using Claude models.
2025-06-20 16:25:22 +03:00
Ben Vargas
30b895be2c revert: remove maxTokens update functionality from init
This functionality was out of scope for the Claude Code provider PR.
The automatic updating of maxTokens values in config.json during
initialization is a general improvement that should be in a separate PR.

Additionally, Claude Code ignores maxTokens and temperature parameters
anyway, making this change irrelevant for the Claude Code integration.

Removed:
- scripts/modules/update-config-tokens.js
- Import and usage in scripts/init.js
2025-06-20 16:25:22 +03:00
Ben Vargas
9995075093 test: add comprehensive tests for ClaudeCodeProvider
Addresses code review feedback about missing automated tests for the ClaudeCodeProvider.

## Changes

- Added unit tests for ClaudeCodeProvider class covering constructor, validateAuth, and getClient methods
- Added unit tests for ClaudeCodeLanguageModel testing lazy loading behavior and error handling
- Added integration tests verifying optional dependency behavior when @anthropic-ai/claude-code is not installed

## Test Coverage

1. **Unit Tests**:
   - ClaudeCodeProvider: Basic functionality, no API key requirement, client creation
   - ClaudeCodeLanguageModel: Model initialization, lazy loading, error messages, warning generation

2. **Integration Tests**:
   - Optional dependency behavior when package is not installed
   - Clear error messages for users about missing package
   - Provider instantiation works but usage fails gracefully

All tests pass and provide comprehensive coverage for the claude-code provider implementation.
2025-06-20 16:25:22 +03:00
Ben Vargas
b62cb1bbe7 feat: make @anthropic-ai/claude-code an optional dependency
This change makes the Claude Code SDK package optional, preventing installation failures for users who don't need Claude Code functionality.

Changes:
- Added @anthropic-ai/claude-code to optionalDependencies in package.json
- Implemented lazy loading in language-model.js to only import the SDK when actually used
- Updated documentation to explain the optional installation requirement
- Applied formatting fixes to ensure code consistency

Benefits:
- Users without Claude Code subscriptions don't need to install the dependency
- Reduces package size for users who don't use Claude Code
- Prevents installation failures if the package is unavailable
- Provides clear error messages when the package is needed but not installed

The implementation uses dynamic imports to load the SDK only when doGenerate() or doStream() is called, ensuring the provider can be instantiated without the package present.
2025-06-20 16:25:22 +03:00
Ben Vargas
7defcba465 fix(docs): correct invalid commands in claude-code usage examples
- Remove non-existent 'do', 'estimate', and 'analyze' commands
- Replace with actual Task Master commands: next, show, set-status
- Use correct syntax for parse-prd and analyze-complexity
2025-06-20 16:25:22 +03:00
Ben Vargas
3e838ed34b feat: add Claude Code provider support
Implements Claude Code as a new AI provider that uses the Claude Code CLI
without requiring API keys. This enables users to leverage Claude models
through their local Claude Code installation.

Key changes:
- Add complete AI SDK v1 implementation for Claude Code provider
  - Custom SDK with streaming/non-streaming support
  - Session management for conversation continuity
  - JSON extraction for object generation mode
  - Support for advanced settings (maxTurns, allowedTools, etc.)

- Integrate Claude Code into Task Master's provider system
  - Update ai-services-unified.js to handle keyless authentication
  - Add provider to supported-models.json with opus/sonnet models
  - Ensure correct maxTokens values are applied (opus: 32000, sonnet: 64000)

- Fix maxTokens configuration issue
  - Add max_tokens property to getAvailableModels() output
  - Update setModel() to properly handle claude-code models
  - Create update-config-tokens.js utility for init process

- Add comprehensive documentation
  - User guide with configuration examples
  - Advanced settings explanation and future integration options

The implementation maintains full backward compatibility with existing
providers while adding seamless Claude Code support to all Task Master
commands.
2025-06-20 16:25:22 +03:00
ejones40
1b8c320c57 Add pyproject.toml as project root marker (#804)
* feat: Add pyproject.toml as project root marker - Added 'pyproject.toml' to the project markers array in findProjectRoot() - Enables Task Master to recognize Python projects using pyproject.toml - Improves project root detection for modern Python development workflows - Maintains compatibility with existing Node.js and Git-based detection

* chore: add changeset

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-06-20 15:15:13 +02:00
Ralph Khreish
5da5b59bde Fix/expand command tag corruption (#827)
* fix(expand): Fix tag corruption in expand command - Fix tag parameter passing through MCP expand-task flow - Add tag parameter to direct function and tool registration - Fix contextGatherer method name from _buildDependencyContext to _buildDependencyGraphs - Add comprehensive test coverage for tag handling in expand-task - Ensures tagged task structure is preserved during expansion - Prevents corruption when tag is undefined. Fixes expand command causing tag corruption in tagged task lists. All existing tests pass and new test coverage added.

* test(e2e): Add comprehensive tag-aware expand testing to verify tag corruption fix - Add new test section for feature-expand tag creation and testing - Verify tag preservation during expand, force expand, and expand --all operations - Test that master tag remains intact and feature-expand tag receives subtasks correctly - Fix file path references to use correct .taskmaster/tasks/tasks.json location - Fix config file check to use .taskmaster/config.json instead of .taskmasterconfig - All tag corruption verification tests pass successfully in E2E test

* fix(changeset): Update E2E test improvements changeset to properly reflect tag corruption fix verification

* chore(changeset): combine duplicate changesets for expand tag corruption fix

Merge eighty-breads-wonder.md into bright-llamas-enter.md to consolidate
the expand command fix and its comprehensive E2E testing enhancements
into a single changeset entry.

* Delete .changeset/eighty-breads-wonder.md

* Version Packages

* chore: fix package.json

* fix(expand): Enhance context handling in expandAllTasks function
- Added `tag` to context destructuring for better context management.
- Updated `readJSON` call to include `contextTag` for improved data integrity.
- Ensured the correct tag is passed during task expansion to prevent tag corruption.

---------

Co-authored-by: Parththipan Thaniperumkarunai <parththipan.thaniperumkarunai@milkmonkey.de>
Co-authored-by: Parthy <52548018+mm-parthy@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2025-06-20 15:12:40 +02:00
Ralph Khreish
04f44a2d3d chore: fix package.json 2025-06-20 16:10:52 +03:00
github-actions[bot]
36fe838fd5 Version Packages 2025-06-20 16:10:52 +03:00
github-actions[bot]
415b1835d4 docs: Auto-update and format models.md 2025-06-20 13:05:31 +00:00
Ralph Khreish
78112277b3 fix(bedrock): improve AWS credential handling and add model definitions (#826)
* fix(bedrock): improve AWS credential handling and add model definitions

- Change error to warning when AWS credentials are missing in environment
- Allow fallback to system configuration (aws config files or instance profiles)
- Remove hardcoded region and profile parameters in Bedrock client
- Add Claude 3.7 Sonnet and DeepSeek R1 model definitions for Bedrock
- Update config manager to properly handle Bedrock provider

* chore: cleanup and format and small refactor

---------

Co-authored-by: Ray Krueger <raykrueger@gmail.com>
2025-06-20 15:05:20 +02:00
Ralph Khreish
2bb4260966 fix: Fix external provider support (#726) 2025-06-20 14:59:53 +02:00
Nathan Marley
3a2325a963 fix: switch to ESM export to avoid mixed format (#633)
* fix: switch to ESM export to avoid mixed format

The CLI entrypoint was using `module.exports` alongside ESM `import` statements,
resulting in an invalid mixed module format. Replaced the CommonJS export with
a proper ESM `export` to maintain consistency and prevent module resolution issues.

* chore: add changeset

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-06-20 14:12:36 +02:00
Ralph Khreish
1bd6d4f246 fix: providers config for azure, bedrock, and vertex (#822)
* fix: providers config for azure, bedrock, and vertex

* chore: improve changelog

* chore: fix CI
2025-06-20 13:13:53 +02:00
Joe Danziger
a09a2d0967 feat: Flexible brand rules management (#460)
* chore(docs): update docs and rules related to model management.

* feat(ai): Add OpenRouter AI provider support

Integrates the OpenRouter AI provider using the Vercel AI SDK adapter (@openrouter/ai-sdk-provider). This allows users to configure and utilize models available through the OpenRouter platform.

- Added src/ai-providers/openrouter.js with standard Vercel AI SDK wrapper functions (generateText, streamText, generateObject).

- Updated ai-services-unified.js to include the OpenRouter provider in the PROVIDER_FUNCTIONS map and API key resolution logic.

- Verified config-manager.js handles OpenRouter API key checks correctly.

- Users can configure OpenRouter models via .taskmasterconfig using the task-master models command or MCP models tool. Requires OPENROUTER_API_KEY.

- Enhanced error handling in ai-services-unified.js to provide clearer messages when generateObjectService fails due to lack of underlying tool support in the selected model/provider endpoint.

* feat(cli): Add --status/-s filter flag to show command and get-task MCP tool

Implements the ability to filter subtasks displayed by the `task-master show <id>` command using the `--status` (or `-s`) flag. This is also available in the MCP context.

- Modified `commands.js` to add the `--status` option to the `show` command definition.

- Updated `utils.js` (`findTaskById`) to handle the filtering logic and return original subtask counts/arrays when filtering.

- Updated `ui.js` (`displayTaskById`) to use the filtered subtasks for the table, display a summary line when filtering, and use the original subtask list for the progress bar calculation.

- Updated MCP `get_task` tool and `showTaskDirect` function to accept and pass the `status` parameter.

- Added changeset entry.

* fix(tasks): Improve next task logic to be subtask-aware

* fix(tasks): Enable removing multiple tasks/subtasks via comma-separated IDs

- Refactors the core `removeTask` function (`task-manager/remove-task.js`) to accept and iterate over comma-separated task/subtask IDs.

- Updates dependency cleanup and file regeneration logic to run once after processing all specified IDs.

- Adjusts the `remove-task` CLI command (`commands.js`) description and confirmation prompt to handle multiple IDs correctly.

- Fixes a bug in the CLI confirmation prompt where task/subtask titles were not being displayed correctly.

- Updates the `remove_task` MCP tool description to reflect the new multi-ID capability.

This addresses the previously known issue where only the first ID in a comma-separated list was processed.

Closes #140

* Update README.md (#342)

* Update Discord badge (#337)

* refactor(init): Improve robustness and dependencies; Update template deps for AI SDKs; Silence npm install in MCP; Improve conditional model setup logic; Refactor init.js flags; Tweak Getting Started text; Fix MCP server launch command; Update default model in config template

* Refactor: Improve MCP logging, update E2E & tests

Refactors MCP server logging and updates testing infrastructure.

- MCP Server:

  - Replaced manual logger wrappers with centralized `createLogWrapper` utility.

  - Updated direct function calls to use `{ session, mcpLog }` context.

  - Removed deprecated `model` parameter from analyze, expand-all, expand-task tools.

  - Adjusted MCP tool import paths and parameter descriptions.

- Documentation:

  - Modified `docs/configuration.md`.

  - Modified `docs/tutorial.md`.

- Testing:

  - E2E Script (`run_e2e.sh`):

    - Removed `set -e`.

    - Added LLM analysis function (`analyze_log_with_llm`) & integration.

    - Adjusted test run directory creation timing.

    - Added debug echo statements.

  - Deleted Unit Tests: Removed `ai-client-factory.test.js`, `ai-client-utils.test.js`, `ai-services.test.js`.

  - Modified Fixtures: Updated `scripts/task-complexity-report.json`.

- Dev Scripts:

  - Modified `scripts/dev.js`.

* chore(tests): Passes tests for merge candidate
- Adjusted the interactive model default choice to be 'no change' instead of 'cancel setup'
- E2E script has been perfected and works as designed provided there are all provider API keys .env in the root
- Fixes the entire test suite to make sure it passes with the new architecture.
- Fixes dependency command to properly show there is a validation failure if there is one.
- Refactored config-manager.test.js mocking strategy and fixed assertions to read the real supported-models.json
- Fixed rule-transformer.test.js assertion syntax and transformation logic adjusting replacement for search which was too broad.
- Skip unstable tests in utils.test.js (log, readJSON, writeJSON error paths) due to SIGABRT crash. These tests trigger a native crash (SIGABRT), likely stemming from a conflict between internal chalk usage within the functions and Jest's test environment, possibly related to ESM module handling.

* chore(wtf): removes chai. not sure how that even made it in here. also removes duplicate test in scripts/.

* fix: ensure API key detection properly reads .env in MCP context

Problem:
- Task Master model configuration wasn't properly checking for API keys in the project's .env file when running through MCP
- The isApiKeySet function was only checking session.env and process.env but not inspecting the .env file directly
- This caused incorrect API key status reporting in MCP tools even when keys were properly set in .env

Solution:
- Modified resolveEnvVariable function in utils.js to properly read from .env file at projectRoot
- Updated isApiKeySet to correctly pass projectRoot to resolveEnvVariable
- Enhanced the key detection logic to have consistent behavior between CLI and MCP contexts
- Maintains the correct precedence: session.env → .env file → process.env

Testing:
- Verified working correctly with both MCP and CLI tools
- API keys properly detected in .env file in both contexts
- Deleted .cursor/mcp.json to confirm introspection of .env as fallback works

* fix(update): pass projectRoot through update command flow

Modified ai-services-unified.js, update.js tool, and update-tasks.js direct function to correctly pass projectRoot. This enables the .env file API key fallback mechanism for the update command when running via MCP, ensuring consistent key resolution with the CLI context.

* fix(analyze-complexity): pass projectRoot through analyze-complexity flow

Modified analyze-task-complexity.js core function, direct function, and analyze.js tool to correctly pass projectRoot. Fixed import error in tools/index.js. Added debug logging to _resolveApiKey in ai-services-unified.js. This enables the .env API key fallback for analyze_project_complexity.

* fix(add-task): pass projectRoot and fix logging/refs

Modified add-task core, direct function, and tool to pass projectRoot for .env API key fallback. Fixed logFn reference error and removed deprecated reportProgress call in core addTask function. Verified working.

* fix(parse-prd): pass projectRoot and fix schema/logging

Modified parse-prd core, direct function, and tool to pass projectRoot for .env API key fallback. Corrected Zod schema used in generateObjectService call. Fixed logFn reference error in core parsePRD. Updated unit test mock for utils.js.

* fix(update-task): pass projectRoot and adjust parsing

Modified update-task-by-id core, direct function, and tool to pass projectRoot. Reverted parsing logic in core function to prioritize `{...}` extraction, resolving parsing errors. Fixed ReferenceError by correctly destructuring projectRoot.

* fix(update-subtask): pass projectRoot and allow updating done subtasks

Modified update-subtask-by-id core, direct function, and tool to pass projectRoot for .env API key fallback. Removed check preventing appending details to completed subtasks.

* fix(mcp, expand): pass projectRoot through expand/expand-all flows

Problem: expand_task & expand_all MCP tools failed with .env keys due to missing projectRoot propagation for API key resolution. Also fixed a ReferenceError: wasSilent is not defined in expandTaskDirect.

Solution: Modified core logic, direct functions, and MCP tools for expand-task and expand-all to correctly destructure projectRoot from arguments and pass it down through the context object to the AI service call (generateTextService). Fixed wasSilent scope in expandTaskDirect.

Verification: Tested expand_task successfully in MCP using .env keys. Reviewed expand_all flow for correct projectRoot propagation.

* chore: prettier

* fix(expand-all): add projectRoot to expandAllTasksDirect invokation.

* fix(update-tasks): Improve AI response parsing for 'update' command

Refactors the JSON array parsing logic within
in .

The previous logic primarily relied on extracting content from markdown
code blocks (json or javascript), which proved brittle when the AI
response included comments or non-JSON text within the block, leading to
parsing errors for the  command.

This change modifies the parsing strategy to first attempt extracting
content directly between the outermost '[' and ']' brackets. This is
more robust as it targets the expected array structure directly. If
bracket extraction fails, it falls back to looking for a strict json
code block, then prefix stripping, before attempting a raw parse.

This approach aligns with the successful parsing strategy used for
single-object responses in  and resolves the
parsing errors previously observed with the  command.

* refactor(mcp): introduce withNormalizedProjectRoot HOF for path normalization

Added HOF to mcp tools utils to normalize projectRoot from args/session. Refactored get-task tool to use HOF. Updated relevant documentation.

* refactor(mcp): apply withNormalizedProjectRoot HOF to update tool

Problem: The  MCP tool previously handled project root acquisition and path resolution within its  method, leading to potential inconsistencies and repetition.

Solution: Refactored the  tool () to utilize the new  Higher-Order Function (HOF) from .

Specific Changes:
- Imported  HOF.
- Updated the Zod schema for the  parameter to be optional, as the HOF handles deriving it from the session if not provided.
- Wrapped the entire  function body with the  HOF.
- Removed the manual call to  from within the  function body.
- Destructured the  from the  object received by the wrapped  function, ensuring it's the normalized path provided by the HOF.
- Used the normalized  variable when calling  and when passing arguments to .

This change standardizes project root handling for the  tool, simplifies its  method, and ensures consistent path normalization. This serves as the pattern for refactoring other MCP tools.

* fix: apply to all tools withNormalizedProjectRoot to fix projectRoot issues for linux and windows

* fix: add rest of tools that need wrapper

* chore: cleanup tools to stop using rootFolder and remove unused imports

* chore: more cleanup

* refactor: Improve update-subtask, consolidate utils, update config

This commit introduces several improvements and refactorings across MCP tools, core logic, and configuration.

**Major Changes:**

1.  **Refactor updateSubtaskById:**
    - Switched from generateTextService to generateObjectService for structured AI responses, using a Zod schema (subtaskSchema) for validation.
    - Revised prompts to have the AI generate relevant content based on user request and context (parent/sibling tasks), while explicitly preventing AI from handling timestamp/tag formatting.
    - Implemented **local timestamp generation (new Date().toISOString()) and formatting** (using <info added on ...> tags) within the function *after* receiving the AI response. This ensures reliable and correctly formatted details are appended.
    - Corrected logic to append only the locally formatted, AI-generated content block to the existing subtask.details.

2.  **Consolidate MCP Utilities:**
    - Moved/consolidated the withNormalizedProjectRoot HOF into mcp-server/src/tools/utils.js.
    - Updated MCP tools (like update-subtask.js) to import withNormalizedProjectRoot from the new location.

3.  **Refactor Project Initialization:**
    - Deleted the redundant mcp-server/src/core/direct-functions/initialize-project-direct.js file.
    - Updated mcp-server/src/core/task-master-core.js to import initializeProjectDirect from its correct location (./direct-functions/initialize-project.js).

**Other Changes:**

-   Updated .taskmasterconfig fallback model to claude-3-7-sonnet-20250219.
-   Clarified model cost representation in the models tool description (taskmaster.mdc and mcp-server/src/tools/models.js).

* fix: displayBanner logging when silentMode is active (#385)

* fix: improve error handling, test options, and model configuration

- Enhance error validation in parse-prd.js and update-tasks.js
- Fix bug where mcpLog was incorrectly passed as logWrapper
- Improve error messages and response formatting
- Add --skip-verification flag to E2E tests
- Update MCP server config that ships with init to match new API key structure
- Fix task force/append handling in parse-prd command
- Increase column width in update-tasks display

* chore: fixes parse prd to show loading indicator in cli.

* fix(parse-prd): suggested fix for mcpLog was incorrect. reverting to my previously working code.

* chore(init): No longer ships readme with task-master init (commented out for now). No longer looking for task-master-mcp, instead checked for task-master-ai - this should prevent the init sequence from needlessly adding another mcp server with task-master-mcp to the mpc.json which a ton of people probably ran into.

* chore: restores 3.7 sonnet as the main role.

* fix(add/remove-dependency): dependency mcp tools were failing due to hard-coded tasks path in generate task files.

* chore: removes tasks json backup that was temporarily created.

* fix(next): adjusts mcp tool response to correctly return the next task/subtask. Also adds nextSteps to the next task response.

* chore: prettier

* chore: readme typos

* fix(config): restores sonnet 3.7 as default main role.

* Version Packages

* hotfix: move production package to "dependencies" (#399)

* Version Packages

* Fix: issues with 0.13.0 not working (#402)

* Exit prerelease mode and version packages

* hotfix: move production package to "dependencies"

* Enter prerelease mode and version packages

* Enter prerelease mode and version packages

* chore: cleanup

* chore: improve pre.json and add pre-release workflow

* chore: fix package.json

* chore: cleanup

* chore: improve pre-release workflow

* chore: allow github actions to commit

* extract fileMap and conversionConfig into brand profile

* extract into brand profile

* add windsurf profile

* add remove brand rules function

* fix regex

* add rules command to add/remove rules for a specific brand

* fix post processing for roo

* allow multiples

* add cursor profile

* update test for new structure

* move rules to assets

* use assets/rules for rules files

* use standardized setupMCP function

* fix formatting

* fix formatting

* add logging

* fix escapes

* default to cursor

* allow init with certain rulesets; no more .windsurfrules

* update docs

* update log msg

* fix formatting

* keep mdc extension for cursor

* don't rewrite .mdc to .md inside the files

* fix roo init (add modes)

* fix cursor init (don't use roo transformation by default)

* use more generic function names

* update docs

* fix formatting

* update function names

* add changeset

* add rules to mcp initialize project

* register tool with mcp server

* update docs

* add integration test

* fix cursor initialization

* rule selection

* fix formatting

* fix MCP - remove yes flag

* add import

* update roo tests

* add/update tests

* remove test

* add rules command test

* update MCP responses, centralize rules profiles & helpers

* fix logging and MCP response messages

* fix formatting

* incorrect test

* fix tests

* update fileMap

* fix file extension transformations

* fix formatting

* add rules command test

* test already covered

* fix formatting

* move renaming logic into profiles

* make sure dir is deleted (DS_Store)

* add confirmation for rules removal

* add force flag for rules remove

* use force flag for test

* remove yes parameter

* fix formatting

* import brand profiles from rule-transformer.js

* update comment

* add interactive rules setup

* optimize

* only copy rules specifically listed in fileMap

* update comment

* add cline profile

* add brandDir to remove ambiguity and support Cline

* specify whether to create mcp config and filename

* add mcpConfigName value for parh

* fix formatting

* remove rules just for this repository - only include rules to be distributed

* update error message

* update "brand rules" to "rules"

* update to minor

* remove comment

* remove comments

* move to /src/utils

* optimize imports

* move rules-setup.js to /src/utils

* move rule-transformer.js to /src/utils

* move confirmation to /src/ui/confirm.js

* default to all rules

* use profile js for mcp config settings

* only run rules interactive setup if not provided via command line

* update comments

* initialize with all brands if nothing specified

* update var name

* clean up

* enumerate brands for brand rules

* update instructions

* add test to check for brand profiles

* fix quotes

* update semantics and terminology from 'brand rules' to 'rules profiles'

* fix formatting

* fix formatting

* update function name and remove copying of cursor rules, now handled by rules transformer

* update comment

* rename to mcp-config-setup.js

* use enums for rules actions

* add aggregate reporting for rules add command

* add missing log message

* use simpler path

* use base profile with modifications for each brand

* use displayName and don't select any defaults in setup

* add confirmation if removing ALL rules profiles, and add --force flag on rules remove

* Use profile-detection instead of rules-detection

* add newline at end of mcp config

* add proper formatting for mcp.json

* update rules

* update rules

* update rules

* add checks for other rules and other profile folder items before removing

* update confirmation for rules remove

* update docs

* update changeset

* fix for filepath at bottom of rule

* Update cline profile and add test; adjust other rules tests

* update changeset

* update changeset

* clarify init for all profiles if not specified

* update rule text

* revert text

* use "rule profiles" instead of "rules profiles"

* use standard tool mappings for windsurf

* add Trae support

* update changeset

* update wording

* update to 'rule profile'

* remove unneeded exports to optimize loc

* combine to /src/utils/profiles.js; add codex and claude code profiles

* rename function and add boxen

* add claude and codex integration tests

* organize tests into profiles folder

* mock fs for transformer tests

* update UI

* add cline and trae integration tests

* update test

* update function name

* update formatting

* Update change set with new profiles

* move profile integration tests to subdirectory

* properly create temp directories in /tmp folder

* fix formatting

* use taskmaster subfolder for the 2 TM rules

* update wording

* ensure subdirectory exists

* update rules from next

* update from next

* update taskmaster rule

* add details on new rules command and init

* fix mcp init

* fix MCP path to assets

* remove duplication

* remove duplication

* MCP server path fixes for rules command

* fix for CLI roo rules add/remove

* update tests

* fix formatting

* fix pattern for interactive rule profiles setup

* restore comments

* restore comments

* restore comments

* remove unused import, fix quotes

* add missing integration tests

* add VS Code profile and tests

* update docs and rules to include vscode profile

* add rules subdirectory support per-profile

* move profiles to /src

* fix formatting

* rename to remove ambiguity

* use --setup for rules interactive setup

* Fix Cursor deeplink installation with copy-paste instructions (#723)

* change roo boomerang to orchestrator; update tests that don't use modes

* fix newline

* chore: cleanup

---------

Co-authored-by: Eyal Toledano <eyal@microangel.so>
Co-authored-by: Yuval <yuvalbl@users.noreply.github.com>
Co-authored-by: Marijn van der Werf <marijn.vanderwerf@gmail.com>
Co-authored-by: Eyal Toledano <eutait@gmail.com>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2025-06-20 10:09:36 +02:00
github-actions[bot]
02e0db09df docs: Auto-update and format models.md 2025-06-20 07:59:03 +00:00
Riccardo (Ricky) Esclapon
3bcce8d70e Update SWE scores (#657) 2025-06-20 09:58:53 +02:00
Ralph Khreish
8852831807 Merge pull request #810 from eyaltoledano/changeset-release/main
Version Packages
2025-06-18 21:35:39 +03:00
Ralph Khreish
661d3e04ba chore: fix package.json 2025-06-18 21:14:27 +03:00
github-actions[bot]
0dba2cb2da Version Packages 2025-06-18 16:02:39 +00:00
Ralph Khreish
9ee7a94056 Release 0.17.1 (#790)
* fix(contextGatherer): cannot read properties of undefined reading forEach (#789)

* docs: Update configuration.md (#782)

---------

Co-authored-by: Bartu OZEL <bartuozel@gmail.com>
2025-06-18 19:02:16 +03:00
Bartu OZEL
636fb3f680 docs: Update configuration.md (#782) 2025-06-16 20:12:54 +02:00
Ralph Khreish
8cde6c2708 fix(contextGatherer): cannot read properties of undefined reading forEach (#789) 2025-06-16 10:32:34 +02:00
Ralph Khreish
246acd1035 Merge Release 0.17.0 pull request #780 from eyaltoledano/changeset-release/main
Version Packages
2025-06-15 03:16:16 +02:00
Ralph Khreish
de5acbc6c9 chore: fix formatting 2025-06-15 04:12:13 +03:00
Ralph Khreish
664eb5b896 cleanup release 2025-06-15 04:10:51 +03:00
github-actions[bot]
dbaf492bdb Version Packages 2025-06-15 00:59:24 +00:00
Ralph Khreish
0c8a0b81a0 Merge pull request #779 from eyaltoledano/next
Release 0.17.0
2025-06-15 02:59:01 +02:00
github-actions[bot]
46d4f273f5 docs: Auto-update and format models.md 2025-06-15 00:50:10 +00:00
github-actions[bot]
aa7396d65e Version Packages 2025-06-15 03:47:56 +03:00
Eyal Toledano
5119cd2d8e v017 polish (#778)
* fix(research, tasks): Make research command and task updates tag-aware

* refactor(tasks): Prevent automatic task file generation across other locations

This commit refactors several core task management functions to prevent them from automatically regenerating individual task files after modifying the main `tasks.json`.

Previously, operations like `add-task`, `clear-subtasks`, `expand-task`, and `update-task-by-id` would immediately trigger `generateTaskFiles`. This could be slow and was often unnecessary.

The calls to `generateTaskFiles` have been removed or commented out from the core task functions. Users should now run `task-master generate` explicitly to update their individual task files.

Additionally, this commit includes fixes to the `move` command to make it fully tag-aware.

* fix: move and clear subtasks mcp commands

* chore: fix format

* chore: fix unit tests

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-06-15 03:47:56 +03:00
github-actions[bot]
44eba3f7d1 chore: rc version bump 2025-06-15 03:47:56 +03:00
Eyal Toledano
e82b093dce docs: Update taskmaster.mdc and dev_workflow.mdc with missing CLI fla… (#775)
* docs: Update taskmaster.mdc and dev_workflow.mdc with missing CLI flags and enhanced workflow guidance

- Add missing --tag flags to commands that were implemented but not documented
- Add missing --file flags to tag management commands
- Add --bedrock flag to models command documentation
- Synchronize CLI documentation with actual implementation in commands.js
- Enhance dev_workflow.mdc with comprehensive tagged task lists guidance
- Add patterns for when to introduce tags (git branching, team collaboration, experiments)
- Consolidate and refine changesets for upcoming release

* chore: package-lock fixup

* chore: fix format

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-06-15 03:47:56 +03:00
Ralph Khreish
ad3acd874d chore: rc version bump (#776)
* Version Packages

* chore: update package-lock.json

* chore: fix format

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Eyal Toledano <eyal@microangel.so>
2025-06-15 03:47:56 +03:00
github-actions[bot]
52022d370b chore: rc version bump 2025-06-15 03:47:56 +03:00
Eyal Toledano
957af5253b chore: v017 linting (#773) 2025-06-15 03:47:28 +03:00
Ralph Khreish
c0b3f432a6 chore: v0.17 features and improvements (#771)
* chore: task management and small bug fix.

* chore: task management

* feat: implement research command with enhanced context gathering - Add comprehensive research command with AI-powered queries - Implement ContextGatherer utility for reusable context extraction - Support multiple context types: tasks, files, custom text, project tree - Add fuzzy search integration for automatic task discovery - Implement detailed token breakdown display with syntax highlighting - Add enhanced UI with boxed output and code block formatting - Support different detail levels (low, medium, high) for responses - Include project-specific context for more relevant AI responses - Add token counting with gpt-tokens library integration - Create reusable patterns for future context-aware commands - Task 94.4 completed

* docs: add context gathering rule and update existing rules

- Create comprehensive context_gathering.mdc rule documenting ContextGatherer utility patterns, FuzzyTaskSearch integration, token breakdown display, code block syntax highlighting, and enhanced result display patterns
- Update new_features.mdc to include context gathering step
- Update commands.mdc with context-aware command pattern
- Update ui.mdc with enhanced display patterns and syntax highlighting
- Update utilities.mdc to document new context gathering utilities
- Update glossary.mdc to include new context_gathering rule
- Establishes standardized patterns for building intelligent, context-aware commands that can leverage project knowledge for better AI assistance

* feat(fuzzy): improves fuzzy search to introspect into subtasks as well. might still need improvement.

* fix(move): adjusts logic to prevent an issue when moving from parent to subtask if the target parent has no subtasks.

* fix(move-task): Fix critical bugs in task move functionality

- Fixed parent-to-parent task moves where original task would remain as duplicate
- Fixed moving tasks to become subtasks of empty parents (validation errors)
- Fixed moving subtasks between different parent tasks
- Improved comma-separated batch moves with proper error handling
- Updated MCP tool to use core logic instead of custom implementation
- Resolves task duplication issues and enables proper task hierarchy reorganization

* feat(research): Add subtasks to fuzzy search and follow-up questions

- Enhanced fuzzy search to include subtasks in discovery - Added interactive follow-up question functionality using inquirer
- Improved context discovery by including both tasks and subtasks
- Follow-up option for research with default to 'n' for quick workflow

* chore: removes task004 chat that had like 11k lines lol.

* chore: formatting

* feat(show): add comma-separated ID support for multi-task viewing

- Enhanced get-task/show command to support comma-separated task IDs for efficient batch operations.
- New features include multiple task retrieval, smart display logic, interactive action menu with batch operations, MCP array response for AI agent efficiency, and support for mixed parent tasks and subtasks.
- Implementation includes updated CLI show command, enhanced MCP get_task tool, modified showTaskDirect function, and maintained full backward compatibility.
- Documentation updated across all relevant files.

Benefits include faster context gathering for AI agents, improved workflow with interactive batch operations, better UX with responsive layout, and enhanced API efficiency.

* feat(research): Adds MCP tool for  command

- New MCP Tool: research tool enables AI-powered research with project context
- Context Integration: Supports task IDs, file paths, custom context, and project tree
- Fuzzy Task Discovery: Automatically finds relevant tasks using semantic search
- Token Management: Detailed token counting and breakdown by context type
- Multiple Detail Levels: Support for low, medium, and high detail research responses
- Telemetry Integration: Full cost tracking and usage analytics
- Direct Function: researchDirect with comprehensive parameter validation
- Silent Mode: Prevents console output interference with MCP JSON responses
- Error Handling: Robust error handling with proper MCP response formatting

This completes subtasks 94.5 (Direct Function) and 94.6 (MCP Tool) for the research command implementation, providing a powerful research interface for integrated development environments like Cursor.

Updated documentation across taskmaster.mdc, README.md, command-reference.md, examples.md, tutorial.md, and docs/README.md to highlight research capabilities and usage patterns.

* chore: task management

* chore: task management and removes mistakenly staged changes

* fix(move): Fix move command bug that left duplicate tasks

- Fixed logic in moveTaskToNewId function that was incorrectly treating task-to-task moves as subtask creation instead of task replacement
- Updated moveTaskToNewId to properly handle replacing existing destination tasks instead of just placeholders
- The move command now correctly replaces destination tasks and cleans up properly without leaving duplicates

- Task Management: Moved task 93 (Google Vertex AI Provider) to position 88, Moved task 94 (Azure OpenAI Provider) to position 89, Updated task dependencies and regenerated task files, Cleaned up orphaned task files automatically
- All important validations remain in place: Prevents moving tasks to themselves, Prevents moving parent tasks to their own subtasks, Prevents circular dependencies
- Resolves the issue where moving tasks would leave both source and destination tasks in tasks.json and file system

* chore: formatting

* feat: Add .taskmaster directory (#619)

* chore: apply requested changes from next branch (#629)

* chore: rc version bump

* chore: cleanup migration-guide

* fix: bedrock set model and other fixes (#641)

* Fix: MCP log errors (#648)

* fix: projectRoot duplicate .taskmaster directory (#655)

* Version Packages

* chore: add package-lock.json

* Version Packages

* Version Packages

* fix: markdown format (#622)

* Version Packages

* Version Packages

* Fixed the Typo in cursor rules Issue:#675 (#677)

Fixed the typo in the Api keys

* Add one-click MCP server installation for Cursor (#671)

* Update README.md - Remove trailing commas (#673)

JSON doesn't allow for trailing commas, so these need to be removed in order for this to work

* chore: rc version bump

* fix: findTasksPath function

* fix: update MCP tool

* feat(ui): replace emoji complexity indicators with clean filled circle characters

Replace 🟢, 🟡, 🔴 emojis with ● character in getComplexityWithColor function

Update corresponding unit tests to expect ● instead of emojis

Improves UI continuity

* fix(ai-providers): change generateObject mode from 'tool' to 'auto' for better provider compatibility

Fixes Perplexity research role failing with 'tool-mode object generation' error

The hardcoded 'tool' mode was incompatible with providers like Perplexity that support structured JSON output but not function calling/tool use

Using 'auto' mode allows the AI SDK to choose the best approach for each provider

* Adds qwen3-235n-a22b:free to supported models. Closes #687)

* chore: adds a warning when custom openrouter model is a free model which suffers from lower rate limits, restricted context, and, worst of all, no access to tool_use.

* refactor: enhance add-task fuzzy search and fix duplicate banner display

- **Remove hardcoded category system** in add-task that always matched 'Task management'
- **Eliminate arbitrary limits** in fuzzy search results (5→25 high relevance, 3→10 medium relevance, 8→20 detailed tasks)
- **Improve semantic weighting** in Fuse.js search (details=3, description=2, title=1.5) for better relevance
- **Fix duplicate banner issue** by removing console.clear() and redundant displayBanner() calls from UI functions
- **Enhance context generation** to rely on semantic similarity rather than rigid pattern matching
- **Preserve terminal history** to address GitHub issue #553 about eating terminal lines
- **Remove displayBanner() calls** from: displayHelp, displayNextTask, displayTaskById, displayComplexityReport, set-task-status, clear-subtasks, dependency-manager functions

The add-task system now provides truly relevant task context based on semantic similarity rather than arbitrary categories and limits, while maintaining a cleaner terminal experience.

Changes span: add-task.js, ui.js, set-task-status.js, clear-subtasks.js, list-tasks.js, dependency-manager.js

Closes #553

* chore: changeset

* chore: passes tests and linting

* chore: more linting

* ninja(sync): add sync-readme command for GitHub README export with UTM tracking and professional markdown formatting. Experimental

* chore: changeset adjustment

* docs: Auto-update and format models.md

* chore: updates readme with npm download badges and mentions AI Jason who is joining the taskmaster core team.

* chore: fixes urls in readme npm packages

* chore: fixes urls in readme npm packages again

* fix: readme typo

* readme: fix twitter urls.

* readme: removes the taskmaster list output which is too overwhelming given its size with subtasks. may re-add later. fixes likely issues in the json for manual config in cursor and windsurf in the readme.

* chore: small readme nitpicks

* chore: adjusts changeset from minor to patch to avoid version bump to 0.17

* readme: moves up the documentation links higher up in the readme. same with the cursor one-click install.

* Fix Cursor deeplink installation with copy-paste instructions (#723)

* solve merge conflics with next. not gonna deal with these much longer.

* chore: update task files during rebase

* chore: task management

* feat: implement research command with enhanced context gathering - Add comprehensive research command with AI-powered queries - Implement ContextGatherer utility for reusable context extraction - Support multiple context types: tasks, files, custom text, project tree - Add fuzzy search integration for automatic task discovery - Implement detailed token breakdown display with syntax highlighting - Add enhanced UI with boxed output and code block formatting - Support different detail levels (low, medium, high) for responses - Include project-specific context for more relevant AI responses - Add token counting with gpt-tokens library integration - Create reusable patterns for future context-aware commands - Task 94.4 completed

* fix(move): adjusts logic to prevent an issue when moving from parent to subtask if the target parent has no subtasks.

* fix(move-task): Fix critical bugs in task move functionality

- Fixed parent-to-parent task moves where original task would remain as duplicate
- Fixed moving tasks to become subtasks of empty parents (validation errors)
- Fixed moving subtasks between different parent tasks
- Improved comma-separated batch moves with proper error handling
- Updated MCP tool to use core logic instead of custom implementation
- Resolves task duplication issues and enables proper task hierarchy reorganization

* chore: removes task004 chat that had like 11k lines lol.

* feat(show): add comma-separated ID support for multi-task viewing

- Enhanced get-task/show command to support comma-separated task IDs for efficient batch operations.
- New features include multiple task retrieval, smart display logic, interactive action menu with batch operations, MCP array response for AI agent efficiency, and support for mixed parent tasks and subtasks.
- Implementation includes updated CLI show command, enhanced MCP get_task tool, modified showTaskDirect function, and maintained full backward compatibility.
- Documentation updated across all relevant files.

Benefits include faster context gathering for AI agents, improved workflow with interactive batch operations, better UX with responsive layout, and enhanced API efficiency.

* feat(research): Adds MCP tool for  command

- New MCP Tool: research tool enables AI-powered research with project context
- Context Integration: Supports task IDs, file paths, custom context, and project tree
- Fuzzy Task Discovery: Automatically finds relevant tasks using semantic search
- Token Management: Detailed token counting and breakdown by context type
- Multiple Detail Levels: Support for low, medium, and high detail research responses
- Telemetry Integration: Full cost tracking and usage analytics
- Direct Function: researchDirect with comprehensive parameter validation
- Silent Mode: Prevents console output interference with MCP JSON responses
- Error Handling: Robust error handling with proper MCP response formatting

This completes subtasks 94.5 (Direct Function) and 94.6 (MCP Tool) for the research command implementation, providing a powerful research interface for integrated development environments like Cursor.

Updated documentation across taskmaster.mdc, README.md, command-reference.md, examples.md, tutorial.md, and docs/README.md to highlight research capabilities and usage patterns.

* chore: task management

* fix(move): Fix move command bug that left duplicate tasks

- Fixed logic in moveTaskToNewId function that was incorrectly treating task-to-task moves as subtask creation instead of task replacement
- Updated moveTaskToNewId to properly handle replacing existing destination tasks instead of just placeholders
- The move command now correctly replaces destination tasks and cleans up properly without leaving duplicates

- Task Management: Moved task 93 (Google Vertex AI Provider) to position 88, Moved task 94 (Azure OpenAI Provider) to position 89, Updated task dependencies and regenerated task files, Cleaned up orphaned task files automatically
- All important validations remain in place: Prevents moving tasks to themselves, Prevents moving parent tasks to their own subtasks, Prevents circular dependencies
- Resolves the issue where moving tasks would leave both source and destination tasks in tasks.json and file system

* chore: moves to new task master config setup

* feat: add comma-separated status filtering to list-tasks

- supports multiple statuses like 'blocked,deferred' with comprehensive test coverage and backward compatibility

- also adjusts biome.json to stop bitching about templating.

* chore: linting ffs

* fix(generate): Fix generate command creating tasks in legacy location

- Update generate command default output directory from 'tasks' to '.taskmaster/tasks'
- Fix path.dirname() usage to properly derive output directory from tasks file location
- Update MCP tool description and documentation to reflect new structure
- Disable Biome linting rules for noUnusedTemplateLiteral and useArrowFunction
- Fixes issue where generate command was creating task files in the old 'tasks/' directory instead of the new '.taskmaster/tasks/' structure after the refactor

* chore: task management

* chore: task management some more

* fix(get-task): makes the projectRoot argument required to prevent errors when getting tasks.

* feat(tags): Implement tagged task lists migration system (Part 1/2)

This commit introduces the foundational infrastructure for tagged task lists,
enabling multi-context task management without remote storage to prevent merge conflicts.

CORE ARCHITECTURE:
• Silent migration system transforms tasks.json from old format { "tasks": [...] }
  to new tagged format { "master": { "tasks": [...] } }
• Tag resolution layer provides complete backward compatibility - existing code continues to work
• Automatic configuration and state management for seamless user experience

SILENT MIGRATION SYSTEM:
• Automatic detection and migration of legacy tasks.json format
• Complete project migration: tasks.json + config.json + state.json
• Transparent tag resolution returns old format to maintain compatibility
• Zero breaking changes - all existing functionality preserved

CONFIGURATION MANAGEMENT:
• Added global.defaultTag setting (defaults to 'master')
• New tags section with gitIntegration placeholders for future features
• Automatic config.json migration during first run
• Proper state.json creation with migration tracking

USER EXPERIENCE:
• Clean, one-time FYI notice after migration (no emojis, professional styling)
• Notice appears after 'Suggested Next Steps' and is tracked in state.json
• Silent operation - users unaware migration occurred unless explicitly shown

TECHNICAL IMPLEMENTATION:
• Enhanced readJSON() with automatic migration detection and processing
• New utility functions: getCurrentTag(), resolveTag(), getTasksForTag(), setTasksForTag()
• Complete migration orchestration via performCompleteTagMigration()
• Robust error handling and fallback mechanisms

BACKWARD COMPATIBILITY:
• 100% backward compatibility maintained
• Existing CLI commands and MCP tools continue to work unchanged
• Legacy tasks.json format automatically upgraded on first read
• All existing workflows preserved

TESTING VERIFIED:
• Complete migration from legacy state works correctly
• Config.json properly updated with tagged system settings
• State.json created with correct initial values
• Migration notice system functions as designed
• All existing functionality continues to work normally

Part 2 will implement tag management commands (add-tag, use-tag, list-tags)
and MCP tool updates for full tagged task system functionality.

Related: Task 103 - Implement Tagged Task Lists System for Multi-Context Task Management

* docs: Update documentation and rules for tagged task lists system

- Updated task-structure.md with comprehensive tagged format explanation
- Updated all .cursor/rules/*.mdc files to reflect tagged system
- Completed subtask 103.16: Update Documentation for Tagged Task Lists System

* feat(mcp): Add tagInfo to responses and integrate ContextGatherer

Enhances the MCP server to include 'tagInfo' (currentTag, availableTags) in all tool responses, providing better client-side context.

- Introduces a new 'ContextGatherer' utility to standardize the collection of file, task, and project context for AI-powered commands. This refactors several task-manager modules ('expand-task', 'research', 'update-task', etc.) to use the new utility.

- Fixes an issue in 'get-task' and 'get-tasks' MCP tools where the 'projectRoot' was not being passed correctly, preventing tag information from being included in their responses.

- Adds subtask '103.17' to track the implementation of the task template importing feature.

- Updates documentation ('.cursor/rules', 'docs/') to align with the new tagged task system and context gatherer logic.

* fix: include tagInfo in AI service responses for MCP tools

- Update all core functions that call AI services to extract and return tagInfo
- Update all direct functions to include tagInfo in MCP response data
- Fixes issue where add_task, expand_task, and other AI commands were not including current tag and available tags information
- tagInfo includes currentTag from state.json and availableTags list
- Ensures tagged task lists system information is properly propagated through the full chain: AI service -> core function -> direct function -> MCP client

* fix(move-task): Update move functionality for tagged task system compatibility

- incorporate GitHub commit fixes and resolve readJSON data handling

* feat(tagged-tasks): Complete core tag management system implementation

- Implements comprehensive tagged task lists system for multi-context task management including core tag management functions (Task 103.11), MCP integration updates, and foundational infrastructure for tagged task operations. Features tag CRUD operations, validation, metadata tracking, deep task copying, and full backward compatibility.

* fix(core): Fixed move-task.js writing _rawTaggedData directly, updated writeJSON to filter tag fields, fixed CLI move command missing projectRoot, added ensureTagMetadata utility

* fix(tasks): ensure list tasks triggers silent migration if necessary.

* feat(tags): Complete show and add-task command tag support
- show command: Added --tag flag, fixed projectRoot passing to UI functions
- add-task command: Already had proper tag support and projectRoot handling
- Both commands now work correctly with tagged task lists system
- Migration logic works properly when viewing and adding tasks
- Updated subtask 103.5 with progress on high-priority command fixes

* fix(tags): Clean up rogue created properties and fix taskCount calculation
- Enhanced writeJSON to automatically filter rogue created/description properties from tag objects
- Fixed tags command error by making taskCount calculation dynamic instead of hardcoded
- Cleaned up existing rogue created property in master tag through forced write operation
- All created properties now properly located in metadata objects only
- Tags command working perfectly with proper task count display
- Data integrity maintained with automatic cleanup during write operations

* fix(tags): Resolve critical tag deletion and migration notice bugs

Major Issues Fixed:

1. Tag Deletion Bug: Fixed critical issue where creating subtasks would delete other tags

   - Root cause: writeJSON function wasn't accepting projectRoot/tag parameters

   - Fixed writeJSON signature and logic to handle tagged data structure

   - Added proper merging of resolved tag data back into full tagged structure

2. Persistent Migration Notice: Fixed FYI notice showing after every command

   - Root cause: markMigrationForNotice was resetting migrationNoticeShown to false

   - Fixed migration logic to only trigger on actual legacy->tagged migrations

   - Added proper _rawTaggedData checks to prevent false migration detection

3. Data Corruption Prevention: Enhanced data integrity safeguards

   - Fixed writeJSON to filter out internal properties

   - Added automatic cleanup of rogue properties

   - Improved hasTaggedStructure detection logic

Commands Fixed: add-subtask, remove-subtask, and all commands now preserve tags correctly

* fix(tags): Resolve tag deletion bug in remove-task command

Refactored the core 'removeTask' function to be fully tag-aware, preventing data corruption.

- The function now correctly reads the full tagged data structure by prioritizing '_rawTaggedData' instead of operating on a resolved single-tag view.

- All subsequent operations (task removal, dependency cleanup, file writing) now correctly reference the full multi-tag data object, preserving the integrity of 'tasks.json'.

- This resolves the critical bug where removing a task would delete all other tags.

* fix(tasks): Ensure new task IDs are sequential within the target tag

Modified the ID generation logic in 'add-task.js' to calculate the next task ID based on the highest ID within the specified tag, rather than globally across all tags.

This fixes a critical bug where creating a task in a new tag would result in a high, non-sequential ID, such as ID 105 for the first task in a tag.

* fix(commands): Add missing context parameters to dependency and remove-subtask commands

- Add projectRoot and tag context to all dependency commands
- Add projectRoot and tag context to remove-subtask command
- Add --tag option to remove-subtask command
- Fixes critical bug where remove-subtask was deleting other tags due to missing context
- All dependency and subtask commands now properly handle tagged task lists

* feat(tags): Add --tag flag support to core commands for multi-context task management
- parse-prd now supports creating tasks in specific contexts
- Fixed tag preservation logic to prevent data loss
- analyze-complexity generates tag-specific reports
- Non-existent tags created automatically
- Enables rapid prototyping and parallel development workflows

* feat(tags): Complete tagged task lists system with enhanced use-tag command

- Multi-context task management with full CLI support
- Enhanced use-tag command shows next available task after switching
- Universal --tag flag support across all commands
- Seamless migration with zero disruption
- Complete tag management suite (add, delete, rename, copy, list)
- Smart confirmation logic and data integrity protection
- State management and configuration integration
- Real-world use cases for teams, features, and releases

* feat(tags): Complete tag support for remaining CLI commands

- Add --tag flag to update, move, and set-status commands
- Ensure all task operation commands now support tag context
- Fix missing tag context passing to core functions
- Complete comprehensive tag-aware command coverage

* feat(ui): add tag indicator to all CLI commands
- shows 🏷️ tag: tagname for complete context visibility across 15+ commands

* fix(ui): resolve dependency 'Not found' issue when filtering

- now correctly displays dependencies that exist but are filtered out of view

* feat(research): Add comprehensive AI-powered research command with interactive follow-ups, save functionality, intelligent context gathering, fuzzy task discovery, multi-source context support, enhanced display with syntax highlighting, clean inquirer menus, comprehensive help, and MCP integration with saveTo parameter

* feat(tags): Implement full MCP support for Tagged Task Lists and update-task append mode

* chore: task management

* feat(research): Enhance research command with follow-up menu, save functionality, and fix ContextGatherer token counting

* feat(git-workflow): Add automatic git branch-tag integration

- Implement automatic tag creation when switching to new git branches

- Add branch-tag mapping system for seamless context switching

- Enable auto-switch of task contexts based on current git branch

- Provide isolated task contexts per branch to prevent merge conflicts

- Add configuration support for enabling/disabling git workflow features

- Fix ES module compatibility issues in git-utils module

- Maintain zero migration impact with automatic 'master' tag creation

- Support parallel development with branch-specific task contexts

The git workflow system automatically detects branch changes and creates corresponding empty task tags, enabling developers to maintain separate task contexts for different features/branches while preventing task-related merge conflicts during collaborative development.

Resolves git workflow integration requirements for multi-context development.

* feat(git-workflow): Simplify git integration with --from-branch option

- Remove automatic git workflow and branch-tag switching - we are not ready for it yet

- Add --from-branch option to add-tag command for manual tag creation from git branch

- Remove git workflow configuration from config.json and assets

- Disable automatic tag switching functions in git-utils.js

- Add createTagFromBranch function for branch-based tag creation

- Support both CLI and MCP interfaces for --from-branch functionality

- Fix ES module imports in git-utils.js and utils.js

- Maintain user control over tag contexts without forced automation

The simplified approach allows users to create tags from their current git branch when desired, without the complexity and rigidity of automatic branch-tag synchronization. Users maintain full control over their tag contexts while having convenient tools for git-based workflows when needed.

* docs: Update rule files to reflect simplified git integration approach

- Remove automatic git workflow features, update to manual --from-branch option, change Part 2 references to completed status

* fix(commands): Fix add-tag --from-branch requiring tagName argument
- Made tagName optional when using --from-branch - Added validation for either tagName or --from-branch
- Fixes 'missing required argument' error with --from-branch option

* fix(mcp): Prevent tag deletion on subtask update

Adds a safety net to the writeJSON utility to prevent data loss when updating subtasks via the MCP server.

The MCP process was inadvertently causing the _rawTaggedData property, which holds the complete multi-tag structure, to be lost. When writeJSON received the data for only a single tag, it would overwrite the entire tasks.json file, deleting all other tags.

This fix makes writeJSON more robust. If it receives data that looks like a single, resolved tag without the complete structure, it re-reads the full tasks.json file from disk. It then carefully merges the updated data back into the correct tag within the full structure, preserving all other tags.

* fix: resolve all remaining test failures and improve test reliability

- Fix clear-subtasks test by implementing deep copy of mock data to prevent mutation issues between tests
- Fix add-task test by uncommenting and properly configuring generateTaskFiles call with correct parameters
- Fix analyze-task-complexity tests by properly mocking fs.writeFileSync with shared mock function
- Update test expectations to match actual function signatures and data structures
- Improve mock setup consistency across all test suites
- Ensure all tests now pass (329 total: 318 passed, 11 skipped, 0 failed)

* chore: task management

---------

Co-authored-by: Eyal Toledano <eyal@microangel.so>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ibrahim H. <bitsnaps@yahoo.fr>
Co-authored-by: Saksham Goel <sakshamgoel1107@gmail.com>
Co-authored-by: Joe Danziger <joe@ticc.net>
Co-authored-by: Aaron Gabriel Neyer <ag@unforced.org>
2025-06-15 03:47:28 +03:00
github-actions[bot]
12bed2b307 docs: Auto-update and format models.md 2025-06-15 03:47:28 +03:00
Volodymyr Zahorniak
d76bea49b3 docs: Update o3 model price (#751) 2025-06-15 03:47:28 +03:00
Ralph Khreish
0849c0c2ce fix: expand-task (#755) 2025-06-15 03:47:28 +03:00
Joe Danziger
5ec1f61c13 Fix Cursor deeplink installation with copy-paste instructions (#723) 2025-06-15 03:47:28 +03:00
Eyal Toledano
292c2caf7f Merge pull request #722 from eyaltoledano/changeset-release/main
Version Packages
2025-06-08 17:43:43 -04:00
github-actions[bot]
526d64fb8a Version Packages 2025-06-08 20:39:20 +00:00
Ralph Khreish
1b86ce6c83 Merge pull request #721 from eyaltoledano/next 2025-06-08 22:38:49 +02:00
Eyal Toledano
8a86ec538e Merge pull request #717 from eyaltoledano/v016-last-touches
V016 last touches
2025-06-08 16:20:32 -04:00
Eyal Toledano
9e7387952d readme: moves up the documentation links higher up in the readme. same with the cursor one-click install. 2025-06-08 15:59:49 -04:00
Eyal Toledano
ab05f550b3 chore: adjusts changeset from minor to patch to avoid version bump to 0.17 2025-06-08 15:32:31 -04:00
Ralph Khreish
cf01fbedcf Merge pull request #686 from eyaltoledano/next 2025-06-08 19:37:46 +02:00
Ralph Khreish
d2bcbee0c2 chore: small readme nitpicks 2025-06-08 13:49:40 +02:00
Eyal Toledano
72171bd4ba Merge pull request #702 from eyaltoledano/readme-fixes-2
readme: removes the taskmaster list output
2025-06-07 23:23:01 -04:00
Eyal Toledano
9ad517231a readme: removes the taskmaster list output which is too overwhelming given its size with subtasks. may re-add later. fixes likely issues in the json for manual config in cursor and windsurf in the readme. 2025-06-07 23:21:17 -04:00
Eyal Toledano
7db3b47a47 Merge pull request #701 from eyaltoledano/readme-npm-badges
chore: updates readme with npm download badges and mentions AI Jason who is joining the taskmaster core team.
2025-06-07 23:17:02 -04:00
Eyal Toledano
3de785a99c readme: fix twitter urls. 2025-06-07 23:10:08 -04:00
Eyal Toledano
8188fdd832 fix: readme typo 2025-06-07 23:09:16 -04:00
Eyal Toledano
3fadc2f1ef chore: fixes urls in readme npm packages again 2025-06-07 23:07:12 -04:00
Eyal Toledano
dd36111367 chore: fixes urls in readme npm packages 2025-06-07 23:06:26 -04:00
Eyal Toledano
c58ab8963c chore: updates readme with npm download badges and mentions AI Jason who is joining the taskmaster core team. 2025-06-07 23:02:36 -04:00
github-actions[bot]
3eeb4721aa docs: Auto-update and format models.md 2025-06-08 02:15:32 +00:00
Eyal Toledano
7ea905f2c5 Merge pull request #699 from eyaltoledano/0.16.2-touchups
0.16.2 touchups
2025-06-07 22:15:19 -04:00
Eyal Toledano
51dd4f625b chore: changeset adjustment 2025-06-07 22:13:11 -04:00
Eyal Toledano
2e55757b26 ninja(sync): add sync-readme command for GitHub README export with UTM tracking and professional markdown formatting. Experimental 2025-06-07 22:07:35 -04:00
Eyal Toledano
54bfc72baa chore: more linting 2025-06-07 20:32:37 -04:00
Eyal Toledano
faae0b419d chore: passes tests and linting 2025-06-07 20:30:51 -04:00
Eyal Toledano
27edbd8f3f chore: changeset 2025-06-07 20:28:28 -04:00
Eyal Toledano
b1390e4ddf refactor: enhance add-task fuzzy search and fix duplicate banner display
- **Remove hardcoded category system** in add-task that always matched 'Task management'
- **Eliminate arbitrary limits** in fuzzy search results (5→25 high relevance, 3→10 medium relevance, 8→20 detailed tasks)
- **Improve semantic weighting** in Fuse.js search (details=3, description=2, title=1.5) for better relevance
- **Fix duplicate banner issue** by removing console.clear() and redundant displayBanner() calls from UI functions
- **Enhance context generation** to rely on semantic similarity rather than rigid pattern matching
- **Preserve terminal history** to address GitHub issue #553 about eating terminal lines
- **Remove displayBanner() calls** from: displayHelp, displayNextTask, displayTaskById, displayComplexityReport, set-task-status, clear-subtasks, dependency-manager functions

The add-task system now provides truly relevant task context based on semantic similarity rather than arbitrary categories and limits, while maintaining a cleaner terminal experience.

Changes span: add-task.js, ui.js, set-task-status.js, clear-subtasks.js, list-tasks.js, dependency-manager.js

Closes #553
2025-06-07 20:23:55 -04:00
Eyal Toledano
cc04d53720 chore: adds a warning when custom openrouter model is a free model which suffers from lower rate limits, restricted context, and, worst of all, no access to tool_use. 2025-06-07 18:54:11 -04:00
Eyal Toledano
bfd86eb9cc Adds qwen3-235n-a22b:free to supported models. Closes #687) 2025-06-07 18:42:11 -04:00
Eyal Toledano
9eb3842f04 fix(ai-providers): change generateObject mode from 'tool' to 'auto' for better provider compatibility
Fixes Perplexity research role failing with 'tool-mode object generation' error

The hardcoded 'tool' mode was incompatible with providers like Perplexity that support structured JSON output but not function calling/tool use

Using 'auto' mode allows the AI SDK to choose the best approach for each provider
2025-06-07 15:02:48 -04:00
Eyal Toledano
bf2053e140 feat(ui): replace emoji complexity indicators with clean filled circle characters
Replace 🟢, 🟡, 🔴 emojis with ● character in getComplexityWithColor function

Update corresponding unit tests to expect ● instead of emojis

Improves UI continuity
2025-06-07 12:57:45 -04:00
Ralph Khreish
ee0be04302 fix: update MCP tool 2025-06-07 13:29:03 +02:00
Ralph Khreish
c0707fc399 chore: upgrade fast mcp to latest version 2025-06-07 13:29:03 +02:00
Ralph Khreish
1ece6f1904 fix: findTasksPath function 2025-06-07 13:29:03 +02:00
github-actions[bot]
f4a9ad1095 chore: rc version bump 2025-06-06 18:51:19 +00:00
Aaron Gabriel Neyer
cba86510d3 Update README.md - Remove trailing commas (#673)
JSON doesn't allow for trailing commas, so these need to be removed in order for this to work
2025-06-05 19:08:24 +02:00
Joe Danziger
86ea6d1dbc Add one-click MCP server installation for Cursor (#671) 2025-06-05 19:08:15 +02:00
Saksham Goel
a22d2a45b5 Fixed the Typo in cursor rules Issue:#675 (#677)
Fixed the typo in the Api keys
2025-06-05 19:06:01 +02:00
Ralph Khreish
d73c8e17ec Merge pull request #661 from eyaltoledano/chore/update.next
Update next from main branch
2025-06-03 18:13:22 +02:00
Ralph Khreish
4f23751d25 chore: update package-lock.json 2025-06-03 18:12:02 +02:00
Ibrahim H.
7d5c028ca0 fix: markdown format (#622) 2025-06-03 15:54:13 +02:00
github-actions[bot]
f18df6da19 Version Packages 2025-06-03 15:14:34 +02:00
github-actions[bot]
1754a31372 Version Packages 2025-06-03 15:13:26 +02:00
Ralph Khreish
3096ccdfb3 chore: add package-lock.json 2025-06-03 15:13:26 +02:00
github-actions[bot]
6464bb11e5 Version Packages 2025-06-03 15:13:26 +02:00
Ralph Khreish
edaa5fe0d5 fix: projectRoot duplicate .taskmaster directory (#655) 2025-06-03 15:12:50 +02:00
Ralph Khreish
41d9dbbe6d Merge pull request #650 from eyaltoledano/changeset-release/main 2025-06-03 01:40:34 +02:00
github-actions[bot]
6e0d866756 Version Packages 2025-06-02 23:26:36 +00:00
Ralph Khreish
926aa61a4e Merge pull request #642 from eyaltoledano/next
Release 0.16.1
2025-06-03 01:26:12 +02:00
Ralph Khreish
9b4168bb4e Fix: MCP log errors (#648) 2025-06-03 01:09:29 +02:00
Ralph Khreish
ad612763ff fix: bedrock set model and other fixes (#641) 2025-06-02 14:44:35 +02:00
Ralph Khreish
293b59bac6 Merge pull request #630 from eyaltoledano/changeset-release/main
Version Packages
2025-06-01 17:49:18 +02:00
Ralph Khreish
1809c4ed7b chore: add package-lock.json 2025-06-01 11:48:11 -04:00
github-actions[bot]
6e406958c1 Version Packages 2025-06-01 15:24:59 +00:00
Ralph Khreish
074b7ec0bc Merge pull request #625 from eyaltoledano/next 2025-06-01 17:24:37 +02:00
Ralph Khreish
e0438c8fb8 chore: cleanup migration-guide 2025-06-01 01:08:31 -04:00
github-actions[bot]
1f6694fb3d chore: rc version bump 2025-06-01 04:20:35 +00:00
Ralph Khreish
b0dfcf345e chore: apply requested changes from next branch (#629) 2025-06-01 06:19:55 +02:00
Ralph Khreish
3f64202c9f feat: Add .taskmaster directory (#619) 2025-05-31 16:21:03 +02:00
Ralph Khreish
669b744ced Feat/add nvmrc (#612)
* feat: Add .nvmrc and align engines to Node 20

* chore: set nvm to 22, engines to 18

* chore: format

* chore: add changeset

---------

Co-authored-by: Amir Golan <amirgolan@Amirs-MacBook-Pro.local>
2025-05-28 15:02:15 +02:00
Nathan Marley
f058543888 Replace prettier with biome (#531) 2025-05-28 14:47:16 +02:00
Ralph Khreish
acd5c1ea3d chore: add contributing.md (#611) 2025-05-28 00:59:14 +02:00
github-actions[bot]
682b54e103 docs: Auto-update and format models.md 2025-05-27 22:42:42 +00:00
Ralph Khreish
6a8a68e1a3 Feat/add.azure.and.other.providers (#607)
* fix: claude-4 not having the right max_tokens

* feat: add bedrock support

* chore: fix package-lock.json

* fix: rename baseUrl to baseURL

* feat: add azure support

* fix: final touches of azure integration

* feat: add google vertex provider

* chore: fix tests and refactor task-manager.test.js

* chore: move task 92 to 94
2025-05-28 00:42:31 +02:00
Ralph Khreish
80735f9e60 feat(config): Implement TASK_MASTER_PROJECT_ROOT support for project root resolution (#604)
* feat(config): Implement TASK_MASTER_PROJECT_ROOT support for project root resolution

- Added support for the TASK_MASTER_PROJECT_ROOT environment variable in MCP configuration, establishing a clear precedence order for project root resolution.
- Updated utility functions to prioritize the environment variable, followed by args.projectRoot and session-based resolution.
- Enhanced error handling and logging for project root determination.
- Introduced new tasks for comprehensive testing and documentation updates related to the new configuration options.

* chore: fix CI issues
2025-05-28 00:32:34 +02:00
github-actions[bot]
48732d5423 docs: Auto-update and format models.md 2025-05-25 22:13:23 -04:00
Eyal Toledano
2d520de269 fix(add-task): removes stdout in add-task which will crash MCP server (#593)
* fix(add-task): fixes an isse in which stdout leaks out of add-task causing the mcp server to crash if used.

* chore: add changeset

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-05-25 22:13:23 -04:00
celgost
b60e1cf835 revamping readme (#522) 2025-05-24 17:21:15 +02:00
Ralph Khreish
d1e45ff50e Merge pull request #589 from eyaltoledano/changeset-release/main
Version Packages
2025-05-24 16:25:26 +02:00
github-actions[bot]
1513858da4 Version Packages 2025-05-24 14:07:53 +00:00
Ralph Khreish
59dcf4bd64 Release 0.15.0
Release 0.15.0
2025-05-24 16:07:24 +02:00
github-actions[bot]
a09ba021c5 chore: rc version bump 2025-05-24 00:44:47 +00:00
Eyal Toledano
e906166141 Merge pull request #567 from eyaltoledano/parse-prd-research
v0.15 improvements & new features
2025-05-23 20:42:41 -04:00
Shrey Paharia
86d8f00af8 Add next task to set status for mcp server (#558) 2025-05-22 11:09:36 +02:00
github-actions[bot]
c882f89a8c Version Packages 2025-05-20 18:40:38 +02:00
538 changed files with 68089 additions and 30488 deletions

View File

@@ -1,15 +0,0 @@
---
'task-master-ai': minor
---
Added comprehensive Ollama model validation and interactive setup support
- **Interactive Setup Enhancement**: Added "Custom Ollama model" option to `task-master models --setup`, matching the existing OpenRouter functionality
- **Live Model Validation**: When setting Ollama models, Taskmaster now validates against the local Ollama instance by querying `/api/tags` endpoint
- **Configurable Endpoints**: Uses the `ollamaBaseUrl` from `.taskmasterconfig` (with role-specific `baseUrl` overrides supported)
- **Robust Error Handling**:
- Detects when Ollama server is not running and provides clear error messages
- Validates model existence and lists available alternatives when model not found
- Graceful fallback behavior for connection issues
- **Full Platform Support**: Both MCP server tools and CLI commands support the new validation
- **Improved User Experience**: Clear feedback during model validation with informative success/error messages

View File

@@ -0,0 +1,5 @@
---
"task-master-ai": patch
---
Recover from `@anthropic-ai/claude-code` JSON truncation bug that caused Task Master to crash when handling large (>8 kB) structured responses. The CLI/SDK still truncates, but Task Master now detects the error, preserves buffered text, and returns a usable response instead of throwing.

View File

@@ -0,0 +1,5 @@
---
"task-master-ai": patch
---
Updating dependency ai-sdk-provider-gemini-cli to 0.0.4 to address breaking change Google made to Gemini CLI and add better 'api-key' in addition to 'gemini-api-key' AI-SDK compatibility.

View File

@@ -1,9 +0,0 @@
---
'task-master-ai': minor
---
Adds and updates supported AI models with costs:
- Added new OpenRouter models: GPT-4.1 series, O3, Codex Mini, Llama 4 Maverick, Llama 4 Scout, Qwen3-235b
- Added Mistral models: Devstral Small, Mistral Nemo
- Updated Ollama models with latest variants: Devstral, Qwen3, Mistral-small3.1, Llama3.3
- Updated Gemini model to latest 2.5 Flash preview version

View File

@@ -1,15 +0,0 @@
---
'task-master-ai': minor
---
Add `--research` flag to parse-prd command, enabling enhanced task generation from PRD files. When used, Taskmaster leverages the research model to:
- Research current technologies and best practices relevant to the project
- Identify technical challenges and security concerns not explicitly mentioned in the PRD
- Include specific library recommendations with version numbers
- Provide more detailed implementation guidance based on industry standards
- Create more accurate dependency relationships between tasks
This results in higher quality, more actionable tasks with minimal additional effort.
*NOTE* That this is an experimental feature. Research models don't typically do great at structured output. You may find some failures when using research mode, so please share your feedback so we can improve this.

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Adjusts default main model model to Claude Sonnet 4. Adjusts default fallback to Claude Sonney 3.7"

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Adds llms-install.md to the root to enable AI agents to programmatically install the Taskmaster MCP server. This is specifically being introduced for the Cline MCP marketplace and will be adjusted over time for other MCP clients as needed.

View File

@@ -1,9 +0,0 @@
---
'task-master-ai': minor
---
This change significantly enhances the `add-task` command's intelligence. When you add a new task, Taskmaster now automatically:
- Analyzes your existing tasks to find those most relevant to your new task's description.
- Provides the AI with detailed context from these relevant tasks.
This results in newly created tasks being more accurately placed within your project's dependency structure, saving you time and any need to update tasks just for dependencies, all without significantly increasing AI costs. You'll get smarter, more connected tasks right from the start.

View File

@@ -0,0 +1,9 @@
---
"task-master-ai": minor
---
Add support for xAI Grok 4 model
- Add grok-4 model to xAI provider with $3/$15 per 1M token pricing
- Enable main, fallback, and research roles for grok-4
- Max tokens set to 131,072 (matching other xAI models)

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Adds AGENTS.md to power Claude Code integration more natively based on Anthropic's best practice and Claude-specific MCP client behaviours. Also adds in advanced workflows that tie Taskmaster commands together into one Claude workflow."

View File

@@ -1,7 +0,0 @@
---
'task-master-ai': minor
---
Enhance analyze-complexity to support analyzing specific task IDs.
- You can now analyze individual tasks or selected task groups by using the new `--id` option with comma-separated IDs, or `--from` and `--to` options to specify a range of tasks.
- The feature intelligently merges analysis results with existing reports, allowing incremental analysis while preserving previous results.

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Fixes issue with force/append flag combinations for parse-prd.

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
You can now add tasks to a newly initialized project without having to parse a prd. This will automatically create the missing tasks.json file and create the first task. Lets you vibe if you want to vibe."

View File

@@ -0,0 +1,8 @@
---
"task-master-ai": minor
---
Add stricter validation and clearer feedback for task priority when adding new tasks
- if a task priority is invalid, it will default to medium
- made taks priority case-insensitive, essentially making HIGH and high the same value

View File

@@ -0,0 +1,5 @@
---
"task-master-ai": minor
---
Add support for MCP Sampling as AI provider, requires no API key, uses the client LLM provider

View File

@@ -0,0 +1,5 @@
---
"task-master-ai": patch
---
Unify and streamline profile system architecture for improved maintainability

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Fixes an issue where the research fallback would attempt to make API calls without checking for a valid API key first. This ensures proper error handling when the main task generation and first fallback both fail. Closes #421 #519.

View File

@@ -0,0 +1,5 @@
---
"task-master-ai": minor
---
Added Groq provider support

View File

@@ -1,29 +0,0 @@
---
'task-master-ai': minor
---
Add move command to enable moving tasks and subtasks within the task hierarchy. This new command supports moving standalone tasks to become subtasks, subtasks to become standalone tasks, and moving subtasks between different parents. The implementation handles circular dependencies, validation, and proper updating of parent-child relationships.
**Usage:**
- CLI command: `task-master move --from=<id> --to=<id>`
- MCP tool: `move_task` with parameters:
- `from`: ID of task/subtask to move (e.g., "5" or "5.2")
- `to`: ID of destination (e.g., "7" or "7.3")
- `file` (optional): Custom path to tasks.json
**Example scenarios:**
- Move task to become subtask: `--from="5" --to="7"`
- Move subtask to standalone task: `--from="5.2" --to="7"`
- Move subtask to different parent: `--from="5.2" --to="7.3"`
- Reorder subtask within same parent: `--from="5.2" --to="5.4"`
- Move multiple tasks at once: `--from="10,11,12" --to="16,17,18"`
- Move task to new ID: `--from="5" --to="25"` (creates a new task with ID 25)
**Multiple Task Support:**
The command supports moving multiple tasks simultaneously by providing comma-separated lists for both `--from` and `--to` parameters. The number of source and destination IDs must match. This is particularly useful for resolving merge conflicts in task files when multiple team members have created tasks on different branches.
**Validation Features:**
- Allows moving tasks to new, non-existent IDs (automatically creates placeholders)
- Prevents moving to existing task IDs that already contain content (to avoid overwriting)
- Validates source tasks exist before attempting to move them
- Ensures proper parent-child relationships are maintained

View File

@@ -0,0 +1,147 @@
# Task Master Commands for Claude Code
Complete guide to using Task Master through Claude Code's slash commands.
## Overview
All Task Master functionality is available through the `/project:tm/` namespace with natural language support and intelligent features.
## Quick Start
```bash
# Install Task Master
/project:tm/setup/quick-install
# Initialize project
/project:tm/init/quick
# Parse requirements
/project:tm/parse-prd requirements.md
# Start working
/project:tm/next
```
## Command Structure
Commands are organized hierarchically to match Task Master's CLI:
- Main commands at `/project:tm/[command]`
- Subcommands for specific operations `/project:tm/[command]/[subcommand]`
- Natural language arguments accepted throughout
## Complete Command Reference
### Setup & Configuration
- `/project:tm/setup/install` - Full installation guide
- `/project:tm/setup/quick-install` - One-line install
- `/project:tm/init` - Initialize project
- `/project:tm/init/quick` - Quick init with -y
- `/project:tm/models` - View AI config
- `/project:tm/models/setup` - Configure AI
### Task Generation
- `/project:tm/parse-prd` - Generate from PRD
- `/project:tm/parse-prd/with-research` - Enhanced parsing
- `/project:tm/generate` - Create task files
### Task Management
- `/project:tm/list` - List with natural language filters
- `/project:tm/list/with-subtasks` - Hierarchical view
- `/project:tm/list/by-status <status>` - Filter by status
- `/project:tm/show <id>` - Task details
- `/project:tm/add-task` - Create task
- `/project:tm/update` - Update tasks
- `/project:tm/remove-task` - Delete task
### Status Management
- `/project:tm/set-status/to-pending <id>`
- `/project:tm/set-status/to-in-progress <id>`
- `/project:tm/set-status/to-done <id>`
- `/project:tm/set-status/to-review <id>`
- `/project:tm/set-status/to-deferred <id>`
- `/project:tm/set-status/to-cancelled <id>`
### Task Analysis
- `/project:tm/analyze-complexity` - AI analysis
- `/project:tm/complexity-report` - View report
- `/project:tm/expand <id>` - Break down task
- `/project:tm/expand/all` - Expand all complex
### Dependencies
- `/project:tm/add-dependency` - Add dependency
- `/project:tm/remove-dependency` - Remove dependency
- `/project:tm/validate-dependencies` - Check issues
- `/project:tm/fix-dependencies` - Auto-fix
### Workflows
- `/project:tm/workflows/smart-flow` - Adaptive workflows
- `/project:tm/workflows/pipeline` - Chain commands
- `/project:tm/workflows/auto-implement` - AI implementation
### Utilities
- `/project:tm/status` - Project dashboard
- `/project:tm/next` - Next task recommendation
- `/project:tm/utils/analyze` - Project analysis
- `/project:tm/learn` - Interactive help
## Key Features
### Natural Language Support
All commands understand natural language:
```
/project:tm/list pending high priority
/project:tm/update mark 23 as done
/project:tm/add-task implement OAuth login
```
### Smart Context
Commands analyze project state and provide intelligent suggestions based on:
- Current task status
- Dependencies
- Team patterns
- Project phase
### Visual Enhancements
- Progress bars and indicators
- Status badges
- Organized displays
- Clear hierarchies
## Common Workflows
### Daily Development
```
/project:tm/workflows/smart-flow morning
/project:tm/next
/project:tm/set-status/to-in-progress <id>
/project:tm/set-status/to-done <id>
```
### Task Breakdown
```
/project:tm/show <id>
/project:tm/expand <id>
/project:tm/list/with-subtasks
```
### Sprint Planning
```
/project:tm/analyze-complexity
/project:tm/workflows/pipeline init → expand/all → status
```
## Migration from Old Commands
| Old | New |
|-----|-----|
| `/project:task-master:list` | `/project:tm/list` |
| `/project:task-master:complete` | `/project:tm/set-status/to-done` |
| `/project:workflows:auto-implement` | `/project:tm/workflows/auto-implement` |
## Tips
1. Use `/project:tm/` + Tab for command discovery
2. Natural language is supported everywhere
3. Commands provide smart defaults
4. Chain commands for automation
5. Check `/project:tm/learn` for interactive help

View File

@@ -0,0 +1,55 @@
Add a dependency between tasks.
Arguments: $ARGUMENTS
Parse the task IDs to establish dependency relationship.
## Adding Dependencies
Creates a dependency where one task must be completed before another can start.
## Argument Parsing
Parse natural language or IDs:
- "make 5 depend on 3" → task 5 depends on task 3
- "5 needs 3" → task 5 depends on task 3
- "5 3" → task 5 depends on task 3
- "5 after 3" → task 5 depends on task 3
## Execution
```bash
task-master add-dependency --id=<task-id> --depends-on=<dependency-id>
```
## Validation
Before adding:
1. **Verify both tasks exist**
2. **Check for circular dependencies**
3. **Ensure dependency makes logical sense**
4. **Warn if creating complex chains**
## Smart Features
- Detect if dependency already exists
- Suggest related dependencies
- Show impact on task flow
- Update task priorities if needed
## Post-Addition
After adding dependency:
1. Show updated dependency graph
2. Identify any newly blocked tasks
3. Suggest task order changes
4. Update project timeline
## Example Flows
```
/project:tm/add-dependency 5 needs 3
→ Task #5 now depends on Task #3
→ Task #5 is now blocked until #3 completes
→ Suggested: Also consider if #5 needs #4
```

View File

@@ -0,0 +1,71 @@
Convert an existing task into a subtask.
Arguments: $ARGUMENTS
Parse parent ID and task ID to convert.
## Task Conversion
Converts an existing standalone task into a subtask of another task.
## Argument Parsing
- "move task 8 under 5"
- "make 8 a subtask of 5"
- "nest 8 in 5"
- "5 8" → make task 8 a subtask of task 5
## Execution
```bash
task-master add-subtask --parent=<parent-id> --task-id=<task-to-convert>
```
## Pre-Conversion Checks
1. **Validation**
- Both tasks exist and are valid
- No circular parent relationships
- Task isn't already a subtask
- Logical hierarchy makes sense
2. **Impact Analysis**
- Dependencies that will be affected
- Tasks that depend on converting task
- Priority alignment needed
- Status compatibility
## Conversion Process
1. Change task ID from "8" to "5.1" (next available)
2. Update all dependency references
3. Inherit parent's context where appropriate
4. Adjust priorities if needed
5. Update time estimates
## Smart Features
- Preserve task history
- Maintain dependencies
- Update all references
- Create conversion log
## Example
```
/project:tm/add-subtask/from-task 5 8
→ Converting: Task #8 becomes subtask #5.1
→ Updated: 3 dependency references
→ Parent task #5 now has 1 subtask
→ Note: Subtask inherits parent's priority
Before: #8 "Implement validation" (standalone)
After: #5.1 "Implement validation" (subtask of #5)
```
## Post-Conversion
- Show new task hierarchy
- List updated dependencies
- Verify project integrity
- Suggest related conversions

View File

@@ -0,0 +1,76 @@
Add a subtask to a parent task.
Arguments: $ARGUMENTS
Parse arguments to create a new subtask or convert existing task.
## Adding Subtasks
Creates subtasks to break down complex parent tasks into manageable pieces.
## Argument Parsing
Flexible natural language:
- "add subtask to 5: implement login form"
- "break down 5 with: setup, implement, test"
- "subtask for 5: handle edge cases"
- "5: validate user input" → adds subtask to task 5
## Execution Modes
### 1. Create New Subtask
```bash
task-master add-subtask --parent=<id> --title="<title>" --description="<desc>"
```
### 2. Convert Existing Task
```bash
task-master add-subtask --parent=<id> --task-id=<existing-id>
```
## Smart Features
1. **Automatic Subtask Generation**
- If title contains "and" or commas, create multiple
- Suggest common subtask patterns
- Inherit parent's context
2. **Intelligent Defaults**
- Priority based on parent
- Appropriate time estimates
- Logical dependencies between subtasks
3. **Validation**
- Check parent task complexity
- Warn if too many subtasks
- Ensure subtask makes sense
## Creation Process
1. Parse parent task context
2. Generate subtask with ID like "5.1"
3. Set appropriate defaults
4. Link to parent task
5. Update parent's time estimate
## Example Flows
```
/project:tm/add-subtask to 5: implement user authentication
→ Created subtask #5.1: "implement user authentication"
→ Parent task #5 now has 1 subtask
→ Suggested next subtasks: tests, documentation
/project:tm/add-subtask 5: setup, implement, test
→ Created 3 subtasks:
#5.1: setup
#5.2: implement
#5.3: test
```
## Post-Creation
- Show updated task hierarchy
- Suggest logical next subtasks
- Update complexity estimates
- Recommend subtask order

View File

@@ -0,0 +1,78 @@
Add new tasks with intelligent parsing and context awareness.
Arguments: $ARGUMENTS
## Smart Task Addition
Parse natural language to create well-structured tasks.
### 1. **Input Understanding**
I'll intelligently parse your request:
- Natural language → Structured task
- Detect priority from keywords (urgent, ASAP, important)
- Infer dependencies from context
- Suggest complexity based on description
- Determine task type (feature, bug, refactor, test, docs)
### 2. **Smart Parsing Examples**
**"Add urgent task to fix login bug"**
→ Title: Fix login bug
→ Priority: high
→ Type: bug
→ Suggested complexity: medium
**"Create task for API documentation after task 23 is done"**
→ Title: API documentation
→ Dependencies: [23]
→ Type: documentation
→ Priority: medium
**"Need to refactor auth module - depends on 12 and 15, high complexity"**
→ Title: Refactor auth module
→ Dependencies: [12, 15]
→ Complexity: high
→ Type: refactor
### 3. **Context Enhancement**
Based on current project state:
- Suggest related existing tasks
- Warn about potential conflicts
- Recommend dependencies
- Propose subtasks if complex
### 4. **Interactive Refinement**
```yaml
Task Preview:
─────────────
Title: [Extracted title]
Priority: [Inferred priority]
Dependencies: [Detected dependencies]
Complexity: [Estimated complexity]
Suggestions:
- Similar task #34 exists, consider as dependency?
- This seems complex, break into subtasks?
- Tasks #45-47 work on same module
```
### 5. **Validation & Creation**
Before creating:
- Validate dependencies exist
- Check for duplicates
- Ensure logical ordering
- Verify task completeness
### 6. **Smart Defaults**
Intelligent defaults based on:
- Task type patterns
- Team conventions
- Historical data
- Current sprint/phase
Result: High-quality tasks from minimal input.

View File

@@ -0,0 +1,121 @@
Analyze task complexity and generate expansion recommendations.
Arguments: $ARGUMENTS
Perform deep analysis of task complexity across the project.
## Complexity Analysis
Uses AI to analyze tasks and recommend which ones need breakdown.
## Execution Options
```bash
task-master analyze-complexity [--research] [--threshold=5]
```
## Analysis Parameters
- `--research` → Use research AI for deeper analysis
- `--threshold=5` → Only flag tasks above complexity 5
- Default: Analyze all pending tasks
## Analysis Process
### 1. **Task Evaluation**
For each task, AI evaluates:
- Technical complexity
- Time requirements
- Dependency complexity
- Risk factors
- Knowledge requirements
### 2. **Complexity Scoring**
Assigns score 1-10 based on:
- Implementation difficulty
- Integration challenges
- Testing requirements
- Unknown factors
- Technical debt risk
### 3. **Recommendations**
For complex tasks:
- Suggest expansion approach
- Recommend subtask breakdown
- Identify risk areas
- Propose mitigation strategies
## Smart Analysis Features
1. **Pattern Recognition**
- Similar task comparisons
- Historical complexity accuracy
- Team velocity consideration
- Technology stack factors
2. **Contextual Factors**
- Team expertise
- Available resources
- Timeline constraints
- Business criticality
3. **Risk Assessment**
- Technical risks
- Timeline risks
- Dependency risks
- Knowledge gaps
## Output Format
```
Task Complexity Analysis Report
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
High Complexity Tasks (>7):
📍 #5 "Implement real-time sync" - Score: 9/10
Factors: WebSocket complexity, state management, conflict resolution
Recommendation: Expand into 5-7 subtasks
Risks: Performance, data consistency
📍 #12 "Migrate database schema" - Score: 8/10
Factors: Data migration, zero downtime, rollback strategy
Recommendation: Expand into 4-5 subtasks
Risks: Data loss, downtime
Medium Complexity Tasks (5-7):
📍 #23 "Add export functionality" - Score: 6/10
Consider expansion if timeline tight
Low Complexity Tasks (<5):
✅ 15 tasks - No expansion needed
Summary:
- Expand immediately: 2 tasks
- Consider expanding: 5 tasks
- Keep as-is: 15 tasks
```
## Actionable Output
For each high-complexity task:
1. Complexity score with reasoning
2. Specific expansion suggestions
3. Risk mitigation approaches
4. Recommended subtask structure
## Integration
Results are:
- Saved to `.taskmaster/reports/complexity-analysis.md`
- Used by expand command
- Inform sprint planning
- Guide resource allocation
## Next Steps
After analysis:
```
/project:tm/expand 5 # Expand specific task
/project:tm/expand/all # Expand all recommended
/project:tm/complexity-report # View detailed report
```

View File

@@ -0,0 +1,93 @@
Clear all subtasks from all tasks globally.
## Global Subtask Clearing
Remove all subtasks across the entire project. Use with extreme caution.
## Execution
```bash
task-master clear-subtasks --all
```
## Pre-Clear Analysis
1. **Project-Wide Summary**
```
Global Subtask Summary
━━━━━━━━━━━━━━━━━━━━
Total parent tasks: 12
Total subtasks: 47
- Completed: 15
- In-progress: 8
- Pending: 24
Work at risk: ~120 hours
```
2. **Critical Warnings**
- In-progress subtasks that will lose work
- Completed subtasks with valuable history
- Complex dependency chains
- Integration test results
## Double Confirmation
```
⚠️ DESTRUCTIVE OPERATION WARNING ⚠️
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
This will remove ALL 47 subtasks from your project
Including 8 in-progress and 15 completed subtasks
This action CANNOT be undone
Type 'CLEAR ALL SUBTASKS' to confirm:
```
## Smart Safeguards
- Require explicit confirmation phrase
- Create automatic backup
- Log all removed data
- Option to export first
## Use Cases
Valid reasons for global clear:
- Project restructuring
- Major pivot in approach
- Starting fresh breakdown
- Switching to different task organization
## Process
1. Full project analysis
2. Create backup file
3. Show detailed impact
4. Require confirmation
5. Execute removal
6. Generate summary report
## Alternative Suggestions
Before clearing all:
- Export subtasks to file
- Clear only pending subtasks
- Clear by task category
- Archive instead of delete
## Post-Clear Report
```
Global Subtask Clear Complete
━━━━━━━━━━━━━━━━━━━━━━━━━━━
Removed: 47 subtasks from 12 tasks
Backup saved: .taskmaster/backup/subtasks-20240115.json
Parent tasks updated: 12
Time estimates adjusted: Yes
Next steps:
- Review updated task list
- Re-expand complex tasks as needed
- Check project timeline
```

View File

@@ -0,0 +1,86 @@
Clear all subtasks from a specific task.
Arguments: $ARGUMENTS (task ID)
Remove all subtasks from a parent task at once.
## Clearing Subtasks
Bulk removal of all subtasks from a parent task.
## Execution
```bash
task-master clear-subtasks --id=<task-id>
```
## Pre-Clear Analysis
1. **Subtask Summary**
- Number of subtasks
- Completion status of each
- Work already done
- Dependencies affected
2. **Impact Assessment**
- Data that will be lost
- Dependencies to be removed
- Effect on project timeline
- Parent task implications
## Confirmation Required
```
Clear Subtasks Confirmation
━━━━━━━━━━━━━━━━━━━━━━━━━
Parent Task: #5 "Implement user authentication"
Subtasks to remove: 4
- #5.1 "Setup auth framework" (done)
- #5.2 "Create login form" (in-progress)
- #5.3 "Add validation" (pending)
- #5.4 "Write tests" (pending)
⚠️ This will permanently delete all subtask data
Continue? (y/n)
```
## Smart Features
- Option to convert to standalone tasks
- Backup task data before clearing
- Preserve completed work history
- Update parent task appropriately
## Process
1. List all subtasks for confirmation
2. Check for in-progress work
3. Remove all subtasks
4. Update parent task
5. Clean up dependencies
## Alternative Options
Suggest alternatives:
- Convert important subtasks to tasks
- Keep completed subtasks
- Archive instead of delete
- Export subtask data first
## Post-Clear
- Show updated parent task
- Recalculate time estimates
- Update task complexity
- Suggest next steps
## Example
```
/project:tm/clear-subtasks 5
→ Found 4 subtasks to remove
→ Warning: Subtask #5.2 is in-progress
→ Cleared all subtasks from task #5
→ Updated parent task estimates
→ Suggestion: Consider re-expanding with better breakdown
```

View File

@@ -0,0 +1,117 @@
Display the task complexity analysis report.
Arguments: $ARGUMENTS
View the detailed complexity analysis generated by analyze-complexity command.
## Viewing Complexity Report
Shows comprehensive task complexity analysis with actionable insights.
## Execution
```bash
task-master complexity-report [--file=<path>]
```
## Report Location
Default: `.taskmaster/reports/complexity-analysis.md`
Custom: Specify with --file parameter
## Report Contents
### 1. **Executive Summary**
```
Complexity Analysis Summary
━━━━━━━━━━━━━━━━━━━━━━━━
Analysis Date: 2024-01-15
Tasks Analyzed: 32
High Complexity: 5 (16%)
Medium Complexity: 12 (37%)
Low Complexity: 15 (47%)
Critical Findings:
- 5 tasks need immediate expansion
- 3 tasks have high technical risk
- 2 tasks block critical path
```
### 2. **Detailed Task Analysis**
For each complex task:
- Complexity score breakdown
- Contributing factors
- Specific risks identified
- Expansion recommendations
- Similar completed tasks
### 3. **Risk Matrix**
Visual representation:
```
Risk vs Complexity Matrix
━━━━━━━━━━━━━━━━━━━━━━━
High Risk | #5(9) #12(8) | #23(6)
Med Risk | #34(7) | #45(5) #67(5)
Low Risk | #78(8) | [15 tasks]
| High Complex | Med Complex
```
### 4. **Recommendations**
**Immediate Actions:**
1. Expand task #5 - Critical path + high complexity
2. Expand task #12 - High risk + dependencies
3. Review task #34 - Consider splitting
**Sprint Planning:**
- Don't schedule multiple high-complexity tasks together
- Ensure expertise available for complex tasks
- Build in buffer time for unknowns
## Interactive Features
When viewing report:
1. **Quick Actions**
- Press 'e' to expand a task
- Press 'd' for task details
- Press 'r' to refresh analysis
2. **Filtering**
- View by complexity level
- Filter by risk factors
- Show only actionable items
3. **Export Options**
- Markdown format
- CSV for spreadsheets
- JSON for tools
## Report Intelligence
- Compares with historical data
- Shows complexity trends
- Identifies patterns
- Suggests process improvements
## Integration
Use report for:
- Sprint planning sessions
- Resource allocation
- Risk assessment
- Team discussions
- Client updates
## Example Usage
```
/project:tm/complexity-report
→ Opens latest analysis
/project:tm/complexity-report --file=archived/2024-01-01.md
→ View historical analysis
After viewing:
/project:tm/expand 5
→ Expand high-complexity task
```

View File

@@ -0,0 +1,51 @@
Expand all pending tasks that need subtasks.
## Bulk Task Expansion
Intelligently expands all tasks that would benefit from breakdown.
## Execution
```bash
task-master expand --all
```
## Smart Selection
Only expands tasks that:
- Are marked as pending
- Have high complexity (>5)
- Lack existing subtasks
- Would benefit from breakdown
## Expansion Process
1. **Analysis Phase**
- Identify expansion candidates
- Group related tasks
- Plan expansion strategy
2. **Batch Processing**
- Expand tasks in logical order
- Maintain consistency
- Preserve relationships
- Optimize for parallelism
3. **Quality Control**
- Ensure subtask quality
- Avoid over-decomposition
- Maintain task coherence
- Update dependencies
## Options
- Add `force` to expand all regardless of complexity
- Add `research` for enhanced AI analysis
## Results
After bulk expansion:
- Summary of tasks expanded
- New subtask count
- Updated complexity metrics
- Suggested task order

View File

@@ -0,0 +1,49 @@
Break down a complex task into subtasks.
Arguments: $ARGUMENTS (task ID)
## Intelligent Task Expansion
Analyzes a task and creates detailed subtasks for better manageability.
## Execution
```bash
task-master expand --id=$ARGUMENTS
```
## Expansion Process
1. **Task Analysis**
- Review task complexity
- Identify components
- Detect technical challenges
- Estimate time requirements
2. **Subtask Generation**
- Create 3-7 subtasks typically
- Each subtask 1-4 hours
- Logical implementation order
- Clear acceptance criteria
3. **Smart Breakdown**
- Setup/configuration tasks
- Core implementation
- Testing components
- Integration steps
- Documentation updates
## Enhanced Features
Based on task type:
- **Feature**: Setup → Implement → Test → Integrate
- **Bug Fix**: Reproduce → Diagnose → Fix → Verify
- **Refactor**: Analyze → Plan → Refactor → Validate
## Post-Expansion
After expansion:
1. Show subtask hierarchy
2. Update time estimates
3. Suggest implementation order
4. Highlight critical path

View File

@@ -0,0 +1,81 @@
Automatically fix dependency issues found during validation.
## Automatic Dependency Repair
Intelligently fixes common dependency problems while preserving project logic.
## Execution
```bash
task-master fix-dependencies
```
## What Gets Fixed
### 1. **Auto-Fixable Issues**
- Remove references to deleted tasks
- Break simple circular dependencies
- Remove self-dependencies
- Clean up duplicate dependencies
### 2. **Smart Resolutions**
- Reorder dependencies to maintain logic
- Suggest task merging for over-dependent tasks
- Flatten unnecessary dependency chains
- Remove redundant transitive dependencies
### 3. **Manual Review Required**
- Complex circular dependencies
- Critical path modifications
- Business logic dependencies
- High-impact changes
## Fix Process
1. **Analysis Phase**
- Run validation check
- Categorize issues by type
- Determine fix strategy
2. **Execution Phase**
- Apply automatic fixes
- Log all changes made
- Preserve task relationships
3. **Verification Phase**
- Re-validate after fixes
- Show before/after comparison
- Highlight manual fixes needed
## Smart Features
- Preserves intended task flow
- Minimal disruption approach
- Creates fix history/log
- Suggests manual interventions
## Output Example
```
Dependency Auto-Fix Report
━━━━━━━━━━━━━━━━━━━━━━━━
Fixed Automatically:
✅ Removed 2 references to deleted tasks
✅ Resolved 1 self-dependency
✅ Cleaned 3 redundant dependencies
Manual Review Needed:
⚠️ Complex circular dependency: #12 → #15 → #18 → #12
Suggestion: Make #15 not depend on #12
⚠️ Task #45 has 8 dependencies
Suggestion: Break into subtasks
Run '/project:tm/validate-dependencies' to verify fixes
```
## Safety
- Preview mode available
- Rollback capability
- Change logging
- No data loss

View File

@@ -0,0 +1,121 @@
Generate individual task files from tasks.json.
## Task File Generation
Creates separate markdown files for each task, perfect for AI agents or documentation.
## Execution
```bash
task-master generate
```
## What It Creates
For each task, generates a file like `task_001.txt`:
```
Task ID: 1
Title: Implement user authentication
Status: pending
Priority: high
Dependencies: []
Created: 2024-01-15
Complexity: 7
## Description
Create a secure user authentication system with login, logout, and session management.
## Details
- Use JWT tokens for session management
- Implement secure password hashing
- Add remember me functionality
- Include password reset flow
## Test Strategy
- Unit tests for auth functions
- Integration tests for login flow
- Security testing for vulnerabilities
- Performance tests for concurrent logins
## Subtasks
1.1 Setup authentication framework (pending)
1.2 Create login endpoints (pending)
1.3 Implement session management (pending)
1.4 Add password reset (pending)
```
## File Organization
Creates structure:
```
.taskmaster/
└── tasks/
├── task_001.txt
├── task_002.txt
├── task_003.txt
└── ...
```
## Smart Features
1. **Consistent Formatting**
- Standardized structure
- Clear sections
- AI-readable format
- Markdown compatible
2. **Contextual Information**
- Full task details
- Related task references
- Progress indicators
- Implementation notes
3. **Incremental Updates**
- Only regenerate changed tasks
- Preserve custom additions
- Track generation timestamp
- Version control friendly
## Use Cases
- **AI Context**: Provide task context to AI assistants
- **Documentation**: Standalone task documentation
- **Archival**: Task history preservation
- **Sharing**: Send specific tasks to team members
- **Review**: Easier task review process
## Generation Options
Based on arguments:
- Filter by status
- Include/exclude completed
- Custom templates
- Different formats
## Post-Generation
```
Task File Generation Complete
━━━━━━━━━━━━━━━━━━━━━━━━━━
Generated: 45 task files
Location: .taskmaster/tasks/
Total size: 156 KB
New files: 5
Updated files: 12
Unchanged: 28
Ready for:
- AI agent consumption
- Version control
- Team distribution
```
## Integration Benefits
- Git-trackable task history
- Easy task sharing
- AI tool compatibility
- Offline task access
- Backup redundancy

View File

@@ -0,0 +1,81 @@
Show help for Task Master commands.
Arguments: $ARGUMENTS
Display help for Task Master commands. If arguments provided, show specific command help.
## Task Master Command Help
### Quick Navigation
Type `/project:tm/` and use tab completion to explore all commands.
### Command Categories
#### 🚀 Setup & Installation
- `/project:tm/setup/install` - Comprehensive installation guide
- `/project:tm/setup/quick-install` - One-line global install
#### 📋 Project Setup
- `/project:tm/init` - Initialize new project
- `/project:tm/init/quick` - Quick setup with auto-confirm
- `/project:tm/models` - View AI configuration
- `/project:tm/models/setup` - Configure AI providers
#### 🎯 Task Generation
- `/project:tm/parse-prd` - Generate tasks from PRD
- `/project:tm/parse-prd/with-research` - Enhanced parsing
- `/project:tm/generate` - Create task files
#### 📝 Task Management
- `/project:tm/list` - List tasks (natural language filters)
- `/project:tm/show <id>` - Display task details
- `/project:tm/add-task` - Create new task
- `/project:tm/update` - Update tasks naturally
- `/project:tm/next` - Get next task recommendation
#### 🔄 Status Management
- `/project:tm/set-status/to-pending <id>`
- `/project:tm/set-status/to-in-progress <id>`
- `/project:tm/set-status/to-done <id>`
- `/project:tm/set-status/to-review <id>`
- `/project:tm/set-status/to-deferred <id>`
- `/project:tm/set-status/to-cancelled <id>`
#### 🔍 Analysis & Breakdown
- `/project:tm/analyze-complexity` - Analyze task complexity
- `/project:tm/expand <id>` - Break down complex task
- `/project:tm/expand/all` - Expand all eligible tasks
#### 🔗 Dependencies
- `/project:tm/add-dependency` - Add task dependency
- `/project:tm/remove-dependency` - Remove dependency
- `/project:tm/validate-dependencies` - Check for issues
#### 🤖 Workflows
- `/project:tm/workflows/smart-flow` - Intelligent workflows
- `/project:tm/workflows/pipeline` - Command chaining
- `/project:tm/workflows/auto-implement` - Auto-implementation
#### 📊 Utilities
- `/project:tm/utils/analyze` - Project analysis
- `/project:tm/status` - Project dashboard
- `/project:tm/learn` - Interactive learning
### Natural Language Examples
```
/project:tm/list pending high priority
/project:tm/update mark all API tasks as done
/project:tm/add-task create login system with OAuth
/project:tm/show current
```
### Getting Started
1. Install: `/project:tm/setup/quick-install`
2. Initialize: `/project:tm/init/quick`
3. Learn: `/project:tm/learn start`
4. Work: `/project:tm/workflows/smart-flow`
For detailed command info: `/project:tm/help <command-name>`

View File

@@ -0,0 +1,130 @@
# Task Master Command Reference
Comprehensive command structure for Task Master integration with Claude Code.
## Command Organization
Commands are organized hierarchically to match Task Master's CLI structure while providing enhanced Claude Code integration.
## Project Setup & Configuration
### `/project:tm/init`
- `index` - Initialize new project (handles PRD files intelligently)
- `quick` - Quick setup with auto-confirmation (-y flag)
### `/project:tm/models`
- `index` - View current AI model configuration
- `setup` - Interactive model configuration
- `set-main` - Set primary generation model
- `set-research` - Set research model
- `set-fallback` - Set fallback model
## Task Generation
### `/project:tm/parse-prd`
- `index` - Generate tasks from PRD document
- `with-research` - Enhanced parsing with research mode
### `/project:tm/generate`
- Create individual task files from tasks.json
## Task Management
### `/project:tm/list`
- `index` - Smart listing with natural language filters
- `with-subtasks` - Include subtasks in hierarchical view
- `by-status` - Filter by specific status
### `/project:tm/set-status`
- `to-pending` - Reset task to pending
- `to-in-progress` - Start working on task
- `to-done` - Mark task complete
- `to-review` - Submit for review
- `to-deferred` - Defer task
- `to-cancelled` - Cancel task
### `/project:tm/sync-readme`
- Export tasks to README.md with formatting
### `/project:tm/update`
- `index` - Update tasks with natural language
- `from-id` - Update multiple tasks from a starting point
- `single` - Update specific task
### `/project:tm/add-task`
- `index` - Add new task with AI assistance
### `/project:tm/remove-task`
- `index` - Remove task with confirmation
## Subtask Management
### `/project:tm/add-subtask`
- `index` - Add new subtask to parent
- `from-task` - Convert existing task to subtask
### `/project:tm/remove-subtask`
- Remove subtask (with optional conversion)
### `/project:tm/clear-subtasks`
- `index` - Clear subtasks from specific task
- `all` - Clear all subtasks globally
## Task Analysis & Breakdown
### `/project:tm/analyze-complexity`
- Analyze and generate expansion recommendations
### `/project:tm/complexity-report`
- Display complexity analysis report
### `/project:tm/expand`
- `index` - Break down specific task
- `all` - Expand all eligible tasks
- `with-research` - Enhanced expansion
## Task Navigation
### `/project:tm/next`
- Intelligent next task recommendation
### `/project:tm/show`
- Display detailed task information
### `/project:tm/status`
- Comprehensive project dashboard
## Dependency Management
### `/project:tm/add-dependency`
- Add task dependency
### `/project:tm/remove-dependency`
- Remove task dependency
### `/project:tm/validate-dependencies`
- Check for dependency issues
### `/project:tm/fix-dependencies`
- Automatically fix dependency problems
## Usage Patterns
### Natural Language
Most commands accept natural language arguments:
```
/project:tm/add-task create user authentication system
/project:tm/update mark all API tasks as high priority
/project:tm/list show blocked tasks
```
### ID-Based Commands
Commands requiring IDs intelligently parse from $ARGUMENTS:
```
/project:tm/show 45
/project:tm/expand 23
/project:tm/set-status/to-done 67
```
### Smart Defaults
Commands provide intelligent defaults and suggestions based on context.

View File

@@ -0,0 +1,50 @@
Initialize a new Task Master project.
Arguments: $ARGUMENTS
Parse arguments to determine initialization preferences.
## Initialization Process
1. **Parse Arguments**
- PRD file path (if provided)
- Project name
- Auto-confirm flag (-y)
2. **Project Setup**
```bash
task-master init
```
3. **Smart Initialization**
- Detect existing project files
- Suggest project name from directory
- Check for git repository
- Verify AI provider configuration
## Configuration Options
Based on arguments:
- `quick` / `-y` → Skip confirmations
- `<file.md>` → Use as PRD after init
- `--name=<name>` → Set project name
- `--description=<desc>` → Set description
## Post-Initialization
After successful init:
1. Show project structure created
2. Verify AI models configured
3. Suggest next steps:
- Parse PRD if available
- Configure AI providers
- Set up git hooks
- Create first tasks
## Integration
If PRD file provided:
```
/project:tm/init my-prd.md
→ Automatically runs parse-prd after init
```

View File

@@ -0,0 +1,46 @@
Quick initialization with auto-confirmation.
Arguments: $ARGUMENTS
Initialize a Task Master project without prompts, accepting all defaults.
## Quick Setup
```bash
task-master init -y
```
## What It Does
1. Creates `.taskmaster/` directory structure
2. Initializes empty `tasks.json`
3. Sets up default configuration
4. Uses directory name as project name
5. Skips all confirmation prompts
## Smart Defaults
- Project name: Current directory name
- Description: "Task Master Project"
- Model config: Existing environment vars
- Task structure: Standard format
## Next Steps
After quick init:
1. Configure AI models if needed:
```
/project:tm/models/setup
```
2. Parse PRD if available:
```
/project:tm/parse-prd <file>
```
3. Or create first task:
```
/project:tm/add-task create initial setup
```
Perfect for rapid project setup!

View File

@@ -0,0 +1,103 @@
Learn about Task Master capabilities through interactive exploration.
Arguments: $ARGUMENTS
## Interactive Task Master Learning
Based on your input, I'll help you discover capabilities:
### 1. **What are you trying to do?**
If $ARGUMENTS contains:
- "start" / "begin" → Show project initialization workflows
- "manage" / "organize" → Show task management commands
- "automate" / "auto" → Show automation workflows
- "analyze" / "report" → Show analysis tools
- "fix" / "problem" → Show troubleshooting commands
- "fast" / "quick" → Show efficiency shortcuts
### 2. **Intelligent Suggestions**
Based on your project state:
**No tasks yet?**
```
You'll want to start with:
1. /project:task-master:init <prd-file>
→ Creates tasks from requirements
2. /project:task-master:parse-prd <file>
→ Alternative task generation
Try: /project:task-master:init demo-prd.md
```
**Have tasks?**
Let me analyze what you might need...
- Many pending tasks? → Learn sprint planning
- Complex tasks? → Learn task expansion
- Daily work? → Learn workflow automation
### 3. **Command Discovery**
**By Category:**
- 📋 Task Management: list, show, add, update, complete
- 🔄 Workflows: auto-implement, sprint-plan, daily-standup
- 🛠️ Utilities: check-health, complexity-report, sync-memory
- 🔍 Analysis: validate-deps, show dependencies
**By Scenario:**
- "I want to see what to work on" → `/project:task-master:next`
- "I need to break this down" → `/project:task-master:expand <id>`
- "Show me everything" → `/project:task-master:status`
- "Just do it for me" → `/project:workflows:auto-implement`
### 4. **Power User Patterns**
**Command Chaining:**
```
/project:task-master:next
/project:task-master:start <id>
/project:workflows:auto-implement
```
**Smart Filters:**
```
/project:task-master:list pending high
/project:task-master:list blocked
/project:task-master:list 1-5 tree
```
**Automation:**
```
/project:workflows:pipeline init → expand-all → sprint-plan
```
### 5. **Learning Path**
Based on your experience level:
**Beginner Path:**
1. init → Create project
2. status → Understand state
3. next → Find work
4. complete → Finish task
**Intermediate Path:**
1. expand → Break down complex tasks
2. sprint-plan → Organize work
3. complexity-report → Understand difficulty
4. validate-deps → Ensure consistency
**Advanced Path:**
1. pipeline → Chain operations
2. smart-flow → Context-aware automation
3. Custom commands → Extend the system
### 6. **Try This Now**
Based on what you asked about, try:
[Specific command suggestion based on $ARGUMENTS]
Want to learn more about a specific command?
Type: /project:help <command-name>

View File

@@ -0,0 +1,39 @@
List tasks filtered by a specific status.
Arguments: $ARGUMENTS
Parse the status from arguments and list only tasks matching that status.
## Status Options
- `pending` - Not yet started
- `in-progress` - Currently being worked on
- `done` - Completed
- `review` - Awaiting review
- `deferred` - Postponed
- `cancelled` - Cancelled
## Execution
Based on $ARGUMENTS, run:
```bash
task-master list --status=$ARGUMENTS
```
## Enhanced Display
For the filtered results:
- Group by priority within the status
- Show time in current status
- Highlight tasks approaching deadlines
- Display blockers and dependencies
- Suggest next actions for each status group
## Intelligent Insights
Based on the status filter:
- **Pending**: Show recommended start order
- **In-Progress**: Display idle time warnings
- **Done**: Show newly unblocked tasks
- **Review**: Indicate review duration
- **Deferred**: Show reactivation criteria
- **Cancelled**: Display impact analysis

View File

@@ -0,0 +1,43 @@
List tasks with intelligent argument parsing.
Parse arguments to determine filters and display options:
- Status: pending, in-progress, done, review, deferred, cancelled
- Priority: high, medium, low (or priority:high)
- Special: subtasks, tree, dependencies, blocked
- IDs: Direct numbers (e.g., "1,3,5" or "1-5")
- Complex: "pending high" = pending AND high priority
Arguments: $ARGUMENTS
Let me parse your request intelligently:
1. **Detect Filter Intent**
- If arguments contain status keywords → filter by status
- If arguments contain priority → filter by priority
- If arguments contain "subtasks" → include subtasks
- If arguments contain "tree" → hierarchical view
- If arguments contain numbers → show specific tasks
- If arguments contain "blocked" → show blocked tasks only
2. **Smart Combinations**
Examples of what I understand:
- "pending high" → pending tasks with high priority
- "done today" → tasks completed today
- "blocked" → tasks with unmet dependencies
- "1-5" → tasks 1 through 5
- "subtasks tree" → hierarchical view with subtasks
3. **Execute Appropriate Query**
Based on parsed intent, run the most specific task-master command
4. **Enhanced Display**
- Group by relevant criteria
- Show most important information first
- Use visual indicators for quick scanning
- Include relevant metrics
5. **Intelligent Suggestions**
Based on what you're viewing, suggest next actions:
- Many pending? → Suggest priority order
- Many blocked? → Show dependency resolution
- Looking at specific tasks? → Show related tasks

View File

@@ -0,0 +1,29 @@
List all tasks including their subtasks in a hierarchical view.
This command shows all tasks with their nested subtasks, providing a complete project overview.
## Execution
Run the Task Master list command with subtasks flag:
```bash
task-master list --with-subtasks
```
## Enhanced Display
I'll organize the output to show:
- Parent tasks with clear indicators
- Nested subtasks with proper indentation
- Status badges for quick scanning
- Dependencies and blockers highlighted
- Progress indicators for tasks with subtasks
## Smart Filtering
Based on the task hierarchy:
- Show completion percentage for parent tasks
- Highlight blocked subtask chains
- Group by functional areas
- Indicate critical path items
This gives you a complete tree view of your project structure.

View File

@@ -0,0 +1,51 @@
View current AI model configuration.
## Model Configuration Display
Shows the currently configured AI providers and models for Task Master.
## Execution
```bash
task-master models
```
## Information Displayed
1. **Main Provider**
- Model ID and name
- API key status (configured/missing)
- Usage: Primary task generation
2. **Research Provider**
- Model ID and name
- API key status
- Usage: Enhanced research mode
3. **Fallback Provider**
- Model ID and name
- API key status
- Usage: Backup when main fails
## Visual Status
```
Task Master AI Model Configuration
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Main: ✅ claude-3-5-sonnet (configured)
Research: ✅ perplexity-sonar (configured)
Fallback: ⚠️ Not configured (optional)
Available Models:
- claude-3-5-sonnet
- gpt-4-turbo
- gpt-3.5-turbo
- perplexity-sonar
```
## Next Actions
Based on configuration:
- If missing API keys → Suggest setup
- If no research model → Explain benefits
- If all configured → Show usage tips

View File

@@ -0,0 +1,51 @@
Run interactive setup to configure AI models.
## Interactive Model Configuration
Guides you through setting up AI providers for Task Master.
## Execution
```bash
task-master models --setup
```
## Setup Process
1. **Environment Check**
- Detect existing API keys
- Show current configuration
- Identify missing providers
2. **Provider Selection**
- Choose main provider (required)
- Select research provider (recommended)
- Configure fallback (optional)
3. **API Key Configuration**
- Prompt for missing keys
- Validate key format
- Test connectivity
- Save configuration
## Smart Recommendations
Based on your needs:
- **For best results**: Claude + Perplexity
- **Budget conscious**: GPT-3.5 + Perplexity
- **Maximum capability**: GPT-4 + Perplexity + Claude fallback
## Configuration Storage
Keys can be stored in:
1. Environment variables (recommended)
2. `.env` file in project
3. Global `.taskmaster/config`
## Post-Setup
After configuration:
- Test each provider
- Show usage examples
- Suggest next steps
- Verify parse-prd works

View File

@@ -0,0 +1,66 @@
Intelligently determine and prepare the next action based on comprehensive context.
This enhanced version of 'next' considers:
- Current task states
- Recent activity
- Time constraints
- Dependencies
- Your working patterns
Arguments: $ARGUMENTS
## Intelligent Next Action
### 1. **Context Gathering**
Let me analyze the current situation:
- Active tasks (in-progress)
- Recently completed tasks
- Blocked tasks
- Time since last activity
- Arguments provided: $ARGUMENTS
### 2. **Smart Decision Tree**
**If you have an in-progress task:**
- Has it been idle > 2 hours? → Suggest resuming or switching
- Near completion? → Show remaining steps
- Blocked? → Find alternative task
**If no in-progress tasks:**
- Unblocked high-priority tasks? → Start highest
- Complex tasks need breakdown? → Suggest expansion
- All tasks blocked? → Show dependency resolution
**Special arguments handling:**
- "quick" → Find task < 2 hours
- "easy" Find low complexity task
- "important" Find high priority regardless of complexity
- "continue" Resume last worked task
### 3. **Preparation Workflow**
Based on selected task:
1. Show full context and history
2. Set up development environment
3. Run relevant tests
4. Open related files
5. Show similar completed tasks
6. Estimate completion time
### 4. **Alternative Suggestions**
Always provide options:
- Primary recommendation
- Quick alternative (< 1 hour)
- Strategic option (unblocks most tasks)
- Learning option (new technology/skill)
### 5. **Workflow Integration**
Seamlessly connect to:
- `/project:task-master:start [selected]`
- `/project:workflows:auto-implement`
- `/project:task-master:expand` (if complex)
- `/project:utils:complexity-report` (if unsure)
The goal: Zero friction from decision to implementation.

View File

@@ -0,0 +1,49 @@
Parse a PRD document to generate tasks.
Arguments: $ARGUMENTS (PRD file path)
## Intelligent PRD Parsing
Analyzes your requirements document and generates a complete task breakdown.
## Execution
```bash
task-master parse-prd --input=$ARGUMENTS
```
## Parsing Process
1. **Document Analysis**
- Extract key requirements
- Identify technical components
- Detect dependencies
- Estimate complexity
2. **Task Generation**
- Create 10-15 tasks by default
- Include implementation tasks
- Add testing tasks
- Include documentation tasks
- Set logical dependencies
3. **Smart Enhancements**
- Group related functionality
- Set appropriate priorities
- Add acceptance criteria
- Include test strategies
## Options
Parse arguments for modifiers:
- Number after filename → `--num-tasks`
- `research` → Use research mode
- `comprehensive` → Generate more tasks
## Post-Generation
After parsing:
1. Display task summary
2. Show dependency graph
3. Suggest task expansion for complex items
4. Recommend sprint planning

View File

@@ -0,0 +1,48 @@
Parse PRD with enhanced research mode for better task generation.
Arguments: $ARGUMENTS (PRD file path)
## Research-Enhanced Parsing
Uses the research AI provider (typically Perplexity) for more comprehensive task generation with current best practices.
## Execution
```bash
task-master parse-prd --input=$ARGUMENTS --research
```
## Research Benefits
1. **Current Best Practices**
- Latest framework patterns
- Security considerations
- Performance optimizations
- Accessibility requirements
2. **Technical Deep Dive**
- Implementation approaches
- Library recommendations
- Architecture patterns
- Testing strategies
3. **Comprehensive Coverage**
- Edge cases consideration
- Error handling tasks
- Monitoring setup
- Deployment tasks
## Enhanced Output
Research mode typically:
- Generates more detailed tasks
- Includes industry standards
- Adds compliance considerations
- Suggests modern tooling
## When to Use
- New technology domains
- Complex requirements
- Regulatory compliance needed
- Best practices crucial

View File

@@ -0,0 +1,62 @@
Remove a dependency between tasks.
Arguments: $ARGUMENTS
Parse the task IDs to remove dependency relationship.
## Removing Dependencies
Removes a dependency relationship, potentially unblocking tasks.
## Argument Parsing
Parse natural language or IDs:
- "remove dependency between 5 and 3"
- "5 no longer needs 3"
- "unblock 5 from 3"
- "5 3" → remove dependency of 5 on 3
## Execution
```bash
task-master remove-dependency --id=<task-id> --depends-on=<dependency-id>
```
## Pre-Removal Checks
1. **Verify dependency exists**
2. **Check impact on task flow**
3. **Warn if it breaks logical sequence**
4. **Show what will be unblocked**
## Smart Analysis
Before removing:
- Show why dependency might have existed
- Check if removal makes tasks executable
- Verify no critical path disruption
- Suggest alternative dependencies
## Post-Removal
After removing:
1. Show updated task status
2. List newly unblocked tasks
3. Update project timeline
4. Suggest next actions
## Safety Features
- Confirm if removing critical dependency
- Show tasks that become immediately actionable
- Warn about potential issues
- Keep removal history
## Example
```
/project:tm/remove-dependency 5 from 3
→ Removed: Task #5 no longer depends on #3
→ Task #5 is now UNBLOCKED and ready to start
→ Warning: Consider if #5 still needs #2 completed first
```

View File

@@ -0,0 +1,84 @@
Remove a subtask from its parent task.
Arguments: $ARGUMENTS
Parse subtask ID to remove, with option to convert to standalone task.
## Removing Subtasks
Remove a subtask and optionally convert it back to a standalone task.
## Argument Parsing
- "remove subtask 5.1"
- "delete 5.1"
- "convert 5.1 to task" → remove and convert
- "5.1 standalone" → convert to standalone
## Execution Options
### 1. Delete Subtask
```bash
task-master remove-subtask --id=<parentId.subtaskId>
```
### 2. Convert to Standalone
```bash
task-master remove-subtask --id=<parentId.subtaskId> --convert
```
## Pre-Removal Checks
1. **Validate Subtask**
- Verify subtask exists
- Check completion status
- Review dependencies
2. **Impact Analysis**
- Other subtasks that depend on it
- Parent task implications
- Data that will be lost
## Removal Process
### For Deletion:
1. Confirm if subtask has work done
2. Update parent task estimates
3. Remove subtask and its data
4. Clean up dependencies
### For Conversion:
1. Assign new standalone task ID
2. Preserve all task data
3. Update dependency references
4. Maintain task history
## Smart Features
- Warn if subtask is in-progress
- Show impact on parent task
- Preserve important data
- Update related estimates
## Example Flows
```
/project:tm/remove-subtask 5.1
→ Warning: Subtask #5.1 is in-progress
→ This will delete all subtask data
→ Parent task #5 will be updated
Confirm deletion? (y/n)
/project:tm/remove-subtask 5.1 convert
→ Converting subtask #5.1 to standalone task #89
→ Preserved: All task data and history
→ Updated: 2 dependency references
→ New task #89 is now independent
```
## Post-Removal
- Update parent task status
- Recalculate estimates
- Show updated hierarchy
- Suggest next actions

View File

@@ -0,0 +1,107 @@
Remove a task permanently from the project.
Arguments: $ARGUMENTS (task ID)
Delete a task and handle all its relationships properly.
## Task Removal
Permanently removes a task while maintaining project integrity.
## Argument Parsing
- "remove task 5"
- "delete 5"
- "5" → remove task 5
- Can include "-y" for auto-confirm
## Execution
```bash
task-master remove-task --id=<id> [-y]
```
## Pre-Removal Analysis
1. **Task Details**
- Current status
- Work completed
- Time invested
- Associated data
2. **Relationship Check**
- Tasks that depend on this
- Dependencies this task has
- Subtasks that will be removed
- Blocking implications
3. **Impact Assessment**
```
Task Removal Impact
━━━━━━━━━━━━━━━━━━
Task: #5 "Implement authentication" (in-progress)
Status: 60% complete (~8 hours work)
Will affect:
- 3 tasks depend on this (will be blocked)
- Has 4 subtasks (will be deleted)
- Part of critical path
⚠️ This action cannot be undone
```
## Smart Warnings
- Warn if task is in-progress
- Show dependent tasks that will be blocked
- Highlight if part of critical path
- Note any completed work being lost
## Removal Process
1. Show comprehensive impact
2. Require confirmation (unless -y)
3. Update dependent task references
4. Remove task and subtasks
5. Clean up orphaned dependencies
6. Log removal with timestamp
## Alternative Actions
Suggest before deletion:
- Mark as cancelled instead
- Convert to documentation
- Archive task data
- Transfer work to another task
## Post-Removal
- List affected tasks
- Show broken dependencies
- Update project statistics
- Suggest dependency fixes
- Recalculate timeline
## Example Flows
```
/project:tm/remove-task 5
→ Task #5 is in-progress with 8 hours logged
→ 3 other tasks depend on this
→ Suggestion: Mark as cancelled instead?
Remove anyway? (y/n)
/project:tm/remove-task 5 -y
→ Removed: Task #5 and 4 subtasks
→ Updated: 3 task dependencies
→ Warning: Tasks #7, #8, #9 now have missing dependency
→ Run /project:tm/fix-dependencies to resolve
```
## Safety Features
- Confirmation required
- Impact preview
- Removal logging
- Suggest alternatives
- No cascade delete of dependents

View File

@@ -0,0 +1,55 @@
Cancel a task permanently.
Arguments: $ARGUMENTS (task ID)
## Cancelling a Task
This status indicates a task is no longer needed and won't be completed.
## Valid Reasons for Cancellation
- Requirements changed
- Feature deprecated
- Duplicate of another task
- Strategic pivot
- Technical approach invalidated
## Pre-Cancellation Checks
1. Confirm no critical dependencies
2. Check for partial implementation
3. Verify cancellation rationale
4. Document lessons learned
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=cancelled
```
## Cancellation Impact
When cancelling:
1. **Dependency Updates**
- Notify dependent tasks
- Update project scope
- Recalculate timelines
2. **Clean-up Actions**
- Remove related branches
- Archive any work done
- Update documentation
- Close related issues
3. **Learning Capture**
- Document why cancelled
- Note what was learned
- Update estimation models
- Prevent future duplicates
## Historical Preservation
- Keep for reference
- Tag with cancellation reason
- Link to replacement if any
- Maintain audit trail

View File

@@ -0,0 +1,47 @@
Defer a task for later consideration.
Arguments: $ARGUMENTS (task ID)
## Deferring a Task
This status indicates a task is valid but not currently actionable or prioritized.
## Valid Reasons for Deferral
- Waiting for external dependencies
- Reprioritized for future sprint
- Blocked by technical limitations
- Resource constraints
- Strategic timing considerations
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=deferred
```
## Deferral Management
When deferring:
1. **Document Reason**
- Capture why it's being deferred
- Set reactivation criteria
- Note any partial work completed
2. **Impact Analysis**
- Check dependent tasks
- Update project timeline
- Notify affected stakeholders
3. **Future Planning**
- Set review reminders
- Tag for specific milestone
- Preserve context for reactivation
- Link to blocking issues
## Smart Tracking
- Monitor deferral duration
- Alert when criteria met
- Prevent scope creep
- Regular review cycles

View File

@@ -0,0 +1,44 @@
Mark a task as completed.
Arguments: $ARGUMENTS (task ID)
## Completing a Task
This command validates task completion and updates project state intelligently.
## Pre-Completion Checks
1. Verify test strategy was followed
2. Check if all subtasks are complete
3. Validate acceptance criteria met
4. Ensure code is committed
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=done
```
## Post-Completion Actions
1. **Update Dependencies**
- Identify newly unblocked tasks
- Update sprint progress
- Recalculate project timeline
2. **Documentation**
- Generate completion summary
- Update CLAUDE.md with learnings
- Log implementation approach
3. **Next Steps**
- Show newly available tasks
- Suggest logical next task
- Update velocity metrics
## Celebration & Learning
- Show impact of completion
- Display unblocked work
- Recognize achievement
- Capture lessons learned

View File

@@ -0,0 +1,36 @@
Start working on a task by setting its status to in-progress.
Arguments: $ARGUMENTS (task ID)
## Starting Work on Task
This command does more than just change status - it prepares your environment for productive work.
## Pre-Start Checks
1. Verify dependencies are met
2. Check if another task is already in-progress
3. Ensure task details are complete
4. Validate test strategy exists
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=in-progress
```
## Environment Setup
After setting to in-progress:
1. Create/checkout appropriate git branch
2. Open relevant documentation
3. Set up test watchers if applicable
4. Display task details and acceptance criteria
5. Show similar completed tasks for reference
## Smart Suggestions
- Estimated completion time based on complexity
- Related files from similar tasks
- Potential blockers to watch for
- Recommended first steps

View File

@@ -0,0 +1,32 @@
Set a task's status to pending.
Arguments: $ARGUMENTS (task ID)
## Setting Task to Pending
This moves a task back to the pending state, useful for:
- Resetting erroneously started tasks
- Deferring work that was prematurely begun
- Reorganizing sprint priorities
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=pending
```
## Validation
Before setting to pending:
- Warn if task is currently in-progress
- Check if this will block other tasks
- Suggest documenting why it's being reset
- Preserve any work already done
## Smart Actions
After setting to pending:
- Update sprint planning if needed
- Notify about freed resources
- Suggest priority reassessment
- Log the status change with context

View File

@@ -0,0 +1,40 @@
Set a task's status to review.
Arguments: $ARGUMENTS (task ID)
## Marking Task for Review
This status indicates work is complete but needs verification before final approval.
## When to Use Review Status
- Code complete but needs peer review
- Implementation done but needs testing
- Documentation written but needs proofreading
- Design complete but needs stakeholder approval
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=review
```
## Review Preparation
When setting to review:
1. **Generate Review Checklist**
- Link to PR/MR if applicable
- Highlight key changes
- Note areas needing attention
- Include test results
2. **Documentation**
- Update task with review notes
- Link relevant artifacts
- Specify reviewers if known
3. **Smart Actions**
- Create review reminders
- Track review duration
- Suggest reviewers based on expertise
- Prepare rollback plan if needed

View File

@@ -0,0 +1,117 @@
Check if Task Master is installed and install it if needed.
This command helps you get Task Master set up globally on your system.
## Detection and Installation Process
1. **Check Current Installation**
```bash
# Check if task-master command exists
which task-master || echo "Task Master not found"
# Check npm global packages
npm list -g task-master-ai
```
2. **System Requirements Check**
```bash
# Verify Node.js is installed
node --version
# Verify npm is installed
npm --version
# Check Node version (need 16+)
```
3. **Install Task Master Globally**
If not installed, run:
```bash
npm install -g task-master-ai
```
4. **Verify Installation**
```bash
# Check version
task-master --version
# Verify command is available
which task-master
```
5. **Initial Setup**
```bash
# Initialize in current directory
task-master init
```
6. **Configure AI Provider**
Ensure you have at least one AI provider API key set:
```bash
# Check current configuration
task-master models --status
# If no API keys found, guide setup
echo "You'll need at least one API key:"
echo "- ANTHROPIC_API_KEY for Claude"
echo "- OPENAI_API_KEY for GPT models"
echo "- PERPLEXITY_API_KEY for research"
echo ""
echo "Set them in your shell profile or .env file"
```
7. **Quick Test**
```bash
# Create a test PRD
echo "Build a simple hello world API" > test-prd.txt
# Try parsing it
task-master parse-prd test-prd.txt -n 3
```
## Troubleshooting
If installation fails:
**Permission Errors:**
```bash
# Try with sudo (macOS/Linux)
sudo npm install -g task-master-ai
# Or fix npm permissions
npm config set prefix ~/.npm-global
export PATH=~/.npm-global/bin:$PATH
```
**Network Issues:**
```bash
# Use different registry
npm install -g task-master-ai --registry https://registry.npmjs.org/
```
**Node Version Issues:**
```bash
# Install Node 18+ via nvm
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash
nvm install 18
nvm use 18
```
## Success Confirmation
Once installed, you should see:
```
✅ Task Master v0.16.2 (or higher) installed
✅ Command 'task-master' available globally
✅ AI provider configured
✅ Ready to use slash commands!
Try: /project:task-master:init your-prd.md
```
## Next Steps
After installation:
1. Run `/project:utils:check-health` to verify setup
2. Configure AI providers with `/project:task-master:models`
3. Start using Task Master commands!

View File

@@ -0,0 +1,22 @@
Quick install Task Master globally if not already installed.
Execute this streamlined installation:
```bash
# Check and install in one command
task-master --version 2>/dev/null || npm install -g task-master-ai
# Verify installation
task-master --version
# Quick setup check
task-master models --status || echo "Note: You'll need to set up an AI provider API key"
```
If you see "command not found" after installation, you may need to:
1. Restart your terminal
2. Or add npm global bin to PATH: `export PATH=$(npm bin -g):$PATH`
Once installed, you can use all the Task Master commands!
Quick test: Run `/project:help` to see all available commands.

View File

@@ -0,0 +1,82 @@
Show detailed task information with rich context and insights.
Arguments: $ARGUMENTS
## Enhanced Task Display
Parse arguments to determine what to show and how.
### 1. **Smart Task Selection**
Based on $ARGUMENTS:
- Number → Show specific task with full context
- "current" → Show active in-progress task(s)
- "next" → Show recommended next task
- "blocked" → Show all blocked tasks with reasons
- "critical" → Show critical path tasks
- Multiple IDs → Comparative view
### 2. **Contextual Information**
For each task, intelligently include:
**Core Details**
- Full task information (id, title, description, details)
- Current status with history
- Test strategy and acceptance criteria
- Priority and complexity analysis
**Relationships**
- Dependencies (what it needs)
- Dependents (what needs it)
- Parent/subtask hierarchy
- Related tasks (similar work)
**Time Intelligence**
- Created/updated timestamps
- Time in current status
- Estimated vs actual time
- Historical completion patterns
### 3. **Visual Enhancements**
```
📋 Task #45: Implement User Authentication
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Status: 🟡 in-progress (2 hours)
Priority: 🔴 High | Complexity: 73/100
Dependencies: ✅ #41, ✅ #42, ⏳ #43 (blocked)
Blocks: #46, #47, #52
Progress: ████████░░ 80% complete
Recent Activity:
- 2h ago: Status changed to in-progress
- 4h ago: Dependency #42 completed
- Yesterday: Task expanded with 3 subtasks
```
### 4. **Intelligent Insights**
Based on task analysis:
- **Risk Assessment**: Complexity vs time remaining
- **Bottleneck Analysis**: Is this blocking critical work?
- **Recommendation**: Suggested approach or concerns
- **Similar Tasks**: How others completed similar work
### 5. **Action Suggestions**
Context-aware next steps:
- If blocked → Show how to unblock
- If complex → Suggest expansion
- If in-progress → Show completion checklist
- If done → Show dependent tasks ready to start
### 6. **Multi-Task View**
When showing multiple tasks:
- Common dependencies
- Optimal completion order
- Parallel work opportunities
- Combined complexity analysis

View File

@@ -0,0 +1,64 @@
Enhanced status command with comprehensive project insights.
Arguments: $ARGUMENTS
## Intelligent Status Overview
### 1. **Executive Summary**
Quick dashboard view:
- 🏃 Active work (in-progress tasks)
- 📊 Progress metrics (% complete, velocity)
- 🚧 Blockers and risks
- ⏱️ Time analysis (estimated vs actual)
- 🎯 Sprint/milestone progress
### 2. **Contextual Analysis**
Based on $ARGUMENTS, focus on:
- "sprint" → Current sprint progress and burndown
- "blocked" → Dependency chains and resolution paths
- "team" → Task distribution and workload
- "timeline" → Schedule adherence and projections
- "risk" → High complexity or overdue items
### 3. **Smart Insights**
**Workflow Health:**
- Idle tasks (in-progress > 24h without updates)
- Bottlenecks (multiple tasks waiting on same dependency)
- Quick wins (low complexity, high impact)
**Predictive Analytics:**
- Completion projections based on velocity
- Risk of missing deadlines
- Recommended task order for optimal flow
### 4. **Visual Intelligence**
Dynamic visualization based on data:
```
Sprint Progress: ████████░░ 80% (16/20 tasks)
Velocity Trend: ↗️ +15% this week
Blocked Tasks: 🔴 3 critical path items
Priority Distribution:
High: ████████ 8 tasks (2 blocked)
Medium: ████░░░░ 4 tasks
Low: ██░░░░░░ 2 tasks
```
### 5. **Actionable Recommendations**
Based on analysis:
1. **Immediate actions** (unblock critical path)
2. **Today's focus** (optimal task sequence)
3. **Process improvements** (recurring patterns)
4. **Resource needs** (skills, time, dependencies)
### 6. **Historical Context**
Compare to previous periods:
- Velocity changes
- Pattern recognition
- Improvement areas
- Success patterns to repeat

View File

@@ -0,0 +1,117 @@
Export tasks to README.md with professional formatting.
Arguments: $ARGUMENTS
Generate a well-formatted README with current task information.
## README Synchronization
Creates or updates README.md with beautifully formatted task information.
## Argument Parsing
Optional filters:
- "pending" → Only pending tasks
- "with-subtasks" → Include subtask details
- "by-priority" → Group by priority
- "sprint" → Current sprint only
## Execution
```bash
task-master sync-readme [--with-subtasks] [--status=<status>]
```
## README Generation
### 1. **Project Header**
```markdown
# Project Name
## 📋 Task Progress
Last Updated: 2024-01-15 10:30 AM
### Summary
- Total Tasks: 45
- Completed: 15 (33%)
- In Progress: 5 (11%)
- Pending: 25 (56%)
```
### 2. **Task Sections**
Organized by status or priority:
- Progress indicators
- Task descriptions
- Dependencies noted
- Time estimates
### 3. **Visual Elements**
- Progress bars
- Status badges
- Priority indicators
- Completion checkmarks
## Smart Features
1. **Intelligent Grouping**
- By feature area
- By sprint/milestone
- By assigned developer
- By priority
2. **Progress Tracking**
- Overall completion
- Sprint velocity
- Burndown indication
- Time tracking
3. **Formatting Options**
- GitHub-flavored markdown
- Task checkboxes
- Collapsible sections
- Table format available
## Example Output
```markdown
## 🚀 Current Sprint
### In Progress
- [ ] 🔄 #5 **Implement user authentication** (60% complete)
- Dependencies: API design (#3 ✅)
- Subtasks: 4 (2 completed)
- Est: 8h / Spent: 5h
### Pending (High Priority)
- [ ]#8 **Create dashboard UI**
- Blocked by: #5
- Complexity: High
- Est: 12h
```
## Customization
Based on arguments:
- Include/exclude sections
- Detail level control
- Custom grouping
- Filter by criteria
## Post-Sync
After generation:
1. Show diff preview
2. Backup existing README
3. Write new content
4. Commit reminder
5. Update timestamp
## Integration
Works well with:
- Git workflows
- CI/CD pipelines
- Project documentation
- Team updates
- Client reports

View File

@@ -0,0 +1,108 @@
Update multiple tasks starting from a specific ID.
Arguments: $ARGUMENTS
Parse starting task ID and update context.
## Bulk Task Updates
Update multiple related tasks based on new requirements or context changes.
## Argument Parsing
- "from 5: add security requirements"
- "5 onwards: update API endpoints"
- "starting at 5: change to use new framework"
## Execution
```bash
task-master update --from=<id> --prompt="<context>"
```
## Update Process
### 1. **Task Selection**
Starting from specified ID:
- Include the task itself
- Include all dependent tasks
- Include related subtasks
- Smart boundary detection
### 2. **Context Application**
AI analyzes the update context and:
- Identifies what needs changing
- Maintains consistency
- Preserves completed work
- Updates related information
### 3. **Intelligent Updates**
- Modify descriptions appropriately
- Update test strategies
- Adjust time estimates
- Revise dependencies if needed
## Smart Features
1. **Scope Detection**
- Find natural task groupings
- Identify related features
- Stop at logical boundaries
- Avoid over-updating
2. **Consistency Maintenance**
- Keep naming conventions
- Preserve relationships
- Update cross-references
- Maintain task flow
3. **Change Preview**
```
Bulk Update Preview
━━━━━━━━━━━━━━━━━━
Starting from: Task #5
Tasks to update: 8 tasks + 12 subtasks
Context: "add security requirements"
Changes will include:
- Add security sections to descriptions
- Update test strategies for security
- Add security-related subtasks where needed
- Adjust time estimates (+20% average)
Continue? (y/n)
```
## Example Updates
```
/project:tm/update/from-id 5: change database to PostgreSQL
→ Analyzing impact starting from task #5
→ Found 6 related tasks to update
→ Updates will maintain consistency
→ Preview changes? (y/n)
Applied updates:
✓ Task #5: Updated connection logic references
✓ Task #6: Changed migration approach
✓ Task #7: Updated query syntax notes
✓ Task #8: Revised testing strategy
✓ Task #9: Updated deployment steps
✓ Task #12: Changed backup procedures
```
## Safety Features
- Preview all changes
- Selective confirmation
- Rollback capability
- Change logging
- Validation checks
## Post-Update
- Summary of changes
- Consistency verification
- Suggest review tasks
- Update timeline if needed

View File

@@ -0,0 +1,72 @@
Update tasks with intelligent field detection and bulk operations.
Arguments: $ARGUMENTS
## Intelligent Task Updates
Parse arguments to determine update intent and execute smartly.
### 1. **Natural Language Processing**
Understand update requests like:
- "mark 23 as done" → Update status to done
- "increase priority of 45" → Set priority to high
- "add dependency on 12 to task 34" → Add dependency
- "tasks 20-25 need review" → Bulk status update
- "all API tasks high priority" → Pattern-based update
### 2. **Smart Field Detection**
Automatically detect what to update:
- Status keywords: done, complete, start, pause, review
- Priority changes: urgent, high, low, deprioritize
- Dependency updates: depends on, blocks, after
- Assignment: assign to, owner, responsible
- Time: estimate, spent, deadline
### 3. **Bulk Operations**
Support for multiple task updates:
```
Examples:
- "complete tasks 12, 15, 18"
- "all pending auth tasks to in-progress"
- "increase priority for tasks blocking 45"
- "defer all documentation tasks"
```
### 4. **Contextual Validation**
Before updating, check:
- Status transitions are valid
- Dependencies don't create cycles
- Priority changes make sense
- Bulk updates won't break project flow
Show preview:
```
Update Preview:
─────────────────
Tasks to update: #23, #24, #25
Change: status → in-progress
Impact: Will unblock tasks #30, #31
Warning: Task #24 has unmet dependencies
```
### 5. **Smart Suggestions**
Based on update:
- Completing task? → Show newly unblocked tasks
- Changing priority? → Show impact on sprint
- Adding dependency? → Check for conflicts
- Bulk update? → Show summary of changes
### 6. **Workflow Integration**
After updates:
- Auto-update dependent task states
- Trigger status recalculation
- Update sprint/milestone progress
- Log changes with context
Result: Flexible, intelligent task updates with safety checks.

View File

@@ -0,0 +1,119 @@
Update a single specific task with new information.
Arguments: $ARGUMENTS
Parse task ID and update details.
## Single Task Update
Precisely update one task with AI assistance to maintain consistency.
## Argument Parsing
Natural language updates:
- "5: add caching requirement"
- "update 5 to include error handling"
- "task 5 needs rate limiting"
- "5 change priority to high"
## Execution
```bash
task-master update-task --id=<id> --prompt="<context>"
```
## Update Types
### 1. **Content Updates**
- Enhance description
- Add requirements
- Clarify details
- Update acceptance criteria
### 2. **Metadata Updates**
- Change priority
- Adjust time estimates
- Update complexity
- Modify dependencies
### 3. **Strategic Updates**
- Revise approach
- Change test strategy
- Update implementation notes
- Adjust subtask needs
## AI-Powered Updates
The AI:
1. **Understands Context**
- Reads current task state
- Identifies update intent
- Maintains consistency
- Preserves important info
2. **Applies Changes**
- Updates relevant fields
- Keeps style consistent
- Adds without removing
- Enhances clarity
3. **Validates Results**
- Checks coherence
- Verifies completeness
- Maintains relationships
- Suggests related updates
## Example Updates
```
/project:tm/update/single 5: add rate limiting
→ Updating Task #5: "Implement API endpoints"
Current: Basic CRUD endpoints
Adding: Rate limiting requirements
Updated sections:
✓ Description: Added rate limiting mention
✓ Details: Added specific limits (100/min)
✓ Test Strategy: Added rate limit tests
✓ Complexity: Increased from 5 to 6
✓ Time Estimate: Increased by 2 hours
Suggestion: Also update task #6 (API Gateway) for consistency?
```
## Smart Features
1. **Incremental Updates**
- Adds without overwriting
- Preserves work history
- Tracks what changed
- Shows diff view
2. **Consistency Checks**
- Related task alignment
- Subtask compatibility
- Dependency validity
- Timeline impact
3. **Update History**
- Timestamp changes
- Track who/what updated
- Reason for update
- Previous versions
## Field-Specific Updates
Quick syntax for specific fields:
- "5 priority:high" → Update priority only
- "5 add-time:4h" → Add to time estimate
- "5 status:review" → Change status
- "5 depends:3,4" → Add dependencies
## Post-Update
- Show updated task
- Highlight changes
- Check related tasks
- Update suggestions
- Timeline adjustments

View File

@@ -0,0 +1,97 @@
Advanced project analysis with actionable insights and recommendations.
Arguments: $ARGUMENTS
## Comprehensive Project Analysis
Multi-dimensional analysis based on requested focus area.
### 1. **Analysis Modes**
Based on $ARGUMENTS:
- "velocity" → Sprint velocity and trends
- "quality" → Code quality metrics
- "risk" → Risk assessment and mitigation
- "dependencies" → Dependency graph analysis
- "team" → Workload and skill distribution
- "architecture" → System design coherence
- Default → Full spectrum analysis
### 2. **Velocity Analytics**
```
📊 Velocity Analysis
━━━━━━━━━━━━━━━━━━━
Current Sprint: 24 points/week ↗️ +20%
Rolling Average: 20 points/week
Efficiency: 85% (17/20 tasks on time)
Bottlenecks Detected:
- Code review delays (avg 4h wait)
- Test environment availability
- Dependency on external team
Recommendations:
1. Implement parallel review process
2. Add staging environment
3. Mock external dependencies
```
### 3. **Risk Assessment**
**Technical Risks**
- High complexity tasks without backup assignee
- Single points of failure in architecture
- Insufficient test coverage in critical paths
- Technical debt accumulation rate
**Project Risks**
- Critical path dependencies
- Resource availability gaps
- Deadline feasibility analysis
- Scope creep indicators
### 4. **Dependency Intelligence**
Visual dependency analysis:
```
Critical Path:
#12 → #15 → #23 → #45 → #50 (20 days)
↘ #24 → #46 ↗
Optimization: Parallelize #15 and #24
Time Saved: 3 days
```
### 5. **Quality Metrics**
**Code Quality**
- Test coverage trends
- Complexity scores
- Technical debt ratio
- Review feedback patterns
**Process Quality**
- Rework frequency
- Bug introduction rate
- Time to resolution
- Knowledge distribution
### 6. **Predictive Insights**
Based on patterns:
- Completion probability by deadline
- Resource needs projection
- Risk materialization likelihood
- Suggested interventions
### 7. **Executive Dashboard**
High-level summary with:
- Health score (0-100)
- Top 3 risks
- Top 3 opportunities
- Recommended actions
- Success probability
Result: Data-driven decisions with clear action paths.

View File

@@ -0,0 +1,71 @@
Validate all task dependencies for issues.
## Dependency Validation
Comprehensive check for dependency problems across the entire project.
## Execution
```bash
task-master validate-dependencies
```
## Validation Checks
1. **Circular Dependencies**
- A depends on B, B depends on A
- Complex circular chains
- Self-dependencies
2. **Missing Dependencies**
- References to non-existent tasks
- Deleted task references
- Invalid task IDs
3. **Logical Issues**
- Completed tasks depending on pending
- Cancelled tasks in dependency chains
- Impossible sequences
4. **Complexity Warnings**
- Over-complex dependency chains
- Too many dependencies per task
- Bottleneck tasks
## Smart Analysis
The validation provides:
- Visual dependency graph
- Critical path analysis
- Bottleneck identification
- Suggested optimizations
## Report Format
```
Dependency Validation Report
━━━━━━━━━━━━━━━━━━━━━━━━━━
✅ No circular dependencies found
⚠️ 2 warnings found:
- Task #23 has 7 dependencies (consider breaking down)
- Task #45 blocks 5 other tasks (potential bottleneck)
❌ 1 error found:
- Task #67 depends on deleted task #66
Critical Path: #1 → #5 → #23 → #45 → #50 (15 days)
```
## Actionable Output
For each issue found:
- Clear description
- Impact assessment
- Suggested fix
- Command to resolve
## Next Steps
After validation:
- Run `/project:tm/fix-dependencies` to auto-fix
- Manually adjust problematic dependencies
- Rerun to verify fixes

View File

@@ -0,0 +1,97 @@
Enhanced auto-implementation with intelligent code generation and testing.
Arguments: $ARGUMENTS
## Intelligent Auto-Implementation
Advanced implementation with context awareness and quality checks.
### 1. **Pre-Implementation Analysis**
Before starting:
- Analyze task complexity and requirements
- Check codebase patterns and conventions
- Identify similar completed tasks
- Assess test coverage needs
- Detect potential risks
### 2. **Smart Implementation Strategy**
Based on task type and context:
**Feature Tasks**
1. Research existing patterns
2. Design component architecture
3. Implement with tests
4. Integrate with system
5. Update documentation
**Bug Fix Tasks**
1. Reproduce issue
2. Identify root cause
3. Implement minimal fix
4. Add regression tests
5. Verify side effects
**Refactoring Tasks**
1. Analyze current structure
2. Plan incremental changes
3. Maintain test coverage
4. Refactor step-by-step
5. Verify behavior unchanged
### 3. **Code Intelligence**
**Pattern Recognition**
- Learn from existing code
- Follow team conventions
- Use preferred libraries
- Match style guidelines
**Test-Driven Approach**
- Write tests first when possible
- Ensure comprehensive coverage
- Include edge cases
- Performance considerations
### 4. **Progressive Implementation**
Step-by-step with validation:
```
Step 1/5: Setting up component structure ✓
Step 2/5: Implementing core logic ✓
Step 3/5: Adding error handling ⚡ (in progress)
Step 4/5: Writing tests ⏳
Step 5/5: Integration testing ⏳
Current: Adding try-catch blocks and validation...
```
### 5. **Quality Assurance**
Automated checks:
- Linting and formatting
- Test execution
- Type checking
- Dependency validation
- Performance analysis
### 6. **Smart Recovery**
If issues arise:
- Diagnostic analysis
- Suggestion generation
- Fallback strategies
- Manual intervention points
- Learning from failures
### 7. **Post-Implementation**
After completion:
- Generate PR description
- Update documentation
- Log lessons learned
- Suggest follow-up tasks
- Update task relationships
Result: High-quality, production-ready implementations.

View File

@@ -0,0 +1,77 @@
Execute a pipeline of commands based on a specification.
Arguments: $ARGUMENTS
## Command Pipeline Execution
Parse pipeline specification from arguments. Supported formats:
### Simple Pipeline
`init → expand-all → sprint-plan`
### Conditional Pipeline
`status → if:pending>10 → sprint-plan → else → next`
### Iterative Pipeline
`for:pending-tasks → expand → complexity-check`
### Smart Pipeline Patterns
**1. Project Setup Pipeline**
```
init [prd] →
expand-all →
complexity-report →
sprint-plan →
show first-sprint
```
**2. Daily Work Pipeline**
```
standup →
if:in-progress → continue →
else → next → start
```
**3. Task Completion Pipeline**
```
complete [id] →
git-commit →
if:blocked-tasks-freed → show-freed →
next
```
**4. Quality Check Pipeline**
```
list in-progress →
for:each → check-idle-time →
if:idle>1day → prompt-update
```
### Pipeline Features
**Variables**
- Store results: `status → $count=pending-count`
- Use in conditions: `if:$count>10`
- Pass between commands: `expand $high-priority-tasks`
**Error Handling**
- On failure: `try:complete → catch:show-blockers`
- Skip on error: `optional:test-run`
- Retry logic: `retry:3:commit`
**Parallel Execution**
- Parallel branches: `[analyze | test | lint]`
- Join results: `parallel → join:report`
### Execution Flow
1. Parse pipeline specification
2. Validate command sequence
3. Execute with state passing
4. Handle conditions and loops
5. Aggregate results
6. Show summary
This enables complex workflows like:
`parse-prd → expand-all → filter:complex>70 → assign:senior → sprint-plan:weighted`

View File

@@ -0,0 +1,55 @@
Execute an intelligent workflow based on current project state and recent commands.
This command analyzes:
1. Recent commands you've run
2. Current project state
3. Time of day / day of week
4. Your working patterns
Arguments: $ARGUMENTS
## Intelligent Workflow Selection
Based on context, I'll determine the best workflow:
### Context Analysis
- Previous command executed
- Current task states
- Unfinished work from last session
- Your typical patterns
### Smart Execution
If last command was:
- `status` → Likely starting work → Run daily standup
- `complete` → Task finished → Find next task
- `list pending` → Planning → Suggest sprint planning
- `expand` → Breaking down work → Show complexity analysis
- `init` → New project → Show onboarding workflow
If no recent commands:
- Morning? → Daily standup workflow
- Many pending tasks? → Sprint planning
- Tasks blocked? → Dependency resolution
- Friday? → Weekly review
### Workflow Composition
I'll chain appropriate commands:
1. Analyze current state
2. Execute primary workflow
3. Suggest follow-up actions
4. Prepare environment for coding
### Learning Mode
This command learns from your patterns:
- Track command sequences
- Note time preferences
- Remember common workflows
- Adapt to your style
Example flows detected:
- Morning: standup → next → start
- After lunch: status → continue task
- End of day: complete → commit → status

View File

@@ -8,11 +8,13 @@
"PERPLEXITY_API_KEY": "PERPLEXITY_API_KEY_HERE",
"OPENAI_API_KEY": "OPENAI_API_KEY_HERE",
"GOOGLE_API_KEY": "GOOGLE_API_KEY_HERE",
"GROQ_API_KEY": "GROQ_API_KEY_HERE",
"XAI_API_KEY": "XAI_API_KEY_HERE",
"OPENROUTER_API_KEY": "OPENROUTER_API_KEY_HERE",
"MISTRAL_API_KEY": "MISTRAL_API_KEY_HERE",
"AZURE_OPENAI_API_KEY": "AZURE_OPENAI_API_KEY_HERE",
"OLLAMA_API_KEY": "OLLAMA_API_KEY_HERE"
"OLLAMA_API_KEY": "OLLAMA_API_KEY_HERE",
"GITHUB_API_KEY": "GITHUB_API_KEY_HERE"
}
}
}

View File

@@ -20,19 +20,21 @@ alwaysApply: false
- **[`task-manager.js`](mdc:scripts/modules/task-manager.js) & `task-manager/` directory: Task Data & Core Logic**
- **Purpose**: Contains core functions for task data manipulation (CRUD), AI interactions, and related logic.
- **Responsibilities**:
- Reading/writing `tasks.json`.
- Reading/writing `tasks.json` with tagged task lists support.
- Implementing functions for task CRUD, parsing PRDs, expanding tasks, updating status, etc.
- **Tagged Task Lists**: Handles task organization across multiple contexts (tags) like "master", branch names, or project phases.
- **Tag Resolution**: Provides backward compatibility by resolving tagged format to legacy format transparently.
- **Delegating AI interactions** to the `ai-services-unified.js` layer.
- Accessing non-AI configuration via `config-manager.js` getters.
- **Key Files**: Individual files within `scripts/modules/task-manager/` handle specific actions (e.g., `add-task.js`, `expand-task.js`).
- **[`dependency-manager.js`](mdc:scripts/modules/dependency-manager.js): Dependency Management**
- **Purpose**: Manages task dependencies.
- **Responsibilities**: Add/remove/validate/fix dependencies.
- **Responsibilities**: Add/remove/validate/fix dependencies across tagged task contexts.
- **[`ui.js`](mdc:scripts/modules/ui.js): User Interface Components**
- **Purpose**: Handles CLI output formatting (tables, colors, boxes, spinners).
- **Responsibilities**: Displaying tasks, reports, progress, suggestions.
- **Responsibilities**: Displaying tasks, reports, progress, suggestions, and migration notices for tagged systems.
- **[`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js): Unified AI Service Layer**
- **Purpose**: Centralized interface for all LLM interactions using Vercel AI SDK.
@@ -53,6 +55,7 @@ alwaysApply: false
- **Responsibilities** (See also: [`utilities.mdc`](mdc:.cursor/rules/utilities.mdc)):
- Reads and merges `.taskmasterconfig` with defaults.
- Provides getters (e.g., `getMainProvider`, `getLogLevel`, `getDefaultSubtasks`) for accessing settings.
- **Tag Configuration**: Manages `global.defaultTag` and `tags` section for tag system settings.
- **Note**: Does **not** store or directly handle API keys (keys are in `.env` or MCP `session.env`).
- **[`utils.js`](mdc:scripts/modules/utils.js): Core Utility Functions**
@@ -62,6 +65,8 @@ alwaysApply: false
- Task utils (`findTaskById`), Dependency utils (`findCycles`).
- API Key Resolution (`resolveEnvVariable`).
- Silent Mode Control (`enableSilentMode`, `disableSilentMode`).
- **Tagged Task Lists**: Silent migration system, tag resolution, current tag management.
- **Migration System**: `performCompleteTagMigration`, `migrateConfigJson`, `createStateJson`.
- **[`mcp-server/`](mdc:mcp-server/): MCP Server Integration**
- **Purpose**: Provides MCP interface using FastMCP.
@@ -71,16 +76,42 @@ alwaysApply: false
- Tool `execute` methods call **direct function wrappers** (`mcp-server/src/core/direct-functions/*.js`), passing the normalized `projectRoot` and other args.
- Direct functions use path utilities (`mcp-server/src/core/utils/`) to resolve paths based on `projectRoot` from session.
- Direct functions implement silent mode, logger wrappers, and call core logic functions from `scripts/modules/`.
- **Tagged Task Lists**: MCP tools fully support the tagged format with complete tag management capabilities.
- Manages MCP caching and response formatting.
- **[`init.js`](mdc:scripts/init.js): Project Initialization Logic**
- **Purpose**: Sets up new Task Master project structure.
- **Responsibilities**: Creates directories, copies templates, manages `package.json`, sets up `.cursor/mcp.json`.
- **Responsibilities**: Creates directories, copies templates, manages `package.json`, sets up `.cursor/mcp.json`, initializes state.json for tagged system.
## Tagged Task Lists System Architecture
**Data Structure**: Task Master now uses a tagged task lists system where the `tasks.json` file contains multiple named task lists as top-level keys:
```json
{
"master": {
"tasks": [/* standard task objects */]
},
"feature-branch": {
"tasks": [/* separate task context */]
}
}
```
**Key Components:**
- **Silent Migration**: Automatically transforms legacy `{"tasks": [...]}` format to tagged format `{"master": {"tasks": [...]}}` on first read
- **Tag Resolution Layer**: Provides 100% backward compatibility by intercepting tagged format and returning legacy format to existing code
- **Configuration Integration**: `global.defaultTag` and `tags` section in config.json manage tag system settings
- **State Management**: `.taskmaster/state.json` tracks current tag, migration status, and tag-branch mappings
- **Migration Notice**: User-friendly notification system for seamless migration experience
**Backward Compatibility**: All existing CLI commands and MCP tools continue to work unchanged. The tag resolution layer ensures that existing code receives the expected legacy format while the underlying storage uses the new tagged structure.
- **Data Flow and Module Dependencies (Updated)**:
- **CLI**: `bin/task-master.js` -> `scripts/dev.js` (loads `.env`) -> `scripts/modules/commands.js` -> Core Logic (`scripts/modules/*`) -> Unified AI Service (`ai-services-unified.js`) -> Provider Adapters -> LLM API.
- **MCP**: External Tool -> `mcp-server/server.js` -> Tool (`mcp-server/src/tools/*`) -> Direct Function (`mcp-server/src/core/direct-functions/*`) -> Core Logic (`scripts/modules/*`) -> Unified AI Service (`ai-services-unified.js`) -> Provider Adapters -> LLM API.
- **CLI**: `bin/task-master.js` -> `scripts/dev.js` (loads `.env`) -> `scripts/modules/commands.js` -> Core Logic (`scripts/modules/*`) -> **Tag Resolution Layer** -> Unified AI Service (`ai-services-unified.js`) -> Provider Adapters -> LLM API.
- **MCP**: External Tool -> `mcp-server/server.js` -> Tool (`mcp-server/src/tools/*`) -> Direct Function (`mcp-server/src/core/direct-functions/*`) -> Core Logic (`scripts/modules/*`) -> **Tag Resolution Layer** -> Unified AI Service (`ai-services-unified.js`) -> Provider Adapters -> LLM API.
- **Configuration**: Core logic needing non-AI settings calls `config-manager.js` getters (passing `session.env` via `explicitRoot` if from MCP). Unified AI Service internally calls `config-manager.js` getters (using `role`) for AI params and `utils.js` (`resolveEnvVariable` with `session.env`) for API keys.
## Silent Mode Implementation Pattern in MCP Direct Functions
@@ -197,6 +228,7 @@ By following these patterns consistently, direct functions will properly manage
- **Integration Tests**: Located in `tests/integration/`, test interactions between modules
- **End-to-End Tests**: Located in `tests/e2e/`, test complete workflows from a user perspective
- **Test Fixtures**: Located in `tests/fixtures/`, provide reusable test data
- **Tagged System Tests**: Test migration, tag resolution, and multi-context functionality
- **Module Design for Testability**:
- **Explicit Dependencies**: Functions accept their dependencies as parameters rather than using globals
@@ -205,12 +237,14 @@ By following these patterns consistently, direct functions will properly manage
- **Clear Module Interfaces**: Each module has well-defined exports that can be mocked in tests
- **Callback Isolation**: Callbacks are defined as separate functions for easier testing
- **Stateless Design**: Modules avoid maintaining internal state where possible
- **Tag Resolution Testing**: Test both tagged and legacy format handling
- **Mock Integration Patterns**:
- **External Libraries**: Libraries like `fs`, `commander`, and `@anthropic-ai/sdk` are mocked at module level
- **Internal Modules**: Application modules are mocked with appropriate spy functions
- **Testing Function Callbacks**: Callbacks are extracted from mock call arguments and tested in isolation
- **UI Elements**: Output functions from `ui.js` are mocked to verify display calls
- **Tagged Data Mocking**: Test both legacy and tagged task data structures
- **Testing Flow**:
- Module dependencies are mocked (following Jest's hoisting behavior)
@@ -218,6 +252,7 @@ By following these patterns consistently, direct functions will properly manage
- Spy functions are set up on module methods
- Tests call the functions under test and verify behavior
- Mocks are reset between test cases to maintain isolation
- Tagged system behavior is tested for both migration and normal operation
- **Benefits of this Architecture**:
@@ -226,8 +261,11 @@ By following these patterns consistently, direct functions will properly manage
- **Mocking Support**: The clear dependency boundaries make mocking straightforward
- **Test Isolation**: Each component can be tested without affecting others
- **Callback Testing**: Function callbacks can be extracted and tested independently
- **Multi-Context Testing**: Tagged system enables testing different task contexts independently
- **Reusability**: Utility functions and UI components can be reused across different parts of the application.
- **Scalability**: New features can be added as new modules or by extending existing ones without significantly impacting other parts of the application.
- **Multi-Context Support**: Tagged task lists enable working across different contexts (branches, environments, phases) without conflicts.
- **Backward Compatibility**: Seamless migration and tag resolution ensure existing workflows continue unchanged.
- **Clarity**: The modular structure provides a clear separation of concerns, making the codebase easier to navigate and understand for developers.
This architectural overview should help AI models understand the structure and organization of the Task Master CLI codebase, enabling them to more effectively assist with code generation, modification, and understanding.
@@ -249,6 +287,7 @@ Follow these steps to add MCP support for an existing Task Master command (see [
- Call core logic.
- Return `{ success: true/false, data/error, fromCache: boolean }`.
- Export the wrapper function.
- **Note**: Tag-aware MCP tools are fully implemented with complete tag management support.
3. **Update `task-master-core.js` with Import/Export**: Add imports/exports for the new `*Direct` function.
@@ -275,12 +314,8 @@ The `initialize_project` command provides a way to set up a new Task Master proj
- **MCP Tool**: `initialize_project`
- **Functionality**:
- Creates necessary directories and files for a new project
- Sets up `tasks.json` and initial task files
- Configures project metadata (name, description, version)
- Handles shell alias creation if requested
- Works in both interactive and non-interactive modes
- Creates necessary directories and files for a new project
- Sets up `tasks.json` and initial task files
- Sets up `tasks.json` with tagged structure and initial task files
- Configures project metadata (name, description, version)
- Initializes state.json for tag system
- Handles shell alias creation if requested
- Works in both interactive and non-interactive modes

View File

@@ -329,6 +329,60 @@ When implementing commands that delete or remove data (like `remove-task` or `re
};
```
## Context-Aware Command Pattern
For AI-powered commands that benefit from project context, follow the research command pattern:
- **Context Integration**:
- ✅ DO: Use `ContextGatherer` utility for multi-source context extraction
- ✅ DO: Support task IDs, file paths, custom context, and project tree
- ✅ DO: Implement fuzzy search for automatic task discovery
- ✅ DO: Display detailed token breakdown for transparency
```javascript
// ✅ DO: Follow this pattern for context-aware commands
programInstance
.command('research')
.description('Perform AI-powered research queries with project context')
.argument('<prompt>', 'Research prompt to investigate')
.option('-i, --id <ids>', 'Comma-separated task/subtask IDs to include as context')
.option('-f, --files <paths>', 'Comma-separated file paths to include as context')
.option('-c, --context <text>', 'Additional custom context')
.option('--tree', 'Include project file tree structure')
.option('-d, --detail <level>', 'Output detail level: low, medium, high', 'medium')
.action(async (prompt, options) => {
// 1. Parameter validation and parsing
const taskIds = options.id ? parseTaskIds(options.id) : [];
const filePaths = options.files ? parseFilePaths(options.files) : [];
// 2. Initialize context gatherer
const projectRoot = findProjectRoot() || '.';
const gatherer = new ContextGatherer(projectRoot, tasksPath);
// 3. Auto-discover relevant tasks if none specified
if (taskIds.length === 0) {
const fuzzySearch = new FuzzyTaskSearch(tasksData.tasks, 'research');
const discoveredIds = fuzzySearch.getTaskIds(
fuzzySearch.findRelevantTasks(prompt)
);
taskIds.push(...discoveredIds);
}
// 4. Gather context with token breakdown
const contextResult = await gatherer.gather({
tasks: taskIds,
files: filePaths,
customContext: options.context,
includeProjectTree: options.projectTree,
format: 'research',
includeTokenCounts: true
});
// 5. Display token breakdown and execute AI call
// Implementation continues...
});
```
## Error Handling
- **Exception Management**:

View File

@@ -0,0 +1,268 @@
---
description: Standardized patterns for gathering and processing context from multiple sources in Task Master commands, particularly for AI-powered features.
globs:
alwaysApply: false
---
# Context Gathering Patterns and Utilities
This document outlines the standardized patterns for gathering and processing context from multiple sources in Task Master commands, particularly for AI-powered features.
## Core Context Gathering Utility
The `ContextGatherer` class (`scripts/modules/utils/contextGatherer.js`) provides a centralized, reusable utility for extracting context from multiple sources:
### **Key Features**
- **Multi-source Context**: Tasks, files, custom text, project file tree
- **Token Counting**: Detailed breakdown using `gpt-tokens` library
- **Format Support**: Different output formats (research, chat, system-prompt)
- **Error Handling**: Graceful handling of missing files, invalid task IDs
- **Performance**: File size limits, depth limits for tree generation
### **Usage Pattern**
```javascript
import { ContextGatherer } from '../utils/contextGatherer.js';
// Initialize with project paths
const gatherer = new ContextGatherer(projectRoot, tasksPath);
// Gather context with detailed token breakdown
const result = await gatherer.gather({
tasks: ['15', '16.2'], // Task and subtask IDs
files: ['src/api.js', 'README.md'], // File paths
customContext: 'Additional context text',
includeProjectTree: true, // Include file tree
format: 'research', // Output format
includeTokenCounts: true // Get detailed token breakdown
});
// Access results
const contextString = result.context;
const tokenBreakdown = result.tokenBreakdown;
```
### **Token Breakdown Structure**
```javascript
{
customContext: { tokens: 150, characters: 800 },
tasks: [
{ id: '15', type: 'task', title: 'Task Title', tokens: 245, characters: 1200 },
{ id: '16.2', type: 'subtask', title: 'Subtask Title', tokens: 180, characters: 900 }
],
files: [
{ path: 'src/api.js', tokens: 890, characters: 4500, size: '4.5 KB' }
],
projectTree: { tokens: 320, characters: 1600 },
total: { tokens: 1785, characters: 8000 }
}
```
## Fuzzy Search Integration
The `FuzzyTaskSearch` class (`scripts/modules/utils/fuzzyTaskSearch.js`) provides intelligent task discovery:
### **Key Features**
- **Semantic Matching**: Uses Fuse.js for similarity scoring
- **Purpose Categories**: Pattern-based task categorization
- **Relevance Scoring**: High/medium/low relevance thresholds
- **Context-Aware**: Different search configurations for different use cases
### **Usage Pattern**
```javascript
import { FuzzyTaskSearch } from '../utils/fuzzyTaskSearch.js';
// Initialize with tasks data and context
const fuzzySearch = new FuzzyTaskSearch(tasksData.tasks, 'research');
// Find relevant tasks
const searchResults = fuzzySearch.findRelevantTasks(query, {
maxResults: 8,
includeRecent: true,
includeCategoryMatches: true
});
// Get task IDs for context gathering
const taskIds = fuzzySearch.getTaskIds(searchResults);
```
## Implementation Patterns for Commands
### **1. Context-Aware Command Structure**
```javascript
// In command action handler
async function commandAction(prompt, options) {
// 1. Parameter validation and parsing
const taskIds = options.id ? parseTaskIds(options.id) : [];
const filePaths = options.files ? parseFilePaths(options.files) : [];
// 2. Initialize context gatherer
const projectRoot = findProjectRoot() || '.';
const tasksPath = path.join(projectRoot, 'tasks', 'tasks.json');
const gatherer = new ContextGatherer(projectRoot, tasksPath);
// 3. Auto-discover relevant tasks if none specified
if (taskIds.length === 0) {
const fuzzySearch = new FuzzyTaskSearch(tasksData.tasks, 'research');
const discoveredIds = fuzzySearch.getTaskIds(
fuzzySearch.findRelevantTasks(prompt)
);
taskIds.push(...discoveredIds);
}
// 4. Gather context with token breakdown
const contextResult = await gatherer.gather({
tasks: taskIds,
files: filePaths,
customContext: options.context,
includeProjectTree: options.projectTree,
format: 'research',
includeTokenCounts: true
});
// 5. Display token breakdown (for CLI)
if (outputFormat === 'text') {
displayDetailedTokenBreakdown(contextResult.tokenBreakdown);
}
// 6. Use context in AI call
const aiResult = await generateTextService(role, session, systemPrompt, userPrompt);
// 7. Display results with enhanced formatting
displayResults(aiResult, contextResult.tokenBreakdown);
}
```
### **2. Token Display Pattern**
```javascript
function displayDetailedTokenBreakdown(tokenBreakdown, systemTokens, userTokens) {
const sections = [];
// Build context breakdown
if (tokenBreakdown.tasks?.length > 0) {
const taskDetails = tokenBreakdown.tasks.map(task =>
`${task.type === 'subtask' ? ' ' : ''}${task.id}: ${task.tokens.toLocaleString()}`
).join('\n');
sections.push(`Tasks (${tokenBreakdown.tasks.reduce((sum, t) => sum + t.tokens, 0).toLocaleString()}):\n${taskDetails}`);
}
if (tokenBreakdown.files?.length > 0) {
const fileDetails = tokenBreakdown.files.map(file =>
` ${file.path}: ${file.tokens.toLocaleString()} (${file.size})`
).join('\n');
sections.push(`Files (${tokenBreakdown.files.reduce((sum, f) => sum + f.tokens, 0).toLocaleString()}):\n${fileDetails}`);
}
// Add prompts breakdown
sections.push(`Prompts: system ${systemTokens.toLocaleString()}, user ${userTokens.toLocaleString()}`);
// Display in clean box
const content = sections.join('\n\n');
console.log(boxen(content, {
title: chalk.cyan('Token Usage'),
padding: { top: 1, bottom: 1, left: 2, right: 2 },
borderStyle: 'round',
borderColor: 'cyan'
}));
}
```
### **3. Enhanced Result Display Pattern**
```javascript
function displayResults(result, query, detailLevel, tokenBreakdown) {
// Header with query info
const header = boxen(
chalk.green.bold('Research Results') + '\n\n' +
chalk.gray('Query: ') + chalk.white(query) + '\n' +
chalk.gray('Detail Level: ') + chalk.cyan(detailLevel),
{
padding: { top: 1, bottom: 1, left: 2, right: 2 },
margin: { top: 1, bottom: 0 },
borderStyle: 'round',
borderColor: 'green'
}
);
console.log(header);
// Process and highlight code blocks
const processedResult = processCodeBlocks(result);
// Main content in clean box
const contentBox = boxen(processedResult, {
padding: { top: 1, bottom: 1, left: 2, right: 2 },
margin: { top: 0, bottom: 1 },
borderStyle: 'single',
borderColor: 'gray'
});
console.log(contentBox);
console.log(chalk.green('✓ Research complete'));
}
```
## Code Block Enhancement
### **Syntax Highlighting Pattern**
```javascript
import { highlight } from 'cli-highlight';
function processCodeBlocks(text) {
return text.replace(/```(\w+)?\n([\s\S]*?)```/g, (match, language, code) => {
try {
const highlighted = highlight(code.trim(), {
language: language || 'javascript',
theme: 'default'
});
return `\n${highlighted}\n`;
} catch (error) {
return `\n${code.trim()}\n`;
}
});
}
```
## Integration Guidelines
### **When to Use Context Gathering**
- ✅ **DO**: Use for AI-powered commands that benefit from project context
- ✅ **DO**: Use when users might want to reference specific tasks or files
- ✅ **DO**: Use for research, analysis, or generation commands
- ❌ **DON'T**: Use for simple CRUD operations that don't need AI context
### **Performance Considerations**
- ✅ **DO**: Set reasonable file size limits (50KB default)
- ✅ **DO**: Limit project tree depth (3-5 levels)
- ✅ **DO**: Provide token counts to help users understand context size
- ✅ **DO**: Allow users to control what context is included
### **Error Handling**
- ✅ **DO**: Gracefully handle missing files with warnings
- ✅ **DO**: Validate task IDs and provide helpful error messages
- ✅ **DO**: Continue processing even if some context sources fail
- ✅ **DO**: Provide fallback behavior when context gathering fails
### **Future Command Integration**
Commands that should consider adopting this pattern:
- `analyze-complexity` - Could benefit from file context
- `expand-task` - Could use related task context
- `update-task` - Could reference similar tasks for consistency
- `add-task` - Could use project context for better task generation
## Export Patterns
### **Context Gatherer Module**
```javascript
export {
ContextGatherer,
createContextGatherer // Factory function
};
```
### **Fuzzy Search Module**
```javascript
export {
FuzzyTaskSearch,
PURPOSE_CATEGORIES,
RELEVANCE_THRESHOLDS
};
```
This context gathering system provides a foundation for building more intelligent, context-aware commands that can leverage project knowledge to provide better AI-powered assistance.

View File

@@ -1,23 +1,205 @@
---
description: Guide for using Task Master to manage task-driven development workflows
description: Guide for using Taskmaster to manage task-driven development workflows
globs: **/*
alwaysApply: true
---
# Task Master Development Workflow
This guide outlines the typical process for using Task Master to manage software development projects.
# Taskmaster Development Workflow
This guide outlines the standard process for using Taskmaster to manage software development projects. It is written as a set of instructions for you, the AI agent.
- **Your Default Stance**: For most projects, the user can work directly within the `master` task context. Your initial actions should operate on this default context unless a clear pattern for multi-context work emerges.
- **Your Goal**: Your role is to elevate the user's workflow by intelligently introducing advanced features like **Tagged Task Lists** when you detect the appropriate context. Do not force tags on the user; suggest them as a helpful solution to a specific need.
## The Basic Loop
The fundamental development cycle you will facilitate is:
1. **`list`**: Show the user what needs to be done.
2. **`next`**: Help the user decide what to work on.
3. **`show <id>`**: Provide details for a specific task.
4. **`expand <id>`**: Break down a complex task into smaller, manageable subtasks.
5. **Implement**: The user writes the code and tests.
6. **`update-subtask`**: Log progress and findings on behalf of the user.
7. **`set-status`**: Mark tasks and subtasks as `done` as work is completed.
8. **Repeat**.
All your standard command executions should operate on the user's current task context, which defaults to `master`.
---
## Standard Development Workflow Process
### Simple Workflow (Default Starting Point)
For new projects or when users are getting started, operate within the `master` tag context:
- Start new projects by running `initialize_project` tool / `task-master init` or `parse_prd` / `task-master parse-prd --input='<prd-file.txt>'` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to generate initial tasks.json with tagged structure
- Configure rule sets during initialization with `--rules` flag (e.g., `task-master init --rules cursor,windsurf`) or manage them later with `task-master rules add/remove` commands
- Begin coding sessions with `get_tasks` / `task-master list` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to see current tasks, status, and IDs
- Determine the next task to work on using `next_task` / `task-master next` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc))
- Analyze task complexity with `analyze_project_complexity` / `task-master analyze-complexity --research` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) before breaking down tasks
- Review complexity report using `complexity_report` / `task-master complexity-report` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc))
- Select tasks based on dependencies (all marked 'done'), priority level, and ID order
- View specific task details using `get_task` / `task-master show <id>` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to understand implementation requirements
- Break down complex tasks using `expand_task` / `task-master expand --id=<id> --force --research` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) with appropriate flags like `--force` (to replace existing subtasks) and `--research`
- Implement code following task details, dependencies, and project standards
- Mark completed tasks with `set_task_status` / `task-master set-status --id=<id> --status=done` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc))
- Update dependent tasks when implementation differs from original plan using `update` / `task-master update --from=<id> --prompt="..."` or `update_task` / `task-master update-task --id=<id> --prompt="..."` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc))
---
## Leveling Up: Agent-Led Multi-Context Workflows
While the basic workflow is powerful, your primary opportunity to add value is by identifying when to introduce **Tagged Task Lists**. These patterns are your tools for creating a more organized and efficient development environment for the user, especially if you detect agentic or parallel development happening across the same session.
**Critical Principle**: Most users should never see a difference in their experience. Only introduce advanced workflows when you detect clear indicators that the project has evolved beyond simple task management.
### When to Introduce Tags: Your Decision Patterns
Here are the patterns to look for. When you detect one, you should propose the corresponding workflow to the user.
#### Pattern 1: Simple Git Feature Branching
This is the most common and direct use case for tags.
- **Trigger**: The user creates a new git branch (e.g., `git checkout -b feature/user-auth`).
- **Your Action**: Propose creating a new tag that mirrors the branch name to isolate the feature's tasks from `master`.
- **Your Suggested Prompt**: *"I see you've created a new branch named 'feature/user-auth'. To keep all related tasks neatly organized and separate from your main list, I can create a corresponding task tag for you. This helps prevent merge conflicts in your `tasks.json` file later. Shall I create the 'feature-user-auth' tag?"*
- **Tool to Use**: `task-master add-tag --from-branch`
#### Pattern 2: Team Collaboration
- **Trigger**: The user mentions working with teammates (e.g., "My teammate Alice is handling the database schema," or "I need to review Bob's work on the API.").
- **Your Action**: Suggest creating a separate tag for the user's work to prevent conflicts with shared master context.
- **Your Suggested Prompt**: *"Since you're working with Alice, I can create a separate task context for your work to avoid conflicts. This way, Alice can continue working with the master list while you have your own isolated context. When you're ready to merge your work, we can coordinate the tasks back to master. Shall I create a tag for your current work?"*
- **Tool to Use**: `task-master add-tag my-work --copy-from-current --description="My tasks while collaborating with Alice"`
#### Pattern 3: Experiments or Risky Refactors
- **Trigger**: The user wants to try something that might not be kept (e.g., "I want to experiment with switching our state management library," or "Let's refactor the old API module, but I want to keep the current tasks as a reference.").
- **Your Action**: Propose creating a sandboxed tag for the experimental work.
- **Your Suggested Prompt**: *"This sounds like a great experiment. To keep these new tasks separate from our main plan, I can create a temporary 'experiment-zustand' tag for this work. If we decide not to proceed, we can simply delete the tag without affecting the main task list. Sound good?"*
- **Tool to Use**: `task-master add-tag experiment-zustand --description="Exploring Zustand migration"`
#### Pattern 4: Large Feature Initiatives (PRD-Driven)
This is a more structured approach for significant new features or epics.
- **Trigger**: The user describes a large, multi-step feature that would benefit from a formal plan.
- **Your Action**: Propose a comprehensive, PRD-driven workflow.
- **Your Suggested Prompt**: *"This sounds like a significant new feature. To manage this effectively, I suggest we create a dedicated task context for it. Here's the plan: I'll create a new tag called 'feature-xyz', then we can draft a Product Requirements Document (PRD) together to scope the work. Once the PRD is ready, I'll automatically generate all the necessary tasks within that new tag. How does that sound?"*
- **Your Implementation Flow**:
1. **Create an empty tag**: `task-master add-tag feature-xyz --description "Tasks for the new XYZ feature"`. You can also start by creating a git branch if applicable, and then create the tag from that branch.
2. **Collaborate & Create PRD**: Work with the user to create a detailed PRD file (e.g., `.taskmaster/docs/feature-xyz-prd.txt`).
3. **Parse PRD into the new tag**: `task-master parse-prd .taskmaster/docs/feature-xyz-prd.txt --tag feature-xyz`
4. **Prepare the new task list**: Follow up by suggesting `analyze-complexity` and `expand-all` for the newly created tasks within the `feature-xyz` tag.
#### Pattern 5: Version-Based Development
Tailor your approach based on the project maturity indicated by tag names.
- **Prototype/MVP Tags** (`prototype`, `mvp`, `poc`, `v0.x`):
- **Your Approach**: Focus on speed and functionality over perfection
- **Task Generation**: Create tasks that emphasize "get it working" over "get it perfect"
- **Complexity Level**: Lower complexity, fewer subtasks, more direct implementation paths
- **Research Prompts**: Include context like "This is a prototype - prioritize speed and basic functionality over optimization"
- **Example Prompt Addition**: *"Since this is for the MVP, I'll focus on tasks that get core functionality working quickly rather than over-engineering."*
- **Production/Mature Tags** (`v1.0+`, `production`, `stable`):
- **Your Approach**: Emphasize robustness, testing, and maintainability
- **Task Generation**: Include comprehensive error handling, testing, documentation, and optimization
- **Complexity Level**: Higher complexity, more detailed subtasks, thorough implementation paths
- **Research Prompts**: Include context like "This is for production - prioritize reliability, performance, and maintainability"
- **Example Prompt Addition**: *"Since this is for production, I'll ensure tasks include proper error handling, testing, and documentation."*
### Advanced Workflow (Tag-Based & PRD-Driven)
**When to Transition**: Recognize when the project has evolved (or has initiated a project which existing code) beyond simple task management. Look for these indicators:
- User mentions teammates or collaboration needs
- Project has grown to 15+ tasks with mixed priorities
- User creates feature branches or mentions major initiatives
- User initializes Taskmaster on an existing, complex codebase
- User describes large features that would benefit from dedicated planning
**Your Role in Transition**: Guide the user to a more sophisticated workflow that leverages tags for organization and PRDs for comprehensive planning.
#### Master List Strategy (High-Value Focus)
Once you transition to tag-based workflows, the `master` tag should ideally contain only:
- **High-level deliverables** that provide significant business value
- **Major milestones** and epic-level features
- **Critical infrastructure** work that affects the entire project
- **Release-blocking** items
**What NOT to put in master**:
- Detailed implementation subtasks (these go in feature-specific tags' parent tasks)
- Refactoring work (create dedicated tags like `refactor-auth`)
- Experimental features (use `experiment-*` tags)
- Team member-specific tasks (use person-specific tags)
#### PRD-Driven Feature Development
**For New Major Features**:
1. **Identify the Initiative**: When user describes a significant feature
2. **Create Dedicated Tag**: `add_tag feature-[name] --description="[Feature description]"`
3. **Collaborative PRD Creation**: Work with user to create comprehensive PRD in `.taskmaster/docs/feature-[name]-prd.txt`
4. **Parse & Prepare**:
- `parse_prd .taskmaster/docs/feature-[name]-prd.txt --tag=feature-[name]`
- `analyze_project_complexity --tag=feature-[name] --research`
- `expand_all --tag=feature-[name] --research`
5. **Add Master Reference**: Create a high-level task in `master` that references the feature tag
**For Existing Codebase Analysis**:
When users initialize Taskmaster on existing projects:
1. **Codebase Discovery**: Use your native tools for producing deep context about the code base. You may use `research` tool with `--tree` and `--files` to collect up to date information using the existing architecture as context.
2. **Collaborative Assessment**: Work with user to identify improvement areas, technical debt, or new features
3. **Strategic PRD Creation**: Co-author PRDs that include:
- Current state analysis (based on your codebase research)
- Proposed improvements or new features
- Implementation strategy considering existing code
4. **Tag-Based Organization**: Parse PRDs into appropriate tags (`refactor-api`, `feature-dashboard`, `tech-debt`, etc.)
5. **Master List Curation**: Keep only the most valuable initiatives in master
The parse-prd's `--append` flag enables the user to parse multiple PRDs within tags or across tags. PRDs should be focused and the number of tasks they are parsed into should be strategically chosen relative to the PRD's complexity and level of detail.
### Workflow Transition Examples
**Example 1: Simple → Team-Based**
```
User: "Alice is going to help with the API work"
Your Response: "Great! To avoid conflicts, I'll create a separate task context for your work. Alice can continue with the master list while you work in your own context. When you're ready to merge, we can coordinate the tasks back together."
Action: add_tag my-api-work --copy-from-current --description="My API tasks while collaborating with Alice"
```
**Example 2: Simple → PRD-Driven**
```
User: "I want to add a complete user dashboard with analytics, user management, and reporting"
Your Response: "This sounds like a major feature that would benefit from detailed planning. Let me create a dedicated context for this work and we can draft a PRD together to ensure we capture all requirements."
Actions:
1. add_tag feature-dashboard --description="User dashboard with analytics and management"
2. Collaborate on PRD creation
3. parse_prd dashboard-prd.txt --tag=feature-dashboard
4. Add high-level "User Dashboard" task to master
```
**Example 3: Existing Project → Strategic Planning**
```
User: "I just initialized Taskmaster on my existing React app. It's getting messy and I want to improve it."
Your Response: "Let me research your codebase to understand the current architecture, then we can create a strategic plan for improvements."
Actions:
1. research "Current React app architecture and improvement opportunities" --tree --files=src/
2. Collaborate on improvement PRD based on findings
3. Create tags for different improvement areas (refactor-components, improve-state-management, etc.)
4. Keep only major improvement initiatives in master
```
---
## Primary Interaction: MCP Server vs. CLI
Task Master offers two primary ways to interact:
Taskmaster offers two primary ways to interact:
1. **MCP Server (Recommended for Integrated Tools)**:
- For AI agents and integrated development environments (like Cursor), interacting via the **MCP server is the preferred method**.
- The MCP server exposes Task Master functionality through a set of tools (e.g., `get_tasks`, `add_subtask`).
- The MCP server exposes Taskmaster functionality through a set of tools (e.g., `get_tasks`, `add_subtask`).
- This method offers better performance, structured data exchange, and richer error handling compared to CLI parsing.
- Refer to [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc) for details on the MCP architecture and available tools.
- A comprehensive list and description of MCP tools and their corresponding CLI commands can be found in [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc).
- **Restart the MCP server** if core logic in `scripts/modules` or MCP tool/direct function definitions change.
- **Note**: MCP tools fully support tagged task lists with complete tag management capabilities.
2. **`task-master` CLI (For Users & Fallback)**:
- The global `task-master` command provides a user-friendly interface for direct terminal interaction.
@@ -25,31 +207,17 @@ Task Master offers two primary ways to interact:
- Install globally with `npm install -g task-master-ai` or use locally via `npx task-master-ai ...`.
- The CLI commands often mirror the MCP tools (e.g., `task-master list` corresponds to `get_tasks`).
- Refer to [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc) for a detailed command reference.
- **Tagged Task Lists**: CLI fully supports the new tagged system with seamless migration.
## Standard Development Workflow Process
## How the Tag System Works (For Your Reference)
- Start new projects by running `initialize_project` tool / `task-master init` or `parse_prd` / `task-master parse-prd --input='<prd-file.txt>'` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to generate initial tasks.json
- Begin coding sessions with `get_tasks` / `task-master list` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to see current tasks, status, and IDs
- Determine the next task to work on using `next_task` / `task-master next` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)).
- Analyze task complexity with `analyze_project_complexity` / `task-master analyze-complexity --research` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) before breaking down tasks
- Review complexity report using `complexity_report` / `task-master complexity-report` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)).
- Select tasks based on dependencies (all marked 'done'), priority level, and ID order
- Clarify tasks by checking task files in tasks/ directory or asking for user input
- View specific task details using `get_task` / `task-master show <id>` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to understand implementation requirements
- Break down complex tasks using `expand_task` / `task-master expand --id=<id> --force --research` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) with appropriate flags like `--force` (to replace existing subtasks) and `--research`.
- Clear existing subtasks if needed using `clear_subtasks` / `task-master clear-subtasks --id=<id>` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) before regenerating
- Implement code following task details, dependencies, and project standards
- Verify tasks according to test strategies before marking as complete (See [`tests.mdc`](mdc:.cursor/rules/tests.mdc))
- Mark completed tasks with `set_task_status` / `task-master set-status --id=<id> --status=done` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc))
- Update dependent tasks when implementation differs from original plan using `update` / `task-master update --from=<id> --prompt="..."` or `update_task` / `task-master update-task --id=<id> --prompt="..."` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc))
- Add new tasks discovered during implementation using `add_task` / `task-master add-task --prompt="..." --research` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)).
- Add new subtasks as needed using `add_subtask` / `task-master add-subtask --parent=<id> --title="..."` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)).
- Append notes or details to subtasks using `update_subtask` / `task-master update-subtask --id=<subtaskId> --prompt='Add implementation notes here...\nMore details...'` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)).
- Generate task files with `generate` / `task-master generate` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) after updating tasks.json
- Maintain valid dependency structure with `add_dependency`/`remove_dependency` tools or `task-master add-dependency`/`remove-dependency` commands, `validate_dependencies` / `task-master validate-dependencies`, and `fix_dependencies` / `task-master fix-dependencies` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) when needed
- Respect dependency chains and task priorities when selecting work
- Report progress regularly using `get_tasks` / `task-master list`
- Reorganize tasks as needed using `move_task` / `task-master move --from=<id> --to=<id>` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to change task hierarchy or ordering
- **Data Structure**: Tasks are organized into separate contexts (tags) like "master", "feature-branch", or "v2.0".
- **Silent Migration**: Existing projects automatically migrate to use a "master" tag with zero disruption.
- **Context Isolation**: Tasks in different tags are completely separate. Changes in one tag do not affect any other tag.
- **Manual Control**: The user is always in control. There is no automatic switching. You facilitate switching by using `use-tag <name>`.
- **Full CLI & MCP Support**: All tag management commands are available through both the CLI and MCP tools for you to use. Refer to [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc) for a full command list.
---
## Task Complexity Analysis
@@ -104,12 +272,13 @@ Task Master offers two primary ways to interact:
Taskmaster configuration is managed through two main mechanisms:
1. **`.taskmasterconfig` File (Primary):**
1. **`.taskmaster/config.json` File (Primary):**
* Located in the project root directory.
* Stores most configuration settings: AI model selections (main, research, fallback), parameters (max tokens, temperature), logging level, default subtasks/priority, project name, etc.
* **Tagged System Settings**: Includes `global.defaultTag` (defaults to "master") and `tags` section for tag management configuration.
* **Managed via `task-master models --setup` command.** Do not edit manually unless you know what you are doing.
* **View/Set specific models via `task-master models` command or `models` MCP tool.**
* Created automatically when you run `task-master models --setup` for the first time.
* Created automatically when you run `task-master models --setup` for the first time or during tagged system migration.
2. **Environment Variables (`.env` / `mcp.json`):**
* Used **only** for sensitive API keys and specific endpoint URLs.
@@ -117,10 +286,26 @@ Taskmaster configuration is managed through two main mechanisms:
* For MCP/Cursor integration, configure these keys in the `env` section of `.cursor/mcp.json`.
* Available keys/variables: See `assets/env.example` or the Configuration section in the command reference (previously linked to `taskmaster.mdc`).
3. **`.taskmaster/state.json` File (Tagged System State):**
* Tracks current tag context and migration status.
* Automatically created during tagged system migration.
* Contains: `currentTag`, `lastSwitched`, `migrationNoticeShown`.
**Important:** Non-API key settings (like model selections, `MAX_TOKENS`, `TASKMASTER_LOG_LEVEL`) are **no longer configured via environment variables**. Use the `task-master models` command (or `--setup` for interactive configuration) or the `models` MCP tool.
**If AI commands FAIL in MCP** verify that the API key for the selected provider is present in the `env` section of `.cursor/mcp.json`.
**If AI commands FAIL in CLI** verify that the API key for the selected provider is present in the `.env` file in the root of the project.
## Rules Management
Taskmaster supports multiple AI coding assistant rule sets that can be configured during project initialization or managed afterward:
- **Available Profiles**: Claude Code, Cline, Codex, Cursor, Roo Code, Trae, Windsurf (claude, cline, codex, cursor, roo, trae, windsurf)
- **During Initialization**: Use `task-master init --rules cursor,windsurf` to specify which rule sets to include
- **After Initialization**: Use `task-master rules add <profiles>` or `task-master rules remove <profiles>` to manage rule sets
- **Interactive Setup**: Use `task-master rules setup` to launch an interactive prompt for selecting rule profiles
- **Default Behavior**: If no `--rules` flag is specified during initialization, all available rule profiles are included
- **Rule Structure**: Each profile creates its own directory (e.g., `.cursor/rules`, `.roo/rules`) with appropriate configuration files
## Determining the Next Task
- Run `next_task` / `task-master next` to show the next task to work on.

View File

@@ -0,0 +1,404 @@
---
description: Git workflow integrated with Task Master for feature development and collaboration
globs: "**/*"
alwaysApply: true
---
# Git Workflow with Task Master Integration
## **Branch Strategy**
### **Main Branch Protection**
- **main** branch contains production-ready code
- All feature development happens on task-specific branches
- Direct commits to main are prohibited
- All changes merge via Pull Requests
### **Task Branch Naming**
```bash
# ✅ DO: Use consistent task branch naming
task-001 # For Task 1
task-004 # For Task 4
task-015 # For Task 15
# ❌ DON'T: Use inconsistent naming
feature/user-auth
fix-database-issue
random-branch-name
```
## **Tagged Task Lists Integration**
Task Master's **tagged task lists system** provides significant benefits for Git workflows:
### **Multi-Context Development**
- **Branch-Specific Tasks**: Each branch can have its own task context using tags
- **Merge Conflict Prevention**: Tasks in different tags are completely isolated
- **Context Switching**: Seamlessly switch between different development contexts
- **Parallel Development**: Multiple team members can work on separate task contexts
### **Migration and Compatibility**
- **Seamless Migration**: Existing projects automatically migrate to use a "master" tag
- **Zero Disruption**: All existing Git workflows continue unchanged
- **Backward Compatibility**: Legacy projects work exactly as before
### **Manual Git Integration**
- **Manual Tag Creation**: Use `--from-branch` option to create tags from current git branch
- **Manual Context Switching**: Explicitly switch tag contexts as needed for different branches
- **Simplified Integration**: Focused on manual control rather than automatic workflows
## **Workflow Overview**
```mermaid
flowchart TD
A[Start: On main branch] --> B[Pull latest changes]
B --> C[Create task branch<br/>git checkout -b task-XXX]
C --> D[Set task status: in-progress]
D --> E[Get task context & expand if needed<br/>Tasks automatically use current tag]
E --> F[Identify next subtask]
F --> G[Set subtask: in-progress]
G --> H[Research & collect context<br/>update_subtask with findings]
H --> I[Implement subtask]
I --> J[Update subtask with completion]
J --> K[Set subtask: done]
K --> L[Git commit subtask]
L --> M{More subtasks?}
M -->|Yes| F
M -->|No| N[Run final tests]
N --> O[Commit tests if added]
O --> P[Push task branch]
P --> Q[Create Pull Request]
Q --> R[Human review & merge]
R --> S[Switch to main & pull]
S --> T[Delete task branch]
T --> U[Ready for next task]
style A fill:#e1f5fe
style C fill:#f3e5f5
style G fill:#fff3e0
style L fill:#e8f5e8
style Q fill:#fce4ec
style R fill:#f1f8e9
style U fill:#e1f5fe
```
## **Complete Task Development Workflow**
### **Phase 1: Task Preparation**
```bash
# 1. Ensure you're on main branch and pull latest
git checkout main
git pull origin main
# 2. Check current branch status
git branch # Verify you're on main
# 3. Create task-specific branch
git checkout -b task-004 # For Task 4
# 4. Set task status in Task Master (tasks automatically use current tag context)
# Use: set_task_status tool or `task-master set-status --id=4 --status=in-progress`
```
### **Phase 2: Task Analysis & Planning**
```bash
# 5. Get task context and expand if needed (uses current tag automatically)
# Use: get_task tool or `task-master show 4`
# Use: expand_task tool or `task-master expand --id=4 --research --force` (if complex)
# 6. Identify next subtask to work on
# Use: next_task tool or `task-master next`
```
### **Phase 3: Subtask Implementation Loop**
For each subtask, follow this pattern:
```bash
# 7. Mark subtask as in-progress
# Use: set_task_status tool or `task-master set-status --id=4.1 --status=in-progress`
# 8. Gather context and research (if needed)
# Use: update_subtask tool with research flag or:
# `task-master update-subtask --id=4.1 --prompt="Research findings..." --research`
# 9. Collect code context through AI exploration
# Document findings in subtask using update_subtask
# 10. Implement the subtask
# Write code, tests, documentation
# 11. Update subtask with completion details
# Use: update_subtask tool or:
# `task-master update-subtask --id=4.1 --prompt="Implementation complete..."`
# 12. Mark subtask as done
# Use: set_task_status tool or `task-master set-status --id=4.1 --status=done`
# 13. Commit the subtask implementation
git add .
git commit -m "feat(task-4): Complete subtask 4.1 - [Subtask Title]
- Implementation details
- Key changes made
- Any important notes
Subtask 4.1: [Brief description of what was accomplished]
Relates to Task 4: [Main task title]"
```
### **Phase 4: Task Completion**
```bash
# 14. When all subtasks are complete, run final testing
# Create test file if needed, ensure all tests pass
npm test # or jest, or manual testing
# 15. If tests were added/modified, commit them
git add .
git commit -m "test(task-4): Add comprehensive tests for Task 4
- Unit tests for core functionality
- Integration tests for API endpoints
- All tests passing
Task 4: [Main task title] - Testing complete"
# 16. Push the task branch
git push origin task-004
# 17. Create Pull Request
# Title: "Task 4: [Task Title]"
# Description should include:
# - Task overview
# - Subtasks completed
# - Testing approach
# - Any breaking changes or considerations
```
### **Phase 5: PR Merge & Cleanup**
```bash
# 18. Human reviews and merges PR into main
# 19. Switch back to main and pull merged changes
git checkout main
git pull origin main
# 20. Delete the feature branch (optional cleanup)
git branch -d task-004
git push origin --delete task-004
```
## **Commit Message Standards**
### **Subtask Commits**
```bash
# ✅ DO: Consistent subtask commit format
git commit -m "feat(task-4): Complete subtask 4.1 - Initialize Express server
- Set up Express.js with TypeScript configuration
- Added CORS and body parsing middleware
- Implemented health check endpoints
- Basic error handling middleware
Subtask 4.1: Initialize project with npm and install dependencies
Relates to Task 4: Setup Express.js Server Project"
# ❌ DON'T: Vague or inconsistent commits
git commit -m "fixed stuff"
git commit -m "working on task"
```
### **Test Commits**
```bash
# ✅ DO: Separate test commits when substantial
git commit -m "test(task-4): Add comprehensive tests for Express server setup
- Unit tests for middleware configuration
- Integration tests for health check endpoints
- Mock tests for database connection
- All tests passing with 95% coverage
Task 4: Setup Express.js Server Project - Testing complete"
```
### **Commit Type Prefixes**
- `feat(task-X):` - New feature implementation
- `fix(task-X):` - Bug fixes
- `test(task-X):` - Test additions/modifications
- `docs(task-X):` - Documentation updates
- `refactor(task-X):` - Code refactoring
- `chore(task-X):` - Build/tooling changes
## **Task Master Commands Integration**
### **Essential Commands for Git Workflow**
```bash
# Task management (uses current tag context automatically)
task-master show <id> # Get task/subtask details
task-master next # Find next task to work on
task-master set-status --id=<id> --status=<status>
task-master update-subtask --id=<id> --prompt="..." --research
# Task expansion (for complex tasks)
task-master expand --id=<id> --research --force
# Progress tracking
task-master list # View all tasks and status
task-master list --status=in-progress # View active tasks
```
### **MCP Tool Equivalents**
When using Cursor or other MCP-integrated tools:
- `get_task` instead of `task-master show`
- `next_task` instead of `task-master next`
- `set_task_status` instead of `task-master set-status`
- `update_subtask` instead of `task-master update-subtask`
## **Branch Management Rules**
### **Branch Protection**
```bash
# ✅ DO: Always work on task branches
git checkout -b task-005
# Make changes
git commit -m "..."
git push origin task-005
# ❌ DON'T: Commit directly to main
git checkout main
git commit -m "..." # NEVER do this
```
### **Keeping Branches Updated**
```bash
# ✅ DO: Regularly sync with main (for long-running tasks)
git checkout task-005
git fetch origin
git rebase origin/main # or merge if preferred
# Resolve any conflicts and continue
```
## **Pull Request Guidelines**
### **PR Title Format**
```
Task <ID>: <Task Title>
Examples:
Task 4: Setup Express.js Server Project
Task 7: Implement User Authentication
Task 12: Add Stripe Payment Integration
```
### **PR Description Template**
```markdown
## Task Overview
Brief description of the main task objective.
## Subtasks Completed
- [x] 4.1: Initialize project with npm and install dependencies
- [x] 4.2: Configure TypeScript, ESLint and Prettier
- [x] 4.3: Create basic Express app with middleware and health check route
## Implementation Details
- Key architectural decisions made
- Important code changes
- Any deviations from original plan
## Testing
- [ ] Unit tests added/updated
- [ ] Integration tests passing
- [ ] Manual testing completed
## Breaking Changes
List any breaking changes or migration requirements.
## Related Tasks
Mention any dependent tasks or follow-up work needed.
```
## **Conflict Resolution**
### **Task Conflicts with Tagged System**
```bash
# With tagged task lists, merge conflicts are significantly reduced:
# 1. Different branches can use different tag contexts
# 2. Tasks in separate tags are completely isolated
# 3. Use Task Master's move functionality to reorganize if needed
# Manual git integration available:
# - Use `task-master add-tag --from-branch` to create tags from current branch
# - Manually switch contexts with `task-master use-tag <name>`
# - Simple, predictable workflow without automatic behavior
```
### **Code Conflicts**
```bash
# Standard Git conflict resolution
git fetch origin
git rebase origin/main
# Resolve conflicts in files
git add .
git rebase --continue
```
## **Emergency Procedures**
### **Hotfixes**
```bash
# For urgent production fixes:
git checkout main
git pull origin main
git checkout -b hotfix-urgent-issue
# Make minimal fix
git commit -m "hotfix: Fix critical production issue
- Specific fix description
- Minimal impact change
- Requires immediate deployment"
git push origin hotfix-urgent-issue
# Create emergency PR for immediate review
```
### **Task Abandonment**
```bash
# If task needs to be abandoned or significantly changed:
# 1. Update task status
task-master set-status --id=<id> --status=cancelled
# 2. Clean up branch
git checkout main
git branch -D task-<id>
git push origin --delete task-<id>
# 3. Document reasoning in task
task-master update-task --id=<id> --prompt="Task cancelled due to..."
```
## **Tagged System Benefits for Git Workflows**
### **Multi-Team Development**
- **Isolated Contexts**: Different teams can work on separate tag contexts without conflicts
- **Feature Branches**: Each feature branch can have its own task context
- **Release Management**: Separate tags for different release versions or environments
### **Merge Conflict Prevention**
- **Context Separation**: Tasks in different tags don't interfere with each other
- **Clean Merges**: Reduced likelihood of task-related merge conflicts
- **Parallel Development**: Multiple developers can work simultaneously without task conflicts
### **Manual Git Integration**
- **Branch-Based Tag Creation**: Use `--from-branch` option to create tags from current git branch
- **Manual Context Management**: Explicitly switch tag contexts as needed
- **Predictable Workflow**: Simple, manual control without automatic behavior
---
**References:**
- [Task Master Workflow](mdc:.cursor/rules/dev_workflow.mdc)
- [Architecture Guidelines](mdc:.cursor/rules/architecture.mdc)
- [Task Master Commands](mdc:.cursor/rules/taskmaster.mdc)

View File

@@ -7,20 +7,20 @@ alwaysApply: true
This file provides a quick reference to the purpose of each rule file located in the `.cursor/rules` directory.
- **[`architecture.mdc`](mdc:.cursor/rules/architecture.mdc)**: Describes the high-level architecture of the Task Master CLI application.
- **[`architecture.mdc`](mdc:.cursor/rules/architecture.mdc)**: Describes the high-level architecture of the Task Master CLI application, including the new tagged task lists system.
- **[`changeset.mdc`](mdc:.cursor/rules/changeset.mdc)**: Guidelines for using Changesets (npm run changeset) to manage versioning and changelogs.
- **[`commands.mdc`](mdc:.cursor/rules/commands.mdc)**: Guidelines for implementing CLI commands using Commander.js.
- **[`cursor_rules.mdc`](mdc:.cursor/rules/cursor_rules.mdc)**: Guidelines for creating and maintaining Cursor rules to ensure consistency and effectiveness.
- **[`dependencies.mdc`](mdc:.cursor/rules/dependencies.mdc)**: Guidelines for managing task dependencies and relationships.
- **[`dev_workflow.mdc`](mdc:.cursor/rules/dev_workflow.mdc)**: Guide for using Task Master to manage task-driven development workflows.
- **[`dependencies.mdc`](mdc:.cursor/rules/dependencies.mdc)**: Guidelines for managing task dependencies and relationships across tagged task contexts.
- **[`dev_workflow.mdc`](mdc:.cursor/rules/dev_workflow.mdc)**: Guide for using Task Master to manage task-driven development workflows with tagged task lists support.
- **[`glossary.mdc`](mdc:.cursor/rules/glossary.mdc)**: This file; provides a glossary of other Cursor rules.
- **[`mcp.mdc`](mdc:.cursor/rules/mcp.mdc)**: Guidelines for implementing and interacting with the Task Master MCP Server.
- **[`new_features.mdc`](mdc:.cursor/rules/new_features.mdc)**: Guidelines for integrating new features into the Task Master CLI.
- **[`new_features.mdc`](mdc:.cursor/rules/new_features.mdc)**: Guidelines for integrating new features into the Task Master CLI with tagged system considerations.
- **[`self_improve.mdc`](mdc:.cursor/rules/self_improve.mdc)**: Guidelines for continuously improving Cursor rules based on emerging code patterns and best practices.
- **[`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)**: Comprehensive reference for Taskmaster MCP tools and CLI commands.
- **[`tasks.mdc`](mdc:.cursor/rules/tasks.mdc)**: Guidelines for implementing task management operations.
- **[`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)**: Comprehensive reference for Taskmaster MCP tools and CLI commands with tagged task lists information.
- **[`tasks.mdc`](mdc:.cursor/rules/tasks.mdc)**: Guidelines for implementing task management operations with tagged task lists system support.
- **[`tests.mdc`](mdc:.cursor/rules/tests.mdc)**: Guidelines for implementing and maintaining tests for Task Master CLI.
- **[`ui.mdc`](mdc:.cursor/rules/ui.mdc)**: Guidelines for implementing and maintaining user interface components.
- **[`utilities.mdc`](mdc:.cursor/rules/utilities.mdc)**: Guidelines for implementing utility functions.
- **[`utilities.mdc`](mdc:.cursor/rules/utilities.mdc)**: Guidelines for implementing utility functions including tagged task lists utilities.
- **[`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc)**: Guidelines for integrating AI usage telemetry across Task Master.

View File

@@ -24,17 +24,22 @@ alwaysApply: false
The standard pattern for adding a feature follows this workflow:
1. **Core Logic**: Implement the business logic in the appropriate module (e.g., [`task-manager.js`](mdc:scripts/modules/task-manager.js)).
2. **AI Integration (If Applicable)**:
2. **Context Gathering (If Applicable)**:
- For AI-powered commands that benefit from project context, use the standardized context gathering patterns from [`context_gathering.mdc`](mdc:.cursor/rules/context_gathering.mdc).
- Import `ContextGatherer` and `FuzzyTaskSearch` utilities for reusable context extraction.
- Support multiple context types: tasks, files, custom text, project tree.
- Implement detailed token breakdown display for transparency.
3. **AI Integration (If Applicable)**:
- Import necessary service functions (e.g., `generateTextService`, `streamTextService`) from [`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js).
- Prepare parameters (`role`, `session`, `systemPrompt`, `prompt`).
- Call the service function.
- Handle the response (direct text or stream object).
- **Important**: Prefer `generateTextService` for calls sending large context (like stringified JSON) where incremental display is not needed. See [`ai_services.mdc`](mdc:.cursor/rules/ai_services.mdc) for detailed usage patterns and cautions.
3. **UI Components**: Add any display functions to [`ui.js`](mdc:scripts/modules/ui.js) following [`ui.mdc`](mdc:.cursor/rules/ui.mdc).
4. **Command Integration**: Add the CLI command to [`commands.js`](mdc:scripts/modules/commands.js) following [`commands.mdc`](mdc:.cursor/rules/commands.mdc).
5. **Testing**: Write tests for all components of the feature (following [`tests.mdc`](mdc:.cursor/rules/tests.mdc))
6. **Configuration**: Update configuration settings or add new ones in [`config-manager.js`](mdc:scripts/modules/config-manager.js) and ensure getters/setters are appropriate. Update documentation in [`utilities.mdc`](mdc:.cursor/rules/utilities.mdc) and [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc). Update the `.taskmasterconfig` structure if needed.
7. **Documentation**: Update help text and documentation in [`dev_workflow.mdc`](mdc:.cursor/rules/dev_workflow.mdc) and [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc).
4. **UI Components**: Add any display functions to [`ui.js`](mdc:scripts/modules/ui.js) following [`ui.mdc`](mdc:.cursor/rules/ui.mdc). Consider enhanced formatting with syntax highlighting for code blocks.
5. **Command Integration**: Add the CLI command to [`commands.js`](mdc:scripts/modules/commands.js) following [`commands.mdc`](mdc:.cursor/rules/commands.mdc).
6. **Testing**: Write tests for all components of the feature (following [`tests.mdc`](mdc:.cursor/rules/tests.mdc))
7. **Configuration**: Update configuration settings or add new ones in [`config-manager.js`](mdc:scripts/modules/config-manager.js) and ensure getters/setters are appropriate. Update documentation in [`utilities.mdc`](mdc:.cursor/rules/utilities.mdc) and [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc). Update the `.taskmasterconfig` structure if needed.
8. **Documentation**: Update help text and documentation in [`dev_workflow.mdc`](mdc:.cursor/rules/dev_workflow.mdc) and [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc).
## Critical Checklist for New Features
@@ -629,3 +634,287 @@ When implementing project initialization commands:
});
}
```
## Feature Planning
- **Core Logic First**:
- ✅ DO: Implement core logic in `scripts/modules/` before CLI or MCP interfaces
- ✅ DO: Consider tagged task lists system compatibility from the start
- ✅ DO: Design functions to work with both legacy and tagged data formats
- ✅ DO: Use tag resolution functions (`getTasksForTag`, `setTasksForTag`) for task data access
- ❌ DON'T: Directly manipulate tagged data structure in new features
```javascript
// ✅ DO: Design tagged-aware core functions
async function newFeatureCore(tasksPath, featureParams, options = {}) {
const tasksData = readJSON(tasksPath);
const currentTag = getCurrentTag() || 'master';
const tasks = getTasksForTag(tasksData, currentTag);
// Perform feature logic on tasks array
const result = performFeatureLogic(tasks, featureParams);
// Save back using tag resolution
setTasksForTag(tasksData, currentTag, tasks);
writeJSON(tasksPath, tasksData);
return result;
}
```
- **Backward Compatibility**:
- ✅ DO: Ensure new features work with existing projects seamlessly
- ✅ DO: Test with both legacy and tagged task data formats
- ✅ DO: Support silent migration during feature usage
- ❌ DON'T: Break existing workflows when adding tagged system features
## CLI Command Implementation
- **Command Structure**:
- ✅ DO: Follow the established pattern in [`commands.js`](mdc:scripts/modules/commands.js)
- ✅ DO: Use Commander.js for argument parsing
- ✅ DO: Include comprehensive help text and examples
- ✅ DO: Support tagged task context awareness
```javascript
// ✅ DO: Implement CLI commands with tagged system awareness
program
.command('new-feature')
.description('Description of the new feature with tagged task lists support')
.option('-t, --tag <tag>', 'Specify tag context (defaults to current tag)')
.option('-p, --param <value>', 'Feature-specific parameter')
.option('--force', 'Force operation without confirmation')
.action(async (options) => {
try {
const projectRoot = findProjectRoot();
if (!projectRoot) {
console.error('Not in a Task Master project directory');
process.exit(1);
}
// Use specified tag or current tag
const targetTag = options.tag || getCurrentTag() || 'master';
const result = await newFeatureCore(
path.join(projectRoot, '.taskmaster', 'tasks', 'tasks.json'),
{ param: options.param },
{
force: options.force,
targetTag: targetTag,
outputFormat: 'text'
}
);
console.log('Feature executed successfully');
} catch (error) {
console.error(`Error: ${error.message}`);
process.exit(1);
}
});
```
- **Error Handling**:
- ✅ DO: Provide clear error messages for common failures
- ✅ DO: Handle tagged system migration errors gracefully
- ✅ DO: Include suggestion for resolution when possible
- ✅ DO: Exit with appropriate codes for scripting
## MCP Tool Implementation
- **Direct Function Pattern**:
- ✅ DO: Create direct function wrappers in `mcp-server/src/core/direct-functions/`
- ✅ DO: Follow silent mode patterns to prevent console output interference
- ✅ DO: Use `findTasksJsonPath` for consistent path resolution
- ✅ DO: Ensure tagged system compatibility
```javascript
// ✅ DO: Implement MCP direct functions with tagged awareness
export async function newFeatureDirect(args, log, context = {}) {
try {
const tasksPath = findTasksJsonPath(args, log);
// Enable silent mode for clean MCP responses
enableSilentMode();
try {
const result = await newFeatureCore(
tasksPath,
{ param: args.param },
{
force: args.force,
targetTag: args.tag || 'master', // Support tag specification
mcpLog: log,
session: context.session,
outputFormat: 'json'
}
);
return {
success: true,
data: result,
fromCache: false
};
} finally {
disableSilentMode();
}
} catch (error) {
log.error(`Error in newFeatureDirect: ${error.message}`);
return {
success: false,
error: { code: 'FEATURE_ERROR', message: error.message },
fromCache: false
};
}
}
```
- **Tool Registration**:
- ✅ DO: Create tool definitions in `mcp-server/src/tools/`
- ✅ DO: Use Zod for parameter validation
- ✅ DO: Include optional tag parameter for multi-context support
- ✅ DO: Follow established naming conventions
```javascript
// ✅ DO: Register MCP tools with tagged system support
export function registerNewFeatureTool(server) {
server.addTool({
name: "new_feature",
description: "Description of the new feature with tagged task lists support",
inputSchema: z.object({
param: z.string().describe("Feature-specific parameter"),
tag: z.string().optional().describe("Target tag context (defaults to current tag)"),
force: z.boolean().optional().describe("Force operation without confirmation"),
projectRoot: z.string().optional().describe("Project root directory")
}),
execute: withNormalizedProjectRoot(async (args, { log, session }) => {
try {
const result = await newFeatureDirect(
{ ...args, projectRoot: args.projectRoot },
log,
{ session }
);
return handleApiResult(result, log);
} catch (error) {
return handleApiResult({
success: false,
error: { code: 'EXECUTION_ERROR', message: error.message }
}, log);
}
})
});
}
```
## Testing Strategy
- **Unit Tests**:
- ✅ DO: Test core logic independently with both data formats
- ✅ DO: Mock file system operations appropriately
- ✅ DO: Test tag resolution behavior
- ✅ DO: Verify migration compatibility
```javascript
// ✅ DO: Test new features with tagged system awareness
describe('newFeature', () => {
beforeEach(() => {
jest.clearAllMocks();
});
it('should work with legacy task format', async () => {
const legacyData = { tasks: [/* test data */] };
fs.readFileSync.mockReturnValue(JSON.stringify(legacyData));
const result = await newFeatureCore('/test/tasks.json', { param: 'test' });
expect(result).toBeDefined();
// Test legacy format handling
});
it('should work with tagged task format', async () => {
const taggedData = {
master: { tasks: [/* test data */] },
feature: { tasks: [/* test data */] }
};
fs.readFileSync.mockReturnValue(JSON.stringify(taggedData));
const result = await newFeatureCore('/test/tasks.json', { param: 'test' });
expect(result).toBeDefined();
// Test tagged format handling
});
it('should handle tag migration during feature usage', async () => {
const legacyData = { tasks: [/* test data */] };
fs.readFileSync.mockReturnValue(JSON.stringify(legacyData));
await newFeatureCore('/test/tasks.json', { param: 'test' });
// Verify migration occurred
expect(fs.writeFileSync).toHaveBeenCalledWith(
'/test/tasks.json',
expect.stringContaining('"master"')
);
});
});
```
- **Integration Tests**:
- ✅ DO: Test CLI and MCP interfaces with real task data
- ✅ DO: Verify end-to-end workflows across tag contexts
- ✅ DO: Test error scenarios and recovery
## Documentation Updates
- **Rule Updates**:
- ✅ DO: Update relevant `.cursor/rules/*.mdc` files
- ✅ DO: Include tagged system considerations in architecture docs
- ✅ DO: Add examples showing multi-context usage
- ✅ DO: Update workflow documentation as needed
- **User Documentation**:
- ✅ DO: Add feature documentation to `/docs` folder
- ✅ DO: Include tagged system usage examples
- ✅ DO: Update command reference documentation
- ✅ DO: Provide migration notes if relevant
## Migration Considerations
- **Silent Migration Support**:
- ✅ DO: Ensure new features trigger migration when needed
- ✅ DO: Handle migration errors gracefully in feature code
- ✅ DO: Test feature behavior with pre-migration projects
- ❌ DON'T: Assume projects are already migrated
- **Tag Context Handling**:
- ✅ DO: Default to current tag when not specified
- ✅ DO: Support explicit tag selection in advanced features
- ✅ DO: Validate tag existence before operations
- ✅ DO: Provide clear messaging about tag context
## Performance Considerations
- **Efficient Tag Operations**:
- ✅ DO: Minimize file I/O operations per feature execution
- ✅ DO: Cache tag resolution results when appropriate
- ✅ DO: Use streaming for large task datasets
- ❌ DON'T: Load all tags when only one is needed
- **Memory Management**:
- ✅ DO: Process large task lists efficiently
- ✅ DO: Clean up temporary data structures
- ✅ DO: Avoid keeping all tag data in memory simultaneously
## Deployment and Versioning
- **Changesets**:
- ✅ DO: Create appropriate changesets for new features
- ✅ DO: Use semantic versioning (minor for new features)
- ✅ DO: Include tagged system information in release notes
- ✅ DO: Document breaking changes if any
- **Feature Flags**:
- ✅ DO: Consider feature flags for experimental functionality
- ✅ DO: Ensure tagged system features work with flags
- ✅ DO: Provide clear documentation about flag usage
By following these guidelines, new features will integrate smoothly with the Task Master ecosystem while supporting the enhanced tagged task lists system for multi-context development workflows.

229
.cursor/rules/tags.mdc Normal file
View File

@@ -0,0 +1,229 @@
---
description:
globs: scripts/modules/*
alwaysApply: false
---
# Tagged Task Lists Command Patterns
This document outlines the standardized patterns that **ALL** Task Master commands must follow to properly support the tagged task lists system.
## Core Principles
- **Every command** that reads or writes tasks.json must be tag-aware
- **Consistent tag resolution** across all commands using `getCurrentTag(projectRoot)`
- **Proper context passing** to core functions with `{ projectRoot, tag }`
- **Standardized CLI options** with `--tag <tag>` flag
## Required Imports
All command files must import `getCurrentTag`:
```javascript
// ✅ DO: Import getCurrentTag in commands.js
import {
log,
readJSON,
writeJSON,
findProjectRoot,
getCurrentTag
} from './utils.js';
// ✅ DO: Import getCurrentTag in task-manager files
import {
readJSON,
writeJSON,
getCurrentTag
} from '../utils.js';
```
## CLI Command Pattern
Every CLI command that operates on tasks must follow this exact pattern:
```javascript
// ✅ DO: Standard tag-aware CLI command pattern
programInstance
.command('command-name')
.description('Command description')
.option('-f, --file <file>', 'Path to the tasks file', TASKMASTER_TASKS_FILE)
.option('--tag <tag>', 'Specify tag context for task operations') // REQUIRED
.action(async (options) => {
// 1. Find project root
const projectRoot = findProjectRoot();
if (!projectRoot) {
console.error(chalk.red('Error: Could not find project root.'));
process.exit(1);
}
// 2. Resolve tag using standard pattern
const tag = options.tag || getCurrentTag(projectRoot) || 'master';
// 3. Call core function with proper context
await coreFunction(
tasksPath,
// ... other parameters ...
{ projectRoot, tag } // REQUIRED context object
);
});
```
## Core Function Pattern
All core functions in `scripts/modules/task-manager/` must follow this pattern:
```javascript
// ✅ DO: Standard tag-aware core function pattern
async function coreFunction(
tasksPath,
// ... other parameters ...
context = {} // REQUIRED context parameter
) {
const { projectRoot, tag } = context;
// Use tag-aware readJSON/writeJSON
const data = readJSON(tasksPath, projectRoot, tag);
// ... function logic ...
writeJSON(tasksPath, data, projectRoot, tag);
}
```
## Tag Resolution Priority
The tag resolution follows this exact priority order:
1. **Explicit `--tag` flag**: `options.tag`
2. **Current active tag**: `getCurrentTag(projectRoot)`
3. **Default fallback**: `'master'`
```javascript
// ✅ DO: Standard tag resolution pattern
const tag = options.tag || getCurrentTag(projectRoot) || 'master';
```
## Commands Requiring Updates
### High Priority (Core Task Operations)
- [x] `add-task` - ✅ Fixed
- [x] `list` - ✅ Fixed
- [x] `update-task` - ✅ Fixed
- [x] `update-subtask` - ✅ Fixed
- [x] `set-status` - ✅ Already correct
- [x] `remove-task` - ✅ Already correct
- [x] `remove-subtask` - ✅ Fixed
- [x] `add-subtask` - ✅ Already correct
- [x] `clear-subtasks` - ✅ Fixed
- [x] `move-task` - ✅ Already correct
### Medium Priority (Analysis & Expansion)
- [x] `expand` - ✅ Fixed
- [ ] `next` - ✅ Fixed
- [ ] `show` (get-task) - Needs checking
- [ ] `analyze-complexity` - Needs checking
- [ ] `generate` - ✅ Fixed
### Lower Priority (Utilities)
- [ ] `research` - Needs checking
- [ ] `complexity-report` - Needs checking
- [ ] `validate-dependencies` - ✅ Fixed
- [ ] `fix-dependencies` - ✅ Fixed
- [ ] `add-dependency` - ✅ Fixed
- [ ] `remove-dependency` - ✅ Fixed
## MCP Integration Pattern
MCP direct functions must also follow the tag-aware pattern:
```javascript
// ✅ DO: Tag-aware MCP direct function
export async function coreActionDirect(args, log, context = {}) {
const { session } = context;
const { projectRoot, tag } = args; // MCP passes these in args
try {
const result = await coreAction(
tasksPath,
// ... other parameters ...
{ projectRoot, tag, session, mcpLog: logWrapper }
);
return { success: true, data: result };
} catch (error) {
return { success: false, error: { code: 'ERROR_CODE', message: error.message } };
}
}
```
## File Generation Tag-Aware Naming
The `generate` command must use tag-aware file naming:
```javascript
// ✅ DO: Tag-aware file naming
const taskFileName = targetTag === 'master'
? `task_${task.id.toString().padStart(3, '0')}.txt`
: `task_${task.id.toString().padStart(3, '0')}_${targetTag}.txt`;
```
**Examples:**
- Master tag: `task_001.txt`, `task_002.txt`
- Other tags: `task_001_feature.txt`, `task_002_feature.txt`
## Common Anti-Patterns
```javascript
// ❌ DON'T: Missing getCurrentTag import
import { readJSON, writeJSON } from '../utils.js'; // Missing getCurrentTag
// ❌ DON'T: Hard-coded tag resolution
const tag = options.tag || 'master'; // Missing getCurrentTag
// ❌ DON'T: Missing --tag option
.option('-f, --file <file>', 'Path to tasks file') // Missing --tag option
// ❌ DON'T: Missing context parameter
await coreFunction(tasksPath, param1, param2); // Missing { projectRoot, tag }
// ❌ DON'T: Incorrect readJSON/writeJSON calls
const data = readJSON(tasksPath); // Missing projectRoot and tag
writeJSON(tasksPath, data); // Missing projectRoot and tag
```
## Validation Checklist
For each command, verify:
- [ ] Imports `getCurrentTag` from utils.js
- [ ] Has `--tag <tag>` CLI option
- [ ] Uses standard tag resolution: `options.tag || getCurrentTag(projectRoot) || 'master'`
- [ ] Finds `projectRoot` with error handling
- [ ] Passes `{ projectRoot, tag }` context to core functions
- [ ] Core functions accept and use context parameter
- [ ] Uses `readJSON(tasksPath, projectRoot, tag)` and `writeJSON(tasksPath, data, projectRoot, tag)`
## Testing Tag Resolution
Test each command with:
```bash
# Test with explicit tag
node bin/task-master command-name --tag test-tag
# Test with active tag (should use current active tag)
node bin/task-master use-tag test-tag
node bin/task-master command-name
# Test with master tag (default)
node bin/task-master use-tag master
node bin/task-master command-name
```
## Migration Strategy
1. **Audit Phase**: Systematically check each command against the checklist
2. **Fix Phase**: Apply the standard patterns to non-compliant commands
3. **Test Phase**: Verify tag resolution works correctly
4. **Document Phase**: Update command documentation with tag support
This ensures consistent, predictable behavior across all Task Master commands and prevents tag deletion bugs.

View File

@@ -11,6 +11,8 @@ This document provides a detailed reference for interacting with Taskmaster, cov
**Important:** Several MCP tools involve AI processing... The AI-powered tools include `parse_prd`, `analyze_project_complexity`, `update_subtask`, `update_task`, `update`, `expand_all`, `expand_task`, and `add_task`.
**🏷️ Tagged Task Lists System:** Task Master now supports **tagged task lists** for multi-context task management. This allows you to maintain separate, isolated lists of tasks for different features, branches, or experiments. Existing projects are seamlessly migrated to use a default "master" tag. Most commands now support a `--tag <name>` flag to specify which context to operate on. If omitted, commands use the currently active tag.
---
## Initialization & Setup
@@ -24,6 +26,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `--name <name>`: `Set the name for your project in Taskmaster's configuration.`
* `--description <text>`: `Provide a brief description for your project.`
* `--version <version>`: `Set the initial version for your project, e.g., '0.1.0'.`
* `--no-git`: `Skip initializing a Git repository entirely.`
* `-y, --yes`: `Initialize Taskmaster quickly using default settings without interactive prompts.`
* **Usage:** Run this once at the beginning of a new project.
* **MCP Variant Description:** `Set up the basic Taskmaster file structure and configuration in the current directory for a new project by running the 'task-master init' command.`
@@ -34,9 +37,11 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `authorName`: `Author name.` (CLI: `--author <author>`)
* `skipInstall`: `Skip installing dependencies. Default is false.` (CLI: `--skip-install`)
* `addAliases`: `Add shell aliases tm and taskmaster. Default is false.` (CLI: `--aliases`)
* `noGit`: `Skip initializing a Git repository entirely. Default is false.` (CLI: `--no-git`)
* `yes`: `Skip prompts and use defaults/provided arguments. Default is false.` (CLI: `-y, --yes`)
* **Usage:** Run this once at the beginning of a new project, typically via an integrated tool like Cursor. Operates on the current working directory of the MCP server.
* **Important:** Once complete, you *MUST* parse a prd in order to generate tasks. There will be no tasks files until then. The next step after initializing should be to create a PRD using the example PRD in scripts/example_prd.txt.
* **Important:** Once complete, you *MUST* parse a prd in order to generate tasks. There will be no tasks files until then. The next step after initializing should be to create a PRD using the example PRD in .taskmaster/templates/example_prd.txt.
* **Tagging:** Use the `--tag` option to parse the PRD into a specific, non-default tag context. If the tag doesn't exist, it will be created automatically. Example: `task-master parse-prd spec.txt --tag=new-feature`.
### 2. Parse PRD (`parse_prd`)
@@ -45,12 +50,12 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **Description:** `Parse a Product Requirements Document, PRD, or text file with Taskmaster to automatically generate an initial set of tasks in tasks.json.`
* **Key Parameters/Options:**
* `input`: `Path to your PRD or requirements text file that Taskmaster should parse for tasks.` (CLI: `[file]` positional or `-i, --input <file>`)
* `output`: `Specify where Taskmaster should save the generated 'tasks.json' file. Defaults to 'tasks/tasks.json'.` (CLI: `-o, --output <file>`)
* `output`: `Specify where Taskmaster should save the generated 'tasks.json' file. Defaults to '.taskmaster/tasks/tasks.json'.` (CLI: `-o, --output <file>`)
* `numTasks`: `Approximate number of top-level tasks Taskmaster should aim to generate from the document.` (CLI: `-n, --num-tasks <number>`)
* `force`: `Use this to allow Taskmaster to overwrite an existing 'tasks.json' without asking for confirmation.` (CLI: `-f, --force`)
* **Usage:** Useful for bootstrapping a project from an existing requirements document.
* **Notes:** Task Master will strictly adhere to any specific requirements mentioned in the PRD, such as libraries, database schemas, frameworks, tech stacks, etc., while filling in any gaps where the PRD isn't fully specified. Tasks are designed to provide the most direct implementation path while avoiding over-engineering.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress. If the user does not have a PRD, suggest discussing their idea and then use the example PRD in `scripts/example_prd.txt` as a template for creating the PRD based on their idea, for use with `parse-prd`.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress. If the user does not have a PRD, suggest discussing their idea and then use the example PRD in `.taskmaster/templates/example_prd.txt` as a template for creating the PRD based on their idea, for use with `parse-prd`.
---
@@ -74,13 +79,14 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `--set-fallback <model_id>`: `Set the fallback model.`
* `--ollama`: `Specify that the provided model ID is for Ollama (use with --set-*).`
* `--openrouter`: `Specify that the provided model ID is for OpenRouter (use with --set-*). Validates against OpenRouter API.`
* `--bedrock`: `Specify that the provided model ID is for AWS Bedrock (use with --set-*).`
* `--setup`: `Run interactive setup to configure models, including custom Ollama/OpenRouter IDs.`
* **Usage (MCP):** Call without set flags to get current config. Use `setMain`, `setResearch`, or `setFallback` with a valid model ID to update the configuration. Use `listAvailableModels: true` to get a list of unassigned models. To set a custom model, provide the model ID and set `ollama: true` or `openrouter: true`.
* **Usage (CLI):** Run without flags to view current configuration and available models. Use set flags to update specific roles. Use `--setup` for guided configuration, including custom models. To set a custom model via flags, use `--set-<role>=<model_id>` along with either `--ollama` or `--openrouter`.
* **Notes:** Configuration is stored in `.taskmasterconfig` in the project root. This command/tool modifies that file. Use `listAvailableModels` or `task-master models` to see internally supported models. OpenRouter custom models are validated against their live API. Ollama custom models are not validated live.
* **Notes:** Configuration is stored in `.taskmaster/config.json` in the project root. This command/tool modifies that file. Use `listAvailableModels` or `task-master models` to see internally supported models. OpenRouter custom models are validated against their live API. Ollama custom models are not validated live.
* **API note:** API keys for selected AI providers (based on their model) need to exist in the mcp.json file to be accessible in MCP context. The API keys must be present in the local .env file for the CLI to be able to read them.
* **Model costs:** The costs in supported models are expressed in dollars. An input/output value of 3 is $3.00. A value of 0.8 is $0.80.
* **Warning:** DO NOT MANUALLY EDIT THE .taskmasterconfig FILE. Use the included commands either in the MCP or CLI format as needed. Always prioritize MCP tools when available and use the CLI as a fallback.
* **Warning:** DO NOT MANUALLY EDIT THE .taskmaster/config.json FILE. Use the included commands either in the MCP or CLI format as needed. Always prioritize MCP tools when available and use the CLI as a fallback.
---
@@ -92,8 +98,9 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **CLI Command:** `task-master list [options]`
* **Description:** `List your Taskmaster tasks, optionally filtering by status and showing subtasks.`
* **Key Parameters/Options:**
* `status`: `Show only Taskmaster tasks matching this status, e.g., 'pending' or 'done'.` (CLI: `-s, --status <status>`)
* `status`: `Show only Taskmaster tasks matching this status (or multiple statuses, comma-separated), e.g., 'pending' or 'done,in-progress'.` (CLI: `-s, --status <status>`)
* `withSubtasks`: `Include subtasks indented under their parent tasks in the list.` (CLI: `--with-subtasks`)
* `tag`: `Specify which tag context to list tasks from. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Get an overview of the project status, often used at the start of a work session.
@@ -104,17 +111,20 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **Description:** `Ask Taskmaster to show the next available task you can work on, based on status and completed dependencies.`
* **Key Parameters/Options:**
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* `tag`: `Specify which tag context to use. Defaults to the current active tag.` (CLI: `--tag <name>`)
* **Usage:** Identify what to work on next according to the plan.
### 5. Get Task Details (`get_task`)
* **MCP Tool:** `get_task`
* **CLI Command:** `task-master show [id] [options]`
* **Description:** `Display detailed information for a specific Taskmaster task or subtask by its ID.`
* **Description:** `Display detailed information for one or more specific Taskmaster tasks or subtasks by ID.`
* **Key Parameters/Options:**
* `id`: `Required. The ID of the Taskmaster task, e.g., '15', or subtask, e.g., '15.2', you want to view.` (CLI: `[id]` positional or `-i, --id <id>`)
* `id`: `Required. The ID of the Taskmaster task (e.g., '15'), subtask (e.g., '15.2'), or a comma-separated list of IDs ('1,5,10.2') you want to view.` (CLI: `[id]` positional or `-i, --id <id>`)
* `tag`: `Specify which tag context to get the task(s) from. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Understand the full details, implementation notes, and test strategy for a specific task before starting work.
* **Usage:** Understand the full details for a specific task. When multiple IDs are provided, a summary table is shown.
* **CRITICAL INFORMATION** If you need to collect information from multiple tasks, use comma-separated IDs (i.e. 1,2,3) to receive an array of tasks. Do not needlessly get tasks one at a time if you need to get many as that is wasteful.
---
@@ -130,6 +140,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `dependencies`: `Specify the IDs of any Taskmaster tasks that must be completed before this new one can start, e.g., '12,14'.` (CLI: `-d, --dependencies <ids>`)
* `priority`: `Set the priority for the new task: 'high', 'medium', or 'low'. Default is 'medium'.` (CLI: `--priority <priority>`)
* `research`: `Enable Taskmaster to use the research role for potentially more informed task creation.` (CLI: `-r, --research`)
* `tag`: `Specify which tag context to add the task to. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Quickly add newly identified tasks during development.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
@@ -148,6 +159,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `dependencies`: `Specify IDs of other tasks or subtasks, e.g., '15' or '16.1', that must be done before this new subtask.` (CLI: `--dependencies <ids>`)
* `status`: `Set the initial status for the new subtask. Default is 'pending'.` (CLI: `-s, --status <status>`)
* `skipGenerate`: `Prevent Taskmaster from automatically regenerating markdown task files after adding the subtask.` (CLI: `--skip-generate`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Break down tasks manually or reorganize existing tasks.
@@ -160,6 +172,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `from`: `Required. The ID of the first task Taskmaster should update. All tasks with this ID or higher that are not 'done' will be considered.` (CLI: `--from <id>`)
* `prompt`: `Required. Explain the change or new context for Taskmaster to apply to the tasks, e.g., "We are now using React Query instead of Redux Toolkit for data fetching".` (CLI: `-p, --prompt <text>`)
* `research`: `Enable Taskmaster to use the research role for more informed updates. Requires appropriate API key.` (CLI: `-r, --research`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Handle significant implementation changes or pivots that affect multiple future tasks. Example CLI: `task-master update --from='18' --prompt='Switching to React Query.\nNeed to refactor data fetching...'`
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
@@ -168,13 +181,15 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **MCP Tool:** `update_task`
* **CLI Command:** `task-master update-task [options]`
* **Description:** `Modify a specific Taskmaster task or subtask by its ID, incorporating new information or changes.`
* **Description:** `Modify a specific Taskmaster task by ID, incorporating new information or changes. By default, this replaces the existing task details.`
* **Key Parameters/Options:**
* `id`: `Required. The specific ID of the Taskmaster task, e.g., '15', or subtask, e.g., '15.2', you want to update.` (CLI: `-i, --id <id>`)
* `id`: `Required. The specific ID of the Taskmaster task, e.g., '15', you want to update.` (CLI: `-i, --id <id>`)
* `prompt`: `Required. Explain the specific changes or provide the new information Taskmaster should incorporate into this task.` (CLI: `-p, --prompt <text>`)
* `append`: `If true, appends the prompt content to the task's details with a timestamp, rather than replacing them. Behaves like update-subtask.` (CLI: `--append`)
* `research`: `Enable Taskmaster to use the research role for more informed updates. Requires appropriate API key.` (CLI: `-r, --research`)
* `tag`: `Specify which tag context the task belongs to. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Refine a specific task based on new understanding or feedback. Example CLI: `task-master update-task --id='15' --prompt='Clarification: Use PostgreSQL instead of MySQL.\nUpdate schema details...'`
* **Usage:** Refine a specific task based on new understanding. Use `--append` to log progress without creating subtasks.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
### 10. Update Subtask (`update_subtask`)
@@ -183,11 +198,12 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **CLI Command:** `task-master update-subtask [options]`
* **Description:** `Append timestamped notes or details to a specific Taskmaster subtask without overwriting existing content. Intended for iterative implementation logging.`
* **Key Parameters/Options:**
* `id`: `Required. The specific ID of the Taskmaster subtask, e.g., '15.2', you want to add information to.` (CLI: `-i, --id <id>`)
* `prompt`: `Required. Provide the information or notes Taskmaster should append to the subtask's details. Ensure this adds *new* information not already present.` (CLI: `-p, --prompt <text>`)
* `id`: `Required. The ID of the Taskmaster subtask, e.g., '5.2', to update with new information.` (CLI: `-i, --id <id>`)
* `prompt`: `Required. The information, findings, or progress notes to append to the subtask's details with a timestamp.` (CLI: `-p, --prompt <text>`)
* `research`: `Enable Taskmaster to use the research role for more informed updates. Requires appropriate API key.` (CLI: `-r, --research`)
* `tag`: `Specify which tag context the subtask belongs to. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Add implementation notes, code snippets, or clarifications to a subtask during development. Before calling, review the subtask's current details to append only fresh insights, helping to build a detailed log of the implementation journey and avoid redundancy. Example CLI: `task-master update-subtask --id='15.2' --prompt='Discovered that the API requires header X.\nImplementation needs adjustment...'`
* **Usage:** Log implementation progress, findings, and discoveries during subtask development. Each update is timestamped and appended to preserve the implementation journey.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
### 11. Set Task Status (`set_task_status`)
@@ -198,6 +214,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **Key Parameters/Options:**
* `id`: `Required. The ID(s) of the Taskmaster task(s) or subtask(s), e.g., '15', '15.2', or '16,17.1', to update.` (CLI: `-i, --id <id>`)
* `status`: `Required. The new status to set, e.g., 'done', 'pending', 'in-progress', 'review', 'cancelled'.` (CLI: `-s, --status <status>`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Mark progress as tasks move through the development cycle.
@@ -209,6 +226,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **Key Parameters/Options:**
* `id`: `Required. The ID of the Taskmaster task, e.g., '5', or subtask, e.g., '5.2', to permanently remove.` (CLI: `-i, --id <id>`)
* `yes`: `Skip the confirmation prompt and immediately delete the task.` (CLI: `-y, --yes`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Permanently delete tasks or subtasks that are no longer needed in the project.
* **Notes:** Use with caution as this operation cannot be undone. Consider using 'blocked', 'cancelled', or 'deferred' status instead if you just want to exclude a task from active planning but keep it for reference. The command automatically cleans up dependency references in other tasks.
@@ -228,6 +246,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `research`: `Enable Taskmaster to use the research role for more informed subtask generation. Requires appropriate API key.` (CLI: `-r, --research`)
* `prompt`: `Optional: Provide extra context or specific instructions to Taskmaster for generating the subtasks.` (CLI: `-p, --prompt <text>`)
* `force`: `Optional: If true, clear existing subtasks before generating new ones. Default is false (append).` (CLI: `--force`)
* `tag`: `Specify which tag context the task belongs to. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Generate a detailed implementation plan for a complex task before starting coding. Automatically uses complexity report recommendations if available and `num` is not specified.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
@@ -242,6 +261,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `research`: `Enable research role for more informed subtask generation. Requires appropriate API key.` (CLI: `-r, --research`)
* `prompt`: `Optional: Provide extra context for Taskmaster to apply generally during expansion.` (CLI: `-p, --prompt <text>`)
* `force`: `Optional: If true, clear existing subtasks before generating new ones for each eligible task. Default is false (append).` (CLI: `--force`)
* `tag`: `Specify which tag context to expand. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Useful after initial task generation or complexity analysis to break down multiple tasks at once.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
@@ -252,8 +272,9 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **CLI Command:** `task-master clear-subtasks [options]`
* **Description:** `Remove all subtasks from one or more specified Taskmaster parent tasks.`
* **Key Parameters/Options:**
* `id`: `The ID(s) of the Taskmaster parent task(s) whose subtasks you want to remove, e.g., '15' or '16,18'. Required unless using `all`.) (CLI: `-i, --id <ids>`)
* `id`: `The ID(s) of the Taskmaster parent task(s) whose subtasks you want to remove, e.g., '15' or '16,18'. Required unless using 'all'.` (CLI: `-i, --id <ids>`)
* `all`: `Tell Taskmaster to remove subtasks from all parent tasks.` (CLI: `--all`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Used before regenerating subtasks with `expand_task` if the previous breakdown needs replacement.
@@ -266,6 +287,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `id`: `Required. The ID(s) of the Taskmaster subtask(s) to remove, e.g., '15.2' or '16.1,16.3'.` (CLI: `-i, --id <id>`)
* `convert`: `If used, Taskmaster will turn the subtask into a regular top-level task instead of deleting it.` (CLI: `-c, --convert`)
* `skipGenerate`: `Prevent Taskmaster from automatically regenerating markdown task files after removing the subtask.` (CLI: `--skip-generate`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Delete unnecessary subtasks or promote a subtask to a top-level task.
@@ -277,6 +299,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **Key Parameters/Options:**
* `from`: `Required. ID of the task/subtask to move (e.g., "5" or "5.2"). Can be comma-separated for multiple tasks.` (CLI: `--from <id>`)
* `to`: `Required. ID of the destination (e.g., "7" or "7.3"). Must match the number of source IDs if comma-separated.` (CLI: `--to <id>`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Reorganize tasks by moving them within the hierarchy. Supports various scenarios like:
* Moving a task to become a subtask
@@ -306,6 +329,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **Key Parameters/Options:**
* `id`: `Required. The ID of the Taskmaster task that will depend on another.` (CLI: `-i, --id <id>`)
* `dependsOn`: `Required. The ID of the Taskmaster task that must be completed first, the prerequisite.` (CLI: `-d, --depends-on <id>`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <path>`)
* **Usage:** Establish the correct order of execution between tasks.
@@ -317,6 +341,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **Key Parameters/Options:**
* `id`: `Required. The ID of the Taskmaster task you want to remove a prerequisite from.` (CLI: `-i, --id <id>`)
* `dependsOn`: `Required. The ID of the Taskmaster task that should no longer be a prerequisite.` (CLI: `-d, --depends-on <id>`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Update task relationships when the order of execution changes.
@@ -326,6 +351,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **CLI Command:** `task-master validate-dependencies [options]`
* **Description:** `Check your Taskmaster tasks for dependency issues (like circular references or links to non-existent tasks) without making changes.`
* **Key Parameters/Options:**
* `tag`: `Specify which tag context to validate. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Audit the integrity of your task dependencies.
@@ -335,6 +361,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **CLI Command:** `task-master fix-dependencies [options]`
* **Description:** `Automatically fix dependency issues (like circular references or links to non-existent tasks) in your Taskmaster tasks.`
* **Key Parameters/Options:**
* `tag`: `Specify which tag context to fix dependencies in. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Clean up dependency errors automatically.
@@ -348,9 +375,10 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **CLI Command:** `task-master analyze-complexity [options]`
* **Description:** `Have Taskmaster analyze your tasks to determine their complexity and suggest which ones need to be broken down further.`
* **Key Parameters/Options:**
* `output`: `Where to save the complexity analysis report (default: 'scripts/task-complexity-report.json').` (CLI: `-o, --output <file>`)
* `output`: `Where to save the complexity analysis report. Default is '.taskmaster/reports/task-complexity-report.json' (or '..._tagname.json' if a tag is used).` (CLI: `-o, --output <file>`)
* `threshold`: `The minimum complexity score (1-10) that should trigger a recommendation to expand a task.` (CLI: `-t, --threshold <number>`)
* `research`: `Enable research role for more accurate complexity analysis. Requires appropriate API key.` (CLI: `-r, --research`)
* `tag`: `Specify which tag context to analyze. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Used before breaking down tasks to identify which ones need the most attention.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
@@ -361,7 +389,8 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **CLI Command:** `task-master complexity-report [options]`
* **Description:** `Display the task complexity analysis report in a readable format.`
* **Key Parameters/Options:**
* `file`: `Path to the complexity report (default: 'scripts/task-complexity-report.json').` (CLI: `-f, --file <file>`)
* `tag`: `Specify which tag context to show the report for. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to the complexity report (default: '.taskmaster/reports/task-complexity-report.json').` (CLI: `-f, --file <file>`)
* **Usage:** Review and understand the complexity analysis results after running analyze-complexity.
---
@@ -375,14 +404,137 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **Description:** `Create or update individual Markdown files for each task based on your tasks.json.`
* **Key Parameters/Options:**
* `output`: `The directory where Taskmaster should save the task files (default: in a 'tasks' directory).` (CLI: `-o, --output <directory>`)
* `tag`: `Specify which tag context to generate files for. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Run this after making changes to tasks.json to keep individual task files up to date.
* **Usage:** Run this after making changes to tasks.json to keep individual task files up to date. This command is now manual and no longer runs automatically.
---
## AI-Powered Research
### 25. Research (`research`)
* **MCP Tool:** `research`
* **CLI Command:** `task-master research [options]`
* **Description:** `Perform AI-powered research queries with project context to get fresh, up-to-date information beyond the AI's knowledge cutoff.`
* **Key Parameters/Options:**
* `query`: `Required. Research query/prompt (e.g., "What are the latest best practices for React Query v5?").` (CLI: `[query]` positional or `-q, --query <text>`)
* `taskIds`: `Comma-separated list of task/subtask IDs from the current tag context (e.g., "15,16.2,17").` (CLI: `-i, --id <ids>`)
* `filePaths`: `Comma-separated list of file paths for context (e.g., "src/api.js,docs/readme.md").` (CLI: `-f, --files <paths>`)
* `customContext`: `Additional custom context text to include in the research.` (CLI: `-c, --context <text>`)
* `includeProjectTree`: `Include project file tree structure in context (default: false).` (CLI: `--tree`)
* `detailLevel`: `Detail level for the research response: 'low', 'medium', 'high' (default: medium).` (CLI: `--detail <level>`)
* `saveTo`: `Task or subtask ID (e.g., "15", "15.2") to automatically save the research conversation to.` (CLI: `--save-to <id>`)
* `saveFile`: `If true, saves the research conversation to a markdown file in '.taskmaster/docs/research/'.` (CLI: `--save-file`)
* `noFollowup`: `Disables the interactive follow-up question menu in the CLI.` (CLI: `--no-followup`)
* `tag`: `Specify which tag context to use for task-based context gathering. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `projectRoot`: `The directory of the project. Must be an absolute path.` (CLI: Determined automatically)
* **Usage:** **This is a POWERFUL tool that agents should use FREQUENTLY** to:
* Get fresh information beyond knowledge cutoff dates
* Research latest best practices, library updates, security patches
* Find implementation examples for specific technologies
* Validate approaches against current industry standards
* Get contextual advice based on project files and tasks
* **When to Consider Using Research:**
* **Before implementing any task** - Research current best practices
* **When encountering new technologies** - Get up-to-date implementation guidance (libraries, apis, etc)
* **For security-related tasks** - Find latest security recommendations
* **When updating dependencies** - Research breaking changes and migration guides
* **For performance optimization** - Get current performance best practices
* **When debugging complex issues** - Research known solutions and workarounds
* **Research + Action Pattern:**
* Use `research` to gather fresh information
* Use `update_subtask` to commit findings with timestamps
* Use `update_task` to incorporate research into task details
* Use `add_task` with research flag for informed task creation
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. The research provides FRESH data beyond the AI's training cutoff, making it invaluable for current best practices and recent developments.
---
## Tag Management
This new suite of commands allows you to manage different task contexts (tags).
### 26. List Tags (`tags`)
* **MCP Tool:** `list_tags`
* **CLI Command:** `task-master tags [options]`
* **Description:** `List all available tags with task counts, completion status, and other metadata.`
* **Key Parameters/Options:**
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* `--show-metadata`: `Include detailed metadata in the output (e.g., creation date, description).` (CLI: `--show-metadata`)
### 27. Add Tag (`add_tag`)
* **MCP Tool:** `add_tag`
* **CLI Command:** `task-master add-tag <tagName> [options]`
* **Description:** `Create a new, empty tag context, or copy tasks from another tag.`
* **Key Parameters/Options:**
* `tagName`: `Name of the new tag to create (alphanumeric, hyphens, underscores).` (CLI: `<tagName>` positional)
* `--from-branch`: `Creates a tag with a name derived from the current git branch, ignoring the <tagName> argument.` (CLI: `--from-branch`)
* `--copy-from-current`: `Copy tasks from the currently active tag to the new tag.` (CLI: `--copy-from-current`)
* `--copy-from <tag>`: `Copy tasks from a specific source tag to the new tag.` (CLI: `--copy-from <tag>`)
* `--description <text>`: `Provide an optional description for the new tag.` (CLI: `-d, --description <text>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
### 28. Delete Tag (`delete_tag`)
* **MCP Tool:** `delete_tag`
* **CLI Command:** `task-master delete-tag <tagName> [options]`
* **Description:** `Permanently delete a tag and all of its associated tasks.`
* **Key Parameters/Options:**
* `tagName`: `Name of the tag to delete.` (CLI: `<tagName>` positional)
* `--yes`: `Skip the confirmation prompt.` (CLI: `-y, --yes`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
### 29. Use Tag (`use_tag`)
* **MCP Tool:** `use_tag`
* **CLI Command:** `task-master use-tag <tagName>`
* **Description:** `Switch your active task context to a different tag.`
* **Key Parameters/Options:**
* `tagName`: `Name of the tag to switch to.` (CLI: `<tagName>` positional)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
### 30. Rename Tag (`rename_tag`)
* **MCP Tool:** `rename_tag`
* **CLI Command:** `task-master rename-tag <oldName> <newName>`
* **Description:** `Rename an existing tag.`
* **Key Parameters/Options:**
* `oldName`: `The current name of the tag.` (CLI: `<oldName>` positional)
* `newName`: `The new name for the tag.` (CLI: `<newName>` positional)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
### 31. Copy Tag (`copy_tag`)
* **MCP Tool:** `copy_tag`
* **CLI Command:** `task-master copy-tag <sourceName> <targetName> [options]`
* **Description:** `Copy an entire tag context, including all its tasks and metadata, to a new tag.`
* **Key Parameters/Options:**
* `sourceName`: `Name of the tag to copy from.` (CLI: `<sourceName>` positional)
* `targetName`: `Name of the new tag to create.` (CLI: `<targetName>` positional)
* `--description <text>`: `Optional description for the new tag.` (CLI: `-d, --description <text>`)
---
## Miscellaneous
### 32. Sync Readme (`sync-readme`) -- experimental
* **MCP Tool:** N/A
* **CLI Command:** `task-master sync-readme [options]`
* **Description:** `Exports your task list to your project's README.md file, useful for showcasing progress.`
* **Key Parameters/Options:**
* `status`: `Filter tasks by status (e.g., 'pending', 'done').` (CLI: `-s, --status <status>`)
* `withSubtasks`: `Include subtasks in the export.` (CLI: `--with-subtasks`)
* `tag`: `Specify which tag context to export from. Defaults to the current active tag.` (CLI: `--tag <name>`)
---
## Environment Variables Configuration (Updated)
Taskmaster primarily uses the **`.taskmasterconfig`** file (in project root) for configuration (models, parameters, logging level, etc.), managed via `task-master models --setup`.
Taskmaster primarily uses the **`.taskmaster/config.json`** file (in project root) for configuration (models, parameters, logging level, etc.), managed via `task-master models --setup`.
Environment variables are used **only** for sensitive API keys related to AI providers and specific overrides like the Ollama base URL:
@@ -395,13 +547,13 @@ Environment variables are used **only** for sensitive API keys related to AI pro
* `AZURE_OPENAI_API_KEY` (Requires `AZURE_OPENAI_ENDPOINT` too)
* `OPENROUTER_API_KEY`
* `XAI_API_KEY`
* `OLLANA_API_KEY` (Requires `OLLAMA_BASE_URL` too)
* **Endpoints (Optional/Provider Specific inside .taskmasterconfig):**
* `OLLAMA_API_KEY` (Requires `OLLAMA_BASE_URL` too)
* **Endpoints (Optional/Provider Specific inside .taskmaster/config.json):**
* `AZURE_OPENAI_ENDPOINT`
* `OLLAMA_BASE_URL` (Default: `http://localhost:11434/api`)
**Set API keys** in your **`.env`** file in the project root (for CLI use) or within the `env` section of your **`.cursor/mcp.json`** file (for MCP/Cursor integration). All other settings (model choice, max tokens, temperature, log level, custom endpoints) are managed in `.taskmasterconfig` via `task-master models` command or `models` MCP tool.
**Set API keys** in your **`.env`** file in the project root (for CLI use) or within the `env` section of your **`.cursor/mcp.json`** file (for MCP/Cursor integration). All other settings (model choice, max tokens, temperature, log level, custom endpoints) are managed in `.taskmaster/config.json` via `task-master models` command or `models` MCP tool.
---
For details on how these commands fit into the development process, see the [Development Workflow Guide](mdc:.cursor/rules/dev_workflow.mdc).
For details on how these commands fit into the development process, see the [Development Workflow Guide](mdc:.cursor/rules/dev_workflow.mdc).

View File

@@ -3,9 +3,19 @@ description: Guidelines for implementing task management operations
globs: scripts/modules/task-manager.js
alwaysApply: false
---
# Task Management Guidelines
## Tagged Task Lists System
Task Master now uses a **tagged task lists system** for multi-context task management:
- **Data Structure**: Tasks are organized into separate contexts (tags) within `tasks.json`
- **Legacy Format**: `{"tasks": [...]}`
- **Tagged Format**: `{"master": {"tasks": [...]}, "feature-branch": {"tasks": [...]}}`
- **Silent Migration**: Legacy format automatically converts to tagged format on first use
- **Tag Resolution**: Core functions receive legacy format for 100% backward compatibility
- **Default Tag**: "master" is used for all existing and new tasks unless otherwise specified
## Task Structure Standards
- **Core Task Properties**:
@@ -28,6 +38,25 @@ alwaysApply: false
};
```
- **Tagged Data Structure**:
- ✅ DO: Access tasks through tag resolution layer
- ✅ DO: Use `getTasksForTag(data, tagName)` to retrieve tasks for a specific tag
- ✅ DO: Use `setTasksForTag(data, tagName, tasks)` to update tasks for a specific tag
- ❌ DON'T: Directly manipulate the tagged structure in core functions
```javascript
// ✅ DO: Use tag resolution functions
const tasksData = readJSON(tasksPath);
const currentTag = getCurrentTag() || 'master';
const tasks = getTasksForTag(tasksData, currentTag);
// Manipulate tasks as normal...
// Save back to the tagged structure
setTasksForTag(tasksData, currentTag, tasks);
writeJSON(tasksPath, tasksData);
```
- **Subtask Structure**:
- ✅ DO: Use consistent properties across subtasks
- ✅ DO: Maintain simple numeric IDs within parent tasks
@@ -48,53 +77,56 @@ alwaysApply: false
## Task Creation and Parsing
- **ID Management**:
- ✅ DO: Assign unique sequential IDs to tasks
- ✅ DO: Calculate the next ID based on existing tasks
- ❌ DON'T: Hardcode or reuse IDs
- ✅ DO: Assign unique sequential IDs to tasks within each tag context
- ✅ DO: Calculate the next ID based on existing tasks in the current tag
- ❌ DON'T: Hardcode or reuse IDs within the same tag
```javascript
// ✅ DO: Calculate the next available ID
const highestId = Math.max(...data.tasks.map(t => t.id));
// ✅ DO: Calculate the next available ID within the current tag
const tasksData = readJSON(tasksPath);
const currentTag = getCurrentTag() || 'master';
const tasks = getTasksForTag(tasksData, currentTag);
const highestId = Math.max(...tasks.map(t => t.id));
const nextTaskId = highestId + 1;
```
- **PRD Parsing**:
- ✅ DO: Extract tasks from PRD documents using AI
- ✅ DO: Create tasks in the current tag context (defaults to "master")
- ✅ DO: Provide clear prompts to guide AI task generation
- ✅ DO: Validate and clean up AI-generated tasks
```javascript
// ✅ DO: Validate AI responses
try {
// Parse the JSON response
taskData = JSON.parse(jsonContent);
// Check that we have the required fields
if (!taskData.title || !taskData.description) {
throw new Error("Missing required fields in the generated task");
}
} catch (error) {
log('error', "Failed to parse AI's response as valid task JSON:", error);
process.exit(1);
}
// ✅ DO: Parse into current tag context
const tasksData = readJSON(tasksPath) || {};
const currentTag = getCurrentTag() || 'master';
// Parse tasks and add to current tag
const newTasks = await parseTasksFromPRD(prdContent);
setTasksForTag(tasksData, currentTag, newTasks);
writeJSON(tasksPath, tasksData);
```
## Task Updates and Modifications
- **Status Management**:
- ✅ DO: Provide functions for updating task status
- ✅ DO: Provide functions for updating task status within current tag context
- ✅ DO: Handle both individual tasks and subtasks
- ✅ DO: Consider subtask status when updating parent tasks
```javascript
// ✅ DO: Handle status updates for both tasks and subtasks
// ✅ DO: Handle status updates within tagged context
async function setTaskStatus(tasksPath, taskIdInput, newStatus) {
const tasksData = readJSON(tasksPath);
const currentTag = getCurrentTag() || 'master';
const tasks = getTasksForTag(tasksData, currentTag);
// Check if it's a subtask (e.g., "1.2")
if (taskIdInput.includes('.')) {
const [parentId, subtaskId] = taskIdInput.split('.').map(id => parseInt(id, 10));
// Find the parent task and subtask
const parentTask = data.tasks.find(t => t.id === parentId);
const parentTask = tasks.find(t => t.id === parentId);
const subtask = parentTask.subtasks.find(st => st.id === subtaskId);
// Update subtask status
@@ -109,7 +141,7 @@ alwaysApply: false
}
} else {
// Handle regular task
const task = data.tasks.find(t => t.id === parseInt(taskIdInput, 10));
const task = tasks.find(t => t.id === parseInt(taskIdInput, 10));
task.status = newStatus;
// If marking as done, also mark subtasks
@@ -119,16 +151,24 @@ alwaysApply: false
});
}
}
// Save updated tasks back to tagged structure
setTasksForTag(tasksData, currentTag, tasks);
writeJSON(tasksPath, tasksData);
}
```
- **Task Expansion**:
- ✅ DO: Use AI to generate detailed subtasks
- ✅ DO: Use AI to generate detailed subtasks within current tag context
- ✅ DO: Consider complexity analysis for subtask counts
- ✅ DO: Ensure proper IDs for newly created subtasks
```javascript
// ✅ DO: Generate appropriate subtasks based on complexity
const tasksData = readJSON(tasksPath);
const currentTag = getCurrentTag() || 'master';
const tasks = getTasksForTag(tasksData, currentTag);
if (taskAnalysis) {
log('info', `Found complexity analysis for task ${taskId}: Score ${taskAnalysis.complexityScore}/10`);
@@ -138,6 +178,11 @@ alwaysApply: false
log('info', `Using recommended number of subtasks: ${numSubtasks}`);
}
}
// Generate subtasks and save back
// ... subtask generation logic ...
setTasksForTag(tasksData, currentTag, tasks);
writeJSON(tasksPath, tasksData);
```
## Task File Generation
@@ -155,67 +200,65 @@ alwaysApply: false
// Format dependencies with their status
if (task.dependencies && task.dependencies.length > 0) {
content += `# Dependencies: ${formatDependenciesWithStatus(task.dependencies, data.tasks)}\n`;
content += `# Dependencies: ${formatDependenciesWithStatus(task.dependencies, tasks)}\n`;
} else {
content += '# Dependencies: None\n';
}
```
- **Subtask Inclusion**:
- ✅ DO: Include subtasks in parent task files
- ✅ DO: Use consistent indentation for subtask sections
- DO: Display subtask dependencies with proper formatting
- **Tagged Context Awareness**:
- ✅ DO: Generate task files from current tag context
- ✅ DO: Include tag information in generated files
- DON'T: Mix tasks from different tags in file generation
```javascript
// ✅ DO: Format subtasks correctly in task files
if (task.subtasks && task.subtasks.length > 0) {
content += '\n# Subtasks:\n';
// ✅ DO: Generate files for current tag context
async function generateTaskFiles(tasksPath, outputDir) {
const tasksData = readJSON(tasksPath);
const currentTag = getCurrentTag() || 'master';
const tasks = getTasksForTag(tasksData, currentTag);
task.subtasks.forEach(subtask => {
content += `## ${subtask.id}. ${subtask.title} [${subtask.status || 'pending'}]\n`;
// Format subtask dependencies
if (subtask.dependencies && subtask.dependencies.length > 0) {
// Format the dependencies
content += `### Dependencies: ${formattedDeps}\n`;
} else {
content += '### Dependencies: None\n';
}
content += `### Description: ${subtask.description || ''}\n`;
content += '### Details:\n';
content += (subtask.details || '').split('\n').map(line => line).join('\n');
content += '\n\n';
});
// Add tag context to file header
let content = `# Tag Context: ${currentTag}\n`;
content += `# Task ID: ${task.id}\n`;
// ... rest of file generation
}
```
## Task Listing and Display
- **Filtering and Organization**:
- ✅ DO: Allow filtering tasks by status
- ✅ DO: Allow filtering tasks by status within current tag context
- ✅ DO: Handle subtask display in lists
- ✅ DO: Use consistent table formats
```javascript
// ✅ DO: Implement clear filtering and organization
// ✅ DO: Implement clear filtering within tag context
const tasksData = readJSON(tasksPath);
const currentTag = getCurrentTag() || 'master';
const tasks = getTasksForTag(tasksData, currentTag);
// Filter tasks by status if specified
const filteredTasks = statusFilter
? data.tasks.filter(task =>
? tasks.filter(task =>
task.status && task.status.toLowerCase() === statusFilter.toLowerCase())
: data.tasks;
: tasks;
```
- **Progress Tracking**:
- ✅ DO: Calculate and display completion statistics
- ✅ DO: Calculate and display completion statistics for current tag
- ✅ DO: Track both task and subtask completion
- ✅ DO: Use visual progress indicators
```javascript
// ✅ DO: Track and display progress
// ✅ DO: Track and display progress within tag context
const tasksData = readJSON(tasksPath);
const currentTag = getCurrentTag() || 'master';
const tasks = getTasksForTag(tasksData, currentTag);
// Calculate completion statistics
const totalTasks = data.tasks.length;
const completedTasks = data.tasks.filter(task =>
const totalTasks = tasks.length;
const completedTasks = tasks.filter(task =>
task.status === 'done' || task.status === 'completed').length;
const completionPercentage = totalTasks > 0 ? (completedTasks / totalTasks) * 100 : 0;
@@ -223,7 +266,7 @@ alwaysApply: false
let totalSubtasks = 0;
let completedSubtasks = 0;
data.tasks.forEach(task => {
tasks.forEach(task => {
if (task.subtasks && task.subtasks.length > 0) {
totalSubtasks += task.subtasks.length;
completedSubtasks += task.subtasks.filter(st =>
@@ -232,99 +275,52 @@ alwaysApply: false
});
```
## Complexity Analysis
## Migration and Compatibility
- **Scoring System**:
- ✅ DO: Use AI to analyze task complexity
- ✅ DO: Include complexity scores (1-10)
- ✅ DO: Generate specific expansion recommendations
- **Silent Migration Handling**:
- ✅ DO: Implement silent migration in `readJSON()` function
- ✅ DO: Detect legacy format and convert automatically
- ✅ DO: Preserve all existing task data during migration
```javascript
// ✅ DO: Handle complexity analysis properly
const report = {
meta: {
generatedAt: new Date().toISOString(),
tasksAnalyzed: tasksData.tasks.length,
thresholdScore: thresholdScore,
projectName: tasksData.meta?.projectName || 'Your Project Name',
usedResearch: useResearch
},
complexityAnalysis: complexityAnalysis
};
```
- **Analysis-Based Workflow**:
- ✅ DO: Use complexity reports to guide task expansion
- ✅ DO: Prioritize complex tasks for more detailed breakdown
- ✅ DO: Use expansion prompts from complexity analysis
```javascript
// ✅ DO: Apply complexity analysis to workflow
// Sort tasks by complexity if report exists, otherwise by ID
if (complexityReport && complexityReport.complexityAnalysis) {
log('info', 'Sorting tasks by complexity...');
// ✅ DO: Handle silent migration (implemented in utils.js)
function readJSON(filepath) {
let data = JSON.parse(fs.readFileSync(filepath, 'utf8'));
// Create a map of task IDs to complexity scores
const complexityMap = new Map();
complexityReport.complexityAnalysis.forEach(analysis => {
complexityMap.set(analysis.taskId, analysis.complexityScore);
});
// Silent migration for tasks.json files
if (data.tasks && Array.isArray(data.tasks) && !data.master && isTasksFile) {
const migratedData = {
master: {
tasks: data.tasks
}
};
writeJSON(filepath, migratedData);
data = migratedData;
}
// Sort tasks by complexity score (high to low)
tasksToExpand.sort((a, b) => {
const scoreA = complexityMap.get(a.id) || 0;
const scoreB = complexityMap.get(b.id) || 0;
return scoreB - scoreA;
});
return data;
}
```
## Next Task Selection
- **Eligibility Criteria**:
- DO: Consider dependencies when finding next tasks
- ✅ DO: Prioritize by task priority and dependency count
- ✅ DO: Skip completed tasks
- **Tag Resolution**:
- ✅ DO: Use tag resolution functions to maintain backward compatibility
- ✅ DO: Return legacy format to core functions
- DON'T: Expose tagged structure to existing core logic
```javascript
// ✅ DO: Use proper task prioritization logic
function findNextTask(tasks) {
// Get all completed task IDs
const completedTaskIds = new Set(
tasks
.filter(t => t.status === 'done' || t.status === 'completed')
.map(t => t.id)
);
// ✅ DO: Use tag resolution layer
function getTasksForTag(data, tagName) {
if (data.tasks && Array.isArray(data.tasks)) {
// Legacy format - return as-is
return data.tasks;
}
// Filter for pending tasks whose dependencies are all satisfied
const eligibleTasks = tasks.filter(task =>
(task.status === 'pending' || task.status === 'in-progress') &&
task.dependencies &&
task.dependencies.every(depId => completedTaskIds.has(depId))
);
if (data[tagName] && data[tagName].tasks) {
// Tagged format - return tasks for specified tag
return data[tagName].tasks;
}
// Sort by priority, dependency count, and ID
const priorityValues = { 'high': 3, 'medium': 2, 'low': 1 };
const nextTask = eligibleTasks.sort((a, b) => {
// Priority first
const priorityA = priorityValues[a.priority || 'medium'] || 2;
const priorityB = priorityValues[b.priority || 'medium'] || 2;
if (priorityB !== priorityA) {
return priorityB - priorityA; // Higher priority first
}
// Dependency count next
if (a.dependencies.length !== b.dependencies.length) {
return a.dependencies.length - b.dependencies.length; // Fewer dependencies first
}
// ID last
return a.id - b.id; // Lower ID first
})[0];
return nextTask;
return [];
}
```

View File

@@ -150,4 +150,91 @@ alwaysApply: false
));
```
Refer to [`ui.js`](mdc:scripts/modules/ui.js) for implementation examples and [`new_features.mdc`](mdc:.cursor/rules/new_features.mdc) for integration guidelines.
## Enhanced Display Patterns
### **Token Breakdown Display**
- Use detailed, granular token breakdowns for AI-powered commands
- Display context sources with individual token counts
- Show both token count and character count for transparency
```javascript
// ✅ DO: Display detailed token breakdown
function displayDetailedTokenBreakdown(tokenBreakdown, systemTokens, userTokens) {
const sections = [];
if (tokenBreakdown.tasks?.length > 0) {
const taskDetails = tokenBreakdown.tasks.map(task =>
`${task.type === 'subtask' ? ' ' : ''}${task.id}: ${task.tokens.toLocaleString()}`
).join('\n');
sections.push(`Tasks (${tokenBreakdown.tasks.reduce((sum, t) => sum + t.tokens, 0).toLocaleString()}):\n${taskDetails}`);
}
const content = sections.join('\n\n');
console.log(boxen(content, {
title: chalk.cyan('Token Usage'),
padding: { top: 1, bottom: 1, left: 2, right: 2 },
borderStyle: 'round',
borderColor: 'cyan'
}));
}
```
### **Code Block Syntax Highlighting**
- Use `cli-highlight` library for syntax highlighting in terminal output
- Process code blocks in AI responses for better readability
```javascript
// ✅ DO: Enhance code blocks with syntax highlighting
import { highlight } from 'cli-highlight';
function processCodeBlocks(text) {
return text.replace(/```(\w+)?\n([\s\S]*?)```/g, (match, language, code) => {
try {
const highlighted = highlight(code.trim(), {
language: language || 'javascript',
theme: 'default'
});
return `\n${highlighted}\n`;
} catch (error) {
return `\n${code.trim()}\n`;
}
});
}
```
### **Multi-Section Result Display**
- Use separate boxes for headers, content, and metadata
- Maintain consistent styling across different result types
```javascript
// ✅ DO: Use structured result display
function displayResults(result, query, detailLevel) {
// Header with query info
const header = boxen(
chalk.green.bold('Research Results') + '\n\n' +
chalk.gray('Query: ') + chalk.white(query) + '\n' +
chalk.gray('Detail Level: ') + chalk.cyan(detailLevel),
{
padding: { top: 1, bottom: 1, left: 2, right: 2 },
margin: { top: 1, bottom: 0 },
borderStyle: 'round',
borderColor: 'green'
}
);
console.log(header);
// Process and display main content
const processedResult = processCodeBlocks(result);
const contentBox = boxen(processedResult, {
padding: { top: 1, bottom: 1, left: 2, right: 2 },
margin: { top: 0, bottom: 1 },
borderStyle: 'single',
borderColor: 'gray'
});
console.log(contentBox);
console.log(chalk.green('✓ Operation complete'));
}
```
Refer to [`ui.js`](mdc:scripts/modules/ui.js) for implementation examples, [`context_gathering.mdc`](mdc:.cursor/rules/context_gathering.mdc) for context display patterns, and [`new_features.mdc`](mdc:.cursor/rules/new_features.mdc) for integration guidelines.

View File

@@ -1,6 +1,6 @@
---
description: Guidelines for implementing utility functions
globs: scripts/modules/utils.js, mcp-server/src/**/*
description:
globs:
alwaysApply: false
---
# Utility Function Guidelines
@@ -46,7 +46,7 @@ alwaysApply: false
- **Location**:
- **Core CLI Utilities**: Place utilities used primarily by the core `task-master` CLI logic and command modules (`scripts/modules/*`) into [`scripts/modules/utils.js`](mdc:scripts/modules/utils.js).
- **MCP Server Utilities**: Place utilities specifically designed to support the MCP server implementation into the appropriate subdirectories within `mcp-server/src/`.
- Path/Core Logic Helpers: [`mcp-server/src/core/utils/`](mdc:mcp-server/src/core/utils/) (e.g., `path-utils.js`).
- Path/Core Logic Helpers: [`mcp-server/src/core/utils/`](mdc:mcp-server/src/core/utils) (e.g., `path-utils.js`).
- Tool Execution/Response Helpers: [`mcp-server/src/tools/utils.js`](mdc:mcp-server/src/tools/utils.js).
## Documentation Standards
@@ -110,7 +110,7 @@ Taskmaster configuration (excluding API keys) is primarily managed through the `
- ✅ DO: Use appropriate icons for different log levels
- ✅ DO: Respect the configured log level
- ❌ DON'T: Add direct console.log calls outside the logging utility
- **Note on Passed Loggers**: When a logger object (like the FastMCP `log` object) is passed *as a parameter* (e.g., as `mcpLog`) into core Task Master functions, the receiving function often expects specific methods (`.info`, `.warn`, `.error`, etc.) to be directly callable on that object (e.g., `mcpLog[level](...)`). If the passed logger doesn't have this exact structure, a wrapper object may be needed. See the **Handling Logging Context (`mcpLog`)** section in [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc) for the standard pattern used in direct functions.
- **Note on Passed Loggers**: When a logger object (like the FastMCP `log` object) is passed *as a parameter* (e.g., as `mcpLog`) into core Task Master functions, the receiving function often expects specific methods (`.info`, `.warn`, `.error`, etc.) to be directly callable on that object (e.g., `mcpLog[level](mdc:...)`). If the passed logger doesn't have this exact structure, a wrapper object may be needed. See the **Handling Logging Context (`mcpLog`)** section in [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc) for the standard pattern used in direct functions.
- **Logger Wrapper Pattern**:
- ✅ DO: Use the logger wrapper pattern when passing loggers to prevent `mcpLog[level] is not a function` errors:
@@ -548,4 +548,628 @@ export {
};
```
Refer to [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc) and [`architecture.mdc`](mdc:.cursor/rules/architecture.mdc) for more context on MCP server architecture and integration.
## Context Gathering Utilities
### **ContextGatherer** (`scripts/modules/utils/contextGatherer.js`)
- **Multi-Source Context Extraction**:
- ✅ DO: Use for AI-powered commands that need project context
- ✅ DO: Support tasks, files, custom text, and project tree context
- ✅ DO: Implement detailed token counting with `gpt-tokens` library
- ✅ DO: Provide multiple output formats (research, chat, system-prompt)
```javascript
// ✅ DO: Use ContextGatherer for consistent context extraction
import { ContextGatherer } from '../utils/contextGatherer.js';
const gatherer = new ContextGatherer(projectRoot, tasksPath);
const result = await gatherer.gather({
tasks: ['15', '16.2'],
files: ['src/api.js'],
customContext: 'Additional context',
includeProjectTree: true,
format: 'research',
includeTokenCounts: true
});
```
### **FuzzyTaskSearch** (`scripts/modules/utils/fuzzyTaskSearch.js`)
- **Intelligent Task Discovery**:
- ✅ DO: Use for automatic task relevance detection
- ✅ DO: Configure search parameters based on use case context
- ✅ DO: Implement purpose-based categorization for better matching
- ✅ DO: Sort results by relevance score and task ID
```javascript
// ✅ DO: Use FuzzyTaskSearch for intelligent task discovery
import { FuzzyTaskSearch } from '../utils/fuzzyTaskSearch.js';
const fuzzySearch = new FuzzyTaskSearch(tasksData.tasks, 'research');
const searchResults = fuzzySearch.findRelevantTasks(query, {
maxResults: 8,
includeRecent: true,
includeCategoryMatches: true
});
const taskIds = fuzzySearch.getTaskIds(searchResults);
```
- **Integration Guidelines**:
- ✅ DO: Use fuzzy search to supplement user-provided task IDs
- ✅ DO: Display discovered task IDs to users for transparency
- ✅ DO: Sort discovered task IDs numerically for better readability
- ❌ DON'T: Replace explicit user task selections with fuzzy results
Refer to [`context_gathering.mdc`](mdc:.cursor/rules/context_gathering.mdc) for detailed implementation patterns, [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc) and [`architecture.mdc`](mdc:.cursor/rules/architecture.mdc) for more context on MCP server architecture and integration.
## File System Operations
- **JSON File Handling**:
- ✅ DO: Use `readJSON` and `writeJSON` for all JSON operations
- ✅ DO: Include error handling for file operations
- ✅ DO: Validate JSON structure after reading
- ❌ DON'T: Use raw `fs.readFileSync` or `fs.writeFileSync` for JSON
```javascript
// ✅ DO: Use utility functions with error handling
function readJSON(filepath) {
try {
if (!fs.existsSync(filepath)) {
return null; // or appropriate default
}
let data = JSON.parse(fs.readFileSync(filepath, 'utf8'));
// Silent migration for tasks.json files: Transform old format to tagged format
const isTasksFile = filepath.includes('tasks.json') || path.basename(filepath) === 'tasks.json';
if (data && data.tasks && Array.isArray(data.tasks) && !data.master && isTasksFile) {
// Migrate from old format { "tasks": [...] } to new format { "master": { "tasks": [...] } }
const migratedData = {
master: {
tasks: data.tasks
}
};
writeJSON(filepath, migratedData);
// Set global flag for CLI notice and perform complete migration
global.taskMasterMigrationOccurred = true;
performCompleteTagMigration(filepath);
data = migratedData;
}
return data;
} catch (error) {
log('error', `Failed to read JSON from ${filepath}: ${error.message}`);
return null;
}
}
function writeJSON(filepath, data) {
try {
const dirPath = path.dirname(filepath);
if (!fs.existsSync(dirPath)) {
fs.mkdirSync(dirPath, { recursive: true });
}
fs.writeFileSync(filepath, JSON.stringify(data, null, 2));
} catch (error) {
log('error', `Failed to write JSON to ${filepath}: ${error.message}`);
throw error;
}
}
```
- **Path Resolution**:
- ✅ DO: Use `path.join()` for cross-platform path construction
- ✅ DO: Use `path.resolve()` for absolute paths
- ✅ DO: Validate paths before file operations
```javascript
// ✅ DO: Handle paths correctly
function findProjectRoot(startPath = process.cwd()) {
let currentPath = path.resolve(startPath);
const rootPath = path.parse(currentPath).root;
while (currentPath !== rootPath) {
const taskMasterPath = path.join(currentPath, '.taskmaster');
if (fs.existsSync(taskMasterPath)) {
return currentPath;
}
currentPath = path.dirname(currentPath);
}
return null; // Not found
}
```
## Tagged Task Lists System Utilities
- **Tag Resolution Functions**:
- ✅ DO: Use tag resolution layer for all task data access
- ✅ DO: Provide backward compatibility with legacy format
- ✅ DO: Default to "master" tag when no tag is specified
```javascript
// ✅ DO: Implement tag resolution functions
function getTasksForTag(data, tagName = 'master') {
if (!data) {
return [];
}
// Handle legacy format - direct tasks array
if (data.tasks && Array.isArray(data.tasks)) {
return data.tasks;
}
// Handle tagged format - tasks under specific tag
if (data[tagName] && data[tagName].tasks && Array.isArray(data[tagName].tasks)) {
return data[tagName].tasks;
}
return [];
}
function setTasksForTag(data, tagName = 'master', tasks) {
// Ensure data object exists
if (!data) {
data = {};
}
// Create tag structure if it doesn't exist
if (!data[tagName]) {
data[tagName] = {};
}
// Set tasks for the tag
data[tagName].tasks = tasks;
return data;
}
function getCurrentTag() {
// Get current tag from state.json or default to 'master'
try {
const projectRoot = findProjectRoot();
if (!projectRoot) return 'master';
const statePath = path.join(projectRoot, '.taskmaster', 'state.json');
if (fs.existsSync(statePath)) {
const state = readJSON(statePath);
return state.currentTag || 'master';
}
} catch (error) {
log('debug', `Error reading current tag: ${error.message}`);
}
return 'master';
}
```
- **Migration Functions**:
- ✅ DO: Implement complete migration for all related files
- ✅ DO: Handle configuration and state file creation
- ✅ DO: Provide migration status tracking
```javascript
// ✅ DO: Implement complete migration system
function performCompleteTagMigration(tasksJsonPath) {
try {
// Derive project root from tasks.json path
const projectRoot = findProjectRoot(path.dirname(tasksJsonPath)) || path.dirname(tasksJsonPath);
// 1. Migrate config.json - add defaultTag and tags section
const configPath = path.join(projectRoot, '.taskmaster', 'config.json');
if (fs.existsSync(configPath)) {
migrateConfigJson(configPath);
}
// 2. Create state.json if it doesn't exist
const statePath = path.join(projectRoot, '.taskmaster', 'state.json');
if (!fs.existsSync(statePath)) {
createStateJson(statePath);
}
if (getDebugFlag()) {
log('debug', 'Completed tagged task lists migration for project');
}
} catch (error) {
if (getDebugFlag()) {
log('warn', `Error during complete tag migration: ${error.message}`);
}
}
}
function migrateConfigJson(configPath) {
try {
const config = readJSON(configPath);
if (!config) return;
let modified = false;
// Add global.defaultTag if missing
if (!config.global) {
config.global = {};
}
if (!config.global.defaultTag) {
config.global.defaultTag = 'master';
modified = true;
}
// Add tags section if missing
if (!config.tags) {
config.tags = {
// Git integration settings removed - now manual only
};
modified = true;
}
if (modified) {
writeJSON(configPath, config);
if (getDebugFlag()) {
log('debug', 'Updated config.json with tagged task system settings');
}
}
} catch (error) {
if (getDebugFlag()) {
log('warn', `Error migrating config.json: ${error.message}`);
}
}
}
function createStateJson(statePath) {
try {
const initialState = {
currentTag: 'master',
lastSwitched: new Date().toISOString(),
migrationNoticeShown: false
};
writeJSON(statePath, initialState);
if (getDebugFlag()) {
log('debug', 'Created initial state.json for tagged task system');
}
} catch (error) {
if (getDebugFlag()) {
log('warn', `Error creating state.json: ${error.message}`);
}
}
}
function markMigrationForNotice() {
try {
const projectRoot = findProjectRoot();
if (!projectRoot) return;
const statePath = path.join(projectRoot, '.taskmaster', 'state.json');
const state = readJSON(statePath) || {};
state.migrationNoticeShown = false; // Reset to show notice
writeJSON(statePath, state);
} catch (error) {
if (getDebugFlag()) {
log('warn', `Error marking migration for notice: ${error.message}`);
}
}
}
```
## Logging Functions
- **Consistent Logging**:
- ✅ DO: Use the central `log` function for all output
- ✅ DO: Use appropriate log levels (info, warn, error, debug)
- ✅ DO: Support silent mode for programmatic usage
```javascript
// ✅ DO: Implement consistent logging with silent mode
let silentMode = false;
function log(level, ...messages) {
if (silentMode && level !== 'error') {
return; // Suppress non-error logs in silent mode
}
const timestamp = new Date().toISOString();
const formattedMessage = messages.join(' ');
switch (level) {
case 'error':
console.error(`[ERROR] ${formattedMessage}`);
break;
case 'warn':
console.warn(`[WARN] ${formattedMessage}`);
break;
case 'info':
console.log(`[INFO] ${formattedMessage}`);
break;
case 'debug':
if (getDebugFlag()) {
console.log(`[DEBUG] ${formattedMessage}`);
}
break;
default:
console.log(formattedMessage);
}
}
function enableSilentMode() {
silentMode = true;
}
function disableSilentMode() {
silentMode = false;
}
function isSilentMode() {
return silentMode;
}
```
## Task Utilities
- **Task Finding and Manipulation**:
- ✅ DO: Use tagged task system aware functions
- ✅ DO: Handle both task and subtask operations
- ✅ DO: Validate task IDs before operations
```javascript
// ✅ DO: Implement tag-aware task utilities
function findTaskById(tasks, taskId) {
if (!Array.isArray(tasks)) {
return null;
}
return tasks.find(task => task.id === taskId) || null;
}
function findSubtaskById(tasks, parentId, subtaskId) {
const parentTask = findTaskById(tasks, parentId);
if (!parentTask || !parentTask.subtasks) {
return null;
}
return parentTask.subtasks.find(subtask => subtask.id === subtaskId) || null;
}
function getNextTaskId(tasks) {
if (!Array.isArray(tasks) || tasks.length === 0) {
return 1;
}
const maxId = Math.max(...tasks.map(task => task.id));
return maxId + 1;
}
function getNextSubtaskId(parentTask) {
if (!parentTask.subtasks || parentTask.subtasks.length === 0) {
return 1;
}
const maxId = Math.max(...parentTask.subtasks.map(subtask => subtask.id));
return maxId + 1;
}
```
## String Utilities
- **Text Processing**:
- ✅ DO: Handle text truncation appropriately
- ✅ DO: Provide consistent formatting functions
- ✅ DO: Support different output formats
```javascript
// ✅ DO: Implement useful string utilities
function truncate(str, maxLength = 50) {
if (!str || typeof str !== 'string') {
return '';
}
if (str.length <= maxLength) {
return str;
}
return str.substring(0, maxLength - 3) + '...';
}
function formatDuration(ms) {
const seconds = Math.floor(ms / 1000);
const minutes = Math.floor(seconds / 60);
const hours = Math.floor(minutes / 60);
if (hours > 0) {
return `${hours}h ${minutes % 60}m ${seconds % 60}s`;
} else if (minutes > 0) {
return `${minutes}m ${seconds % 60}s`;
} else {
return `${seconds}s`;
}
}
function capitalizeFirst(str) {
if (!str || typeof str !== 'string') {
return '';
}
return str.charAt(0).toUpperCase() + str.slice(1).toLowerCase();
}
```
## Dependency Management Utilities
- **Dependency Analysis**:
- ✅ DO: Detect circular dependencies
- ✅ DO: Validate dependency references
- ✅ DO: Support cross-tag dependency checking (future enhancement)
```javascript
// ✅ DO: Implement dependency utilities
function findCycles(tasks) {
const cycles = [];
const visited = new Set();
const recStack = new Set();
function dfs(taskId, path = []) {
if (recStack.has(taskId)) {
// Found a cycle
const cycleStart = path.indexOf(taskId);
const cycle = path.slice(cycleStart).concat([taskId]);
cycles.push(cycle);
return;
}
if (visited.has(taskId)) {
return;
}
visited.add(taskId);
recStack.add(taskId);
const task = findTaskById(tasks, taskId);
if (task && task.dependencies) {
task.dependencies.forEach(depId => {
dfs(depId, path.concat([taskId]));
});
}
recStack.delete(taskId);
}
tasks.forEach(task => {
if (!visited.has(task.id)) {
dfs(task.id);
}
});
return cycles;
}
function validateDependencies(tasks) {
const validationErrors = [];
const taskIds = new Set(tasks.map(task => task.id));
tasks.forEach(task => {
if (task.dependencies) {
task.dependencies.forEach(depId => {
if (!taskIds.has(depId)) {
validationErrors.push({
taskId: task.id,
invalidDependency: depId,
message: `Task ${task.id} depends on non-existent task ${depId}`
});
}
});
}
});
return validationErrors;
}
```
## Environment and Configuration Utilities
- **Environment Variable Resolution**:
- ✅ DO: Support both `.env` files and MCP session environment
- ✅ DO: Provide fallbacks for missing values
- ✅ DO: Handle API key resolution correctly
```javascript
// ✅ DO: Implement flexible environment resolution
function resolveEnvVariable(key, sessionEnv = null) {
// First check session environment (for MCP)
if (sessionEnv && sessionEnv[key]) {
return sessionEnv[key];
}
// Then check process environment
if (process.env[key]) {
return process.env[key];
}
// Finally try .env file if in project root
try {
const projectRoot = findProjectRoot();
if (projectRoot) {
const envPath = path.join(projectRoot, '.env');
if (fs.existsSync(envPath)) {
const envContent = fs.readFileSync(envPath, 'utf8');
const lines = envContent.split('\n');
for (const line of lines) {
const [envKey, envValue] = line.split('=');
if (envKey && envKey.trim() === key) {
return envValue ? envValue.trim().replace(/^["']|["']$/g, '') : undefined;
}
}
}
}
} catch (error) {
log('debug', `Error reading .env file: ${error.message}`);
}
return undefined;
}
function getDebugFlag() {
const debugFlag = resolveEnvVariable('TASKMASTER_DEBUG') ||
resolveEnvVariable('DEBUG') ||
'false';
return debugFlag.toLowerCase() === 'true';
}
```
## Export Pattern
- **Module Exports**:
- ✅ DO: Export all utility functions explicitly
- ✅ DO: Group related functions logically
- ✅ DO: Include new tagged system utilities
```javascript
// ✅ DO: Export utilities in logical groups
module.exports = {
// File system utilities
readJSON,
writeJSON,
findProjectRoot,
// Tagged task system utilities
getTasksForTag,
setTasksForTag,
getCurrentTag,
performCompleteTagMigration,
migrateConfigJson,
createStateJson,
markMigrationForNotice,
// Logging utilities
log,
enableSilentMode,
disableSilentMode,
isSilentMode,
// Task utilities
findTaskById,
findSubtaskById,
getNextTaskId,
getNextSubtaskId,
// String utilities
truncate,
formatDuration,
capitalizeFirst,
// Dependency utilities
findCycles,
validateDependencies,
// Environment utilities
resolveEnvVariable,
getDebugFlag,
// Legacy utilities (maintained for compatibility)
aggregateTelemetry
};
```
Refer to [`utils.js`](mdc:scripts/modules/utils.js) for implementation examples and [`architecture.mdc`](mdc:.cursor/rules/architecture.mdc) for integration patterns.

View File

@@ -4,6 +4,13 @@ PERPLEXITY_API_KEY=YOUR_PERPLEXITY_KEY_HERE
OPENAI_API_KEY=YOUR_OPENAI_KEY_HERE
GOOGLE_API_KEY=YOUR_GOOGLE_KEY_HERE
MISTRAL_API_KEY=YOUR_MISTRAL_KEY_HERE
GROQ_API_KEY=YOUR_GROQ_KEY_HERE
OPENROUTER_API_KEY=YOUR_OPENROUTER_KEY_HERE
XAI_API_KEY=YOUR_XAI_KEY_HERE
AZURE_OPENAI_API_KEY=YOUR_AZURE_KEY_HERE
# Google Vertex AI Configuration
VERTEX_PROJECT_ID=your-gcp-project-id
VERTEX_LOCATION=us-central1
# Optional: Path to service account credentials JSON file (alternative to API key)
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account-credentials.json

40
.github/workflows/update-models-md.yml vendored Normal file
View File

@@ -0,0 +1,40 @@
name: Update models.md from supported-models.json
on:
push:
branches:
- main
- next
paths:
- 'scripts/modules/supported-models.json'
- 'docs/scripts/models-json-to-markdown.js'
jobs:
update_markdown:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: 20
- name: Run transformation script
run: node docs/scripts/models-json-to-markdown.js
- name: Format Markdown with Prettier
run: npx prettier --write docs/models.md
- name: Stage docs/models.md
run: git add docs/models.md
- name: Commit & Push docs/models.md
uses: actions-js/push@master
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
branch: ${{ github.ref_name }}
message: 'docs: Auto-update and format models.md'
author_name: 'github-actions[bot]'
author_email: 'github-actions[bot]@users.noreply.github.com'

29
.gitignore vendored
View File

@@ -19,13 +19,26 @@ npm-debug.log*
yarn-debug.log*
yarn-error.log*
lerna-debug.log*
tests/e2e/_runs/
tests/e2e/log/
# Coverage directory used by tools like istanbul
coverage
coverage/
*.lcov
# Jest cache
.jest/
# Test temporary files and directories
tests/temp/
tests/e2e/_runs/
tests/e2e/log/
tests/**/*.log
tests/**/coverage/
# Test database files (if any)
tests/**/*.db
tests/**/*.sqlite
tests/**/*.sqlite3
# Optional npm cache directory
.npm
@@ -64,3 +77,13 @@ dev-debug.log
# NPMRC
.npmrc
# Added by Task Master AI
# Editor directories and files
.idea
.vscode
*.suo
*.ntvs*
*.njsproj
*.sln
*.sw?

1
.nvmrc Normal file
View File

@@ -0,0 +1 @@
22

View File

@@ -1,7 +0,0 @@
# Ignore artifacts:
build
coverage
.changeset
tasks
package-lock.json
tests/fixture/*.json

View File

@@ -1,11 +0,0 @@
{
"printWidth": 80,
"tabWidth": 2,
"useTabs": true,
"semi": true,
"singleQuote": true,
"trailingComma": "none",
"bracketSpacing": true,
"arrowParens": "always",
"endOfLine": "lf"
}

37
.taskmaster/config.json Normal file
View File

@@ -0,0 +1,37 @@
{
"models": {
"main": {
"provider": "groq",
"modelId": "llama-3.1-8b-instant",
"maxTokens": 131072,
"temperature": 0.2
},
"research": {
"provider": "groq",
"modelId": "llama-3.3-70b-versatile",
"maxTokens": 32768,
"temperature": 0.1
},
"fallback": {
"provider": "anthropic",
"modelId": "claude-3-7-sonnet-20250219",
"maxTokens": 128000,
"temperature": 0.2
}
},
"global": {
"logLevel": "info",
"debug": false,
"defaultNumTasks": 10,
"defaultSubtasks": 5,
"defaultPriority": "medium",
"projectName": "Taskmaster",
"ollamaBaseURL": "http://localhost:11434/api",
"bedrockBaseURL": "https://bedrock.us-east-1.amazonaws.com",
"responseLanguage": "English",
"userId": "1234567890",
"azureBaseURL": "https://your-endpoint.azure.com/",
"defaultTag": "master"
},
"claudeCode": {}
}

View File

@@ -382,25 +382,25 @@ The output report structure is:
```json
{
"meta": {
"generatedAt": "2023-06-15T12:34:56.789Z",
"tasksAnalyzed": 20,
"thresholdScore": 5,
"projectName": "Your Project Name",
"usedResearch": true
},
"complexityAnalysis": [
{
"taskId": 8,
"taskTitle": "Develop Implementation Drift Handling",
"complexityScore": 9.5,
"recommendedSubtasks": 6,
"expansionPrompt": "Create subtasks that handle detecting...",
"reasoning": "This task requires sophisticated logic...",
"expansionCommand": "node scripts/dev.js expand --id=8 --num=6 --prompt=\"Create subtasks...\" --research"
}
// More tasks sorted by complexity score (highest first)
]
"meta": {
"generatedAt": "2023-06-15T12:34:56.789Z",
"tasksAnalyzed": 20,
"thresholdScore": 5,
"projectName": "Your Project Name",
"usedResearch": true
},
"complexityAnalysis": [
{
"taskId": 8,
"taskTitle": "Develop Implementation Drift Handling",
"complexityScore": 9.5,
"recommendedSubtasks": 6,
"expansionPrompt": "Create subtasks that handle detecting...",
"reasoning": "This task requires sophisticated logic...",
"expansionCommand": "node scripts/dev.js expand --id=8 --num=6 --prompt=\"Create subtasks...\" --research"
}
// More tasks sorted by complexity score (highest first)
]
}
```

View File

@@ -0,0 +1,128 @@
---
title: Research Session
query: "how can i improve the scope-up and scope-down command"
date: 6/14/2025
time: 4:35:03 PM
timestamp: 2025-06-14T20:35:03.231Z
exchanges: 2
---
# Research Session
## Initial Query
**Question:** how can i improve the scope-up and scope-down command
**Response:**
## Improving the `scope-up` and `scope-down` Commands
**Clarify Command Purpose and User Experience**
- Ensure the commands have clear, intuitive behavior. For example, `scope-up` should consistently broaden the context or task view, while `scope-down` should reliably narrow it.
- Provide immediate, user-friendly feedback after each command, indicating what changed (e.g., "Now viewing parent task and all subtasks" or "Focused on subtask: X").
- Document the commands with examples in your `docs/command-reference.md` and `docs/examples.md` to help users understand their effects and use cases.
**Enhance Context Awareness**
- Make the commands context-sensitive: if the user is already at the top or bottom of the scope hierarchy, return a helpful message instead of failing silently.
- Allow optional arguments to specify the exact level or target (e.g., `scope-up 2` to move up two levels, or `scope-down <subtask-id>` to jump directly to a subtask).
**Robust Error Handling and Validation**
- Implement checks to prevent invalid operations, such as attempting to scope up from the root or scope down when no subtasks exist.
- Provide clear error messages and suggestions for next steps, improving user trust and reducing confusion[1][5].
**Integrate with Task and Tag Systems**
- Ensure `scope-up` and `scope-down` interact smoothly with your tagging and task hierarchy features. For example, scoping up from a subtask should show the parent task and its context, while scoping down should allow selection from available subtasks or related tags.
- Consider supporting batch operations, such as scoping down into all subtasks and displaying them in a summarized view.
**Improve Performance and Synchronization**
- Optimize the underlying logic to minimize delays, especially in large task trees. Use asynchronous operations where possible to keep the UI responsive.
- If the commands trigger data loading or context switching, ensure synchronization so that subsequent commands operate on the correct, updated context[2][4].
**Testing and Stakeholder Feedback**
- Add or expand unit and integration tests for these commands (see `tests/unit/commands.test.js` and `integration/cli/commands.test.js`) to cover edge cases and ensure reliability.
- Gather feedback from users and stakeholders to identify pain points and desired enhancements, then iterate on the command design and implementation[1][5].
**Example Improvements Table**
| Area | Current Issue | Suggested Improvement |
|---------------------|-----------------------------|----------------------------------------------|
| User Feedback | Minimal or unclear output | Add explicit, contextual messages |
| Error Handling | Silent failures | Informative errors and recovery suggestions |
| Flexibility | Only single-level movement | Support multi-level and targeted navigation |
| Integration | Limited context awareness | Sync with tags, parent/child relationships |
| Performance | Slow on large hierarchies | Optimize data access and UI updates |
By focusing on these areas, you can make `scope-up` and `scope-down` more robust, user-friendly, and aligned with best practices in scope management and command design[1][5].
---
## Follow-up 1
**Question:** how might i do this relative to the tag system?
**Response:**
## Integrating Scope-Up and Scope-Down with the Tag System
**Conceptual Mapping**
- In your project, *scope-up* and *scope-down* commands currently operate on the task hierarchy, broadening or narrowing the context by moving between parent and child tasks.
- The tag system provides a parallel, orthogonal way to group and filter tasks—tags can represent categories, priorities, or any custom grouping, independent of strict parent/child relationships.
**How to Make Scope Commands Tag-Aware**
- **Scoping by Tag**: Allow users to "scope-down" into a tag, viewing only tasks associated with that tag. Conversely, "scope-up" could move from a specific tag context back to the broader task list or to a parent tag grouping if you support tag hierarchies.
- **Tag-Scoped Views**: When a tag is active as the current scope, all navigation and operations (listing, editing, etc.) are limited to tasks with that tag. This is similar to how some systems let you set the "Tag Scope" to filter navigation and search to only tagged items[1][5].
- **Combining Hierarchy and Tags**: Enable compound scoping, such as "all subtasks of Task X that also have Tag Y." This can be implemented by intersecting the results of hierarchical and tag-based queries.
**Implementation Strategies**
- **Scope Stack or Context Object**: Maintain a stack or context object that tracks both the current task scope and any active tag filters. Each scope change (up/down or tag in/out) updates this context.
- **Commands**:
- `scope-down --tag <tag>`: Narrows the view to tasks with the specified tag.
- `scope-up --tag`: Removes the tag filter, broadening the view.
- `scope-down <subtask-id> --tag <tag>`: Narrows to a specific subtask *and* applies a tag filter.
- **Tag Hierarchies (Optional)**: If your tag system supports parent/child tags or tag groups, allow "scope-up" to move from a specific tag to its parent tag or group, and "scope-down" to move into a child tag[4][5].
**Example User Flows**
- *Scoping Down by Tag*:
User runs `scope-down --tag urgent` → Only tasks tagged "urgent" are shown.
- *Combining Task and Tag*:
User runs `scope-down <task-id> --tag frontend` → Only subtasks of `<task-id>` that are tagged "frontend" are shown.
- *Scoping Up from Tag*:
User runs `scope-up --tag` → Removes the tag filter, returning to the previous broader context.
**Technical Considerations**
- **Efficient Filtering**: Use indexed queries or in-memory filtering to efficiently combine tag and hierarchy filters, especially for large task sets.
- **Feedback and UI**: Always display the current scope context (e.g., "Viewing tasks tagged 'urgent' under 'Feature X'") so users understand what they're seeing.
- **Extensibility**: Design the scope system so new types of scopes (e.g., by status, assignee) can be added in the future, not just tags and hierarchy.
**Relevant Precedents**
- Tag-based file systems and management tools often implement "scopes" as dynamic groups defined by tag criteria, allowing users to build up complex views by combining tags and other filters[5].
- Some systems allow scoping into tag management itself, where you can create, edit, or view tags and their associated objects, which could be mirrored in your CLI or UI[4].
**Summary Table**
| Command Example | Resulting Scope |
|----------------------------------|--------------------------------------------------|
| `scope-down --tag bug` | All tasks tagged "bug" |
| `scope-down <task-id> --tag api` | Subtasks of `<task-id>` tagged "api" |
| `scope-up --tag` | Removes tag filter, returns to previous scope |
| `scope-down --tag frontend` | All tasks tagged "frontend" |
By integrating tag-based scoping, you make your scope commands more flexible and powerful, supporting both hierarchical and ad-hoc organizational strategies[1][5].
---
*Generated by Task Master Research Command*
*Timestamp: 2025-06-14T20:35:03.231Z*

View File

@@ -0,0 +1,158 @@
---
title: Research Session
query: "should i be using any specific libraries for this?"
date: 6/14/2025
time: 5:20:00 PM
timestamp: 2025-06-14T21:20:00.561Z
exchanges: 2
---
# Research Session
## Initial Query
**Question:** should i be using any specific libraries for this?
**Response:**
HELL YEAH PARTNER
For implementing a GitHub Issue export feature with bidirectional linking in your project, you absolutely should use a dedicated library for interacting with the GitHub API. This will save you a ton of time, reduce boilerplate, and help you avoid common pitfalls with authentication, pagination, and error handling.
## Recommended Library: PyGithub
- **PyGithub** is the most widely used and well-documented Python library for accessing the GitHub REST API v3. It allows you to manage repositories, issues, user profiles, and more, all with a clean, object-oriented interface[1][2][3][5].
- It supports all the operations youll need for your export feature, including creating issues, updating them, and managing references for bidirectional linking.
### Key Features
- **Authentication**: Easily authenticate with a personal access token.
- **Issue Management**: Create, update, and link issues programmatically.
- **Repository Access**: Fetch and manipulate repository data.
- **User/Org Support**: Works for both user and organization repos.
- **Pagination & Rate Limiting**: Handles these for you.
### Example Usage
```python
from github import Github, Auth
# Authenticate with a personal access token
auth = Auth.Token("your_github_token")
g = Github(auth=auth)
# Get the repo
repo = g.get_repo("owner/repo_name")
# Create a new issue
issue = repo.create_issue(
title="Exported from Task Master",
body="This issue was created by Task Master. [Task ID: 123]"
)
# Add a comment or update the issue to include a backlink
issue.create_comment("Linked to Task Master task #123")
```
[3][5]
## Why Not Use Raw Requests?
- While you *can* use the `requests` library to call the GitHub API directly[4], PyGithub abstracts away authentication, error handling, and pagination, making your code much cleaner and less error-prone[2][5].
## Integration Tips
- Store your GitHub token securely (e.g., in environment variables).
- Use PyGithubs objects to fetch, create, and update issues.
- For bidirectional linking, store the GitHub issue URL in your task data and the Task Master task ID in the GitHub issue body or as a label/comment.
- PyGithub is actively maintained and widely used, so youll find plenty of support and documentation.
## Installation
```bash
pip install PyGithub
```
[3]
## Summary Table
| Library | Language | API Coverage | Ease of Use | Maintained | Docs/Support |
|-----------|----------|--------------|-------------|------------|--------------|
| PyGithub | Python | Full | High | Yes | Excellent |
| requests | Python | Full (manual)| Medium | Yes | Good |
**Use PyGithub for all GitHub API interactions in your export/import features.** Its the standard for Python projects and will make your implementation faster, safer, and more maintainable[1][2][3][5].
---
## Follow-up 1
**Question:** we don't want to use py github because we have a node project
**Response:**
HELL YEAH PARTNER
For a Node.js project, you should use a Node-native library to interact with the GitHub API instead of PyGithub, which is Python-only. The industry standard for Node.js is **Octokit**, the official GitHub SDK for JavaScript/TypeScript[1][2].
## Why Use Octokit?
- **Official & Complete**: Octokit is maintained by GitHub and covers all REST and GraphQL API endpoints, including issues, repositories, users, and more[1][2].
- **Universal**: Works in Node.js, browsers, and Deno environments[2].
- **Typed & Tested**: Comes with TypeScript declarations and 100% test coverage[2].
- **Authentication**: Supports personal access tokens, GitHub Apps, OAuth, and more.
- **Pagination & Error Handling**: Handles pagination and common error scenarios out of the box.
- **Extendable**: Supports plugins and custom hooks for advanced use cases[2].
## How to Use Octokit for GitHub Issue Export
Install Octokit in your Node.js project:
```bash
npm install @octokit/rest
```
Basic usage for creating and linking issues:
```js
const { Octokit } = require("@octokit/rest");
// Authenticate with a personal access token
const octokit = new Octokit({ auth: process.env.GITHUB_TOKEN });
// Create a new issue
const { data: issue } = await octokit.issues.create({
owner: "owner",
repo: "repo_name",
title: "Exported from Task Master",
body: "This issue was created by Task Master. [Task ID: 123]"
});
// Add a comment for bidirectional linking
await octokit.issues.createComment({
owner: "owner",
repo: "repo_name",
issue_number: issue.number,
body: "Linked to Task Master task #123"
});
```
## Alternatives
- **node-github**: An older library, less maintained than Octokit, but still functional for basic API access[5].
- **Raw HTTP Requests**: You can use `node-fetch` or `axios` to call the GitHub API directly, but youll need to handle authentication, pagination, and error handling yourself[3]. Octokit abstracts all of this for you.
## Summary Table
| Library | Language | API Coverage | Maintained | TypeScript | Docs/Support |
|-----------------|----------|--------------|------------|------------|--------------|
| Octokit | Node.js | Full | Yes | Yes | Excellent |
| node-github | Node.js | Full | No | No | Limited |
| Raw HTTP | Node.js | Full (manual)| N/A | N/A | N/A |
**Recommendation:** Use Octokit for all GitHub API interactions in your Node.js project. Its the official, most robust, and best-supported option for your use case[1][2].
---
*Generated by Task Master Research Command*
*Timestamp: 2025-06-14T21:20:00.561Z*

View File

@@ -0,0 +1,76 @@
---
title: Research Session
query: "test save functionality"
date: 6/14/2025
time: 5:50:23 PM
timestamp: 2025-06-14T21:50:23.797Z
exchanges: 1
---
# Research Session
## Initial Query
**Question:** test save functionality
**Response:**
## Testing Save Functionality in a Task Management System
**Core Steps for Testing Save Functionality**
- Create or update a task in the system using the CLI or UI.
- Trigger the save operation (e.g., by issuing a command or clicking a save button).
- Verify that the data is correctly written to the persistent storage (e.g., `tasks.json`).
- Reload or re-query the data to ensure the saved changes persist and are accurately reflected.
- Validate that all required fields and relationships (such as dependencies and subtasks) are preserved and correctly structured.
**Key Test Scenarios**
- **Basic Save:** Add a new task and confirm it appears in `tasks.json` with all fields populated.
- **Update Save:** Modify an existing task (e.g., change status, description, or priority) and verify the changes are saved.
- **Subtask and Dependency Preservation:** Update a parent task and ensure that completed subtasks and dependency links remain intact, especially after using commands like `updateTask`.
- **Batch Operations:** Perform bulk updates or additions and confirm all affected tasks are saved correctly, with no data loss or corruption.
- **Validation:** Attempt to save invalid data and ensure the system rejects it or provides meaningful error messages, confirming validation logic is enforced.
**Recommended Practices**
- Use automated tests to simulate save operations for various scenarios, including edge cases (e.g., circular dependencies, missing required fields).
- After each save, reload the data and compare it to the expected state to ensure integrity.
- Log all save operations and errors for traceability and debugging.
- Regularly back up the `tasks.json` file to prevent data loss during testing and development.
**Relevant Features from Industry Standards**
- Task management systems typically provide robust save and update mechanisms, ensuring that all task attributes (including dependencies, subtasks, and comments) are consistently maintained[1][2][5].
- Validation and error handling are critical to prevent corrupt or incomplete saves, especially when handling complex relationships or batch operations[1][5].
- User feedback (such as success messages or error alerts) is important for confirming save actions and guiding users in case of issues[1][2].
**Example Test Case**
1. Create a task with subtasks and dependencies.
2. Mark some subtasks as complete.
3. Use the `updateTask` command to modify the parent task.
4. Save and reload the data.
5. Assert that:
- The parent task reflects the updates.
- Completed subtasks remain marked as complete.
- Dependencies are unchanged and valid.
**Summary Table: Save Functionality Test Aspects**
| Aspect | What to Test | Expected Outcome |
|-----------------------|---------------------------------------------------|-----------------------------------------|
| Basic Save | Add/update task, save, reload | Data persists and matches expectations |
| Subtask Preservation | Update parent, check subtask status | Completed subtasks remain complete |
| Dependency Handling | Save with dependencies, reload | Dependencies are intact and valid |
| Batch Operations | Bulk save/update, reload | All changes persist, no data loss |
| Validation | Save invalid data | Error is raised, data not corrupted |
These steps and scenarios ensure that the save functionality is robust, reliable, and meets the requirements of a modern task management system[1][2][5].
---
*Generated by Task Master Research Command*
*Timestamp: 2025-06-14T21:50:23.797Z*

View File

@@ -0,0 +1,81 @@
---
title: Research Session
query: "test the fix for duplicate saves - final test"
date: 6/14/2025
time: 6:10:00 PM
timestamp: 2025-06-14T22:10:00.394Z
exchanges: 1
---
# Research Session
## Initial Query
**Question:** test the fix for duplicate saves - final test
**Response:**
## Steps to Test the Fix for Duplicate Saves
**1. Prepare a Clean Test Environment**
- Ensure the tasks.json file and any related data stores are in a known, clean state with no pre-existing duplicate entries.
- Back up the current tasks.json in case rollback is needed.
**2. Define Test Scenarios**
- Attempt to save a new task with unique data.
- Attempt to save a task with the same ID or unique identifier as an existing task (simulate a duplicate).
- Attempt to save a task with the same title or content but a different ID (to test if the fix is based on ID or content).
- Simultaneously trigger multiple save operations (if the system supports concurrency) to test race conditions.
**3. Execute Manual and Automated Tests**
- Use the application's UI or API to create and save tasks as per the scenarios above.
- For each save operation, check the tasks.json file or the data store to verify:
- No duplicate entries are created.
- Existing tasks are not overwritten unless intended (e.g., for updates).
- The system returns appropriate error messages or warnings when a duplicate save is attempted.
**4. Validate System Behavior**
- Confirm that after all test operations, each task in tasks.json is unique according to the defined criteria (ID, title, or other unique fields).
- If the system is designed to merge duplicates, verify that merging occurs as expected.
- If the system is designed to reject duplicates, ensure that the rejection is clear and no duplicate is present.
**5. Test Edge Cases**
- Attempt to save tasks with minor variations (e.g., whitespace differences, case sensitivity) to ensure the duplicate detection logic is robust.
- Test with large numbers of tasks to ensure performance and correctness at scale.
**6. Review Logs and Error Handling**
- Check application logs for any errors or warnings related to duplicate saves.
- Ensure that error handling is user-friendly and provides actionable feedback.
**7. Regression Testing**
- Run the full suite of task operations (create, update, delete) to ensure the fix for duplicate saves does not introduce new issues elsewhere in the system.
## Additional Best Practices
- Communicate test results with the team to confirm the fix is effective and to prevent future regressions[1][2][5].
- Consider implementing automated duplicate detection as part of the save operation to prevent future issues[2][3].
- Document the test cases and results for future reference and audits.
## Example Test Case Table
| Test Scenario | Expected Result | Actual Result | Pass/Fail |
|--------------------------------------|-------------------------------|---------------|-----------|
| Save unique task | Task saved | | |
| Save duplicate task (same ID) | Duplicate rejected/merged | | |
| Save duplicate task (same title) | Duplicate rejected/merged | | |
| Simultaneous saves (race condition) | Only one unique task present | | |
| Save with minor variations | No false positives/negatives | | |
Fill in the "Actual Result" and "Pass/Fail" columns during testing.
## Action Items
- Complete all test scenarios above.
- Document any issues found and retest after fixes.
- Confirm with stakeholders before closing the issue.
---
*Generated by Task Master Research Command*
*Timestamp: 2025-06-14T22:10:00.394Z*

View File

@@ -0,0 +1,471 @@
# Task Template Importing System - Product Requirements Document
<context>
# Overview
The Task Template Importing system enables seamless integration of external task templates into the Task Master CLI through automatic file discovery. This system allows users to drop task template files into the tasks directory and immediately access them as new tag contexts without manual import commands or configuration. The solution addresses the need for multi-project task management, team collaboration through shared templates, and clean separation between permanent tasks and temporary project contexts.
# Core Features
## Silent Task Template Discovery
- **What it does**: Automatically scans for `tasks_*.json` files in the tasks directory during tag operations
- **Why it's important**: Eliminates friction in adding new task contexts and enables zero-configuration workflow
- **How it works**: File pattern matching extracts tag names from filenames and validates against internal tag keys
## External Tag Resolution System
- **What it does**: Provides fallback mechanism to external files when tags are not found in main tasks.json
- **Why it's important**: Maintains clean separation between core tasks and project-specific templates
- **How it works**: Tag resolution logic checks external files as secondary source while preserving main file precedence
## Read-Only External Tag Access
- **What it does**: Allows viewing and switching to external tags while preventing modifications
- **Why it's important**: Protects template integrity and prevents accidental changes to shared templates
- **How it works**: All task modifications route to main tasks.json regardless of current tag context
## Tag Precedence Management
- **What it does**: Ensures main tasks.json tags override external files with same tag names
- **Why it's important**: Prevents conflicts and maintains data integrity
- **How it works**: Priority system where main file tags take precedence over external file tags
# User Experience
## User Personas
- **Solo Developer**: Manages multiple projects with different task contexts
- **Team Lead**: Shares standardized task templates across team members
- **Project Manager**: Organizes tasks by project phases or feature branches
## Key User Flows
### Template Addition Flow
1. User receives or creates a `tasks_projectname.json` file
2. User drops file into `.taskmaster/tasks/` directory
3. Tag becomes immediately available via `task-master use-tag projectname`
4. User can list, view, and switch to external tag without configuration
### Template Usage Flow
1. User runs `task-master tags` to see available tags including external ones
2. External tags display with `(imported)` indicator
3. User switches to external tag with `task-master use-tag projectname`
4. User can view tasks but modifications are routed to main tasks.json
## UI/UX Considerations
- External tags clearly marked with `(imported)` suffix in listings
- Visual indicators distinguish between main and external tags
- Error messages guide users when external files are malformed
- Read-only warnings when attempting to modify external tag contexts
</context>
<PRD>
# Technical Architecture
## System Components
1. **External File Discovery Engine**
- File pattern scanner for `tasks_*.json` files
- Tag name extraction from filenames using regex
- Dynamic tag registry combining main and external sources
- Error handling for malformed external files
2. **Enhanced Tag Resolution System**
- Fallback mechanism to external files when tags not found in main tasks.json
- Precedence management ensuring main file tags override external files
- Read-only access enforcement for external tags
- Tag metadata preservation during discovery operations
3. **Silent Discovery Integration**
- Automatic scanning during tag-related operations
- Seamless integration with existing tag management functions
- Zero-configuration workflow requiring no manual import commands
- Dynamic tag availability without restart requirements
## Data Models
### External Task File Structure
```json
{
"meta": {
"projectName": "External Project Name",
"version": "1.0.0",
"templateSource": "external",
"createdAt": "ISO-8601 timestamp"
},
"tags": {
"projectname": {
"meta": {
"name": "Project Name",
"description": "Project description",
"createdAt": "ISO-8601 timestamp"
},
"tasks": [
// Array of task objects
]
},
"master": {
// This section is ignored to prevent conflicts
}
}
}
```
### Enhanced Tag Registry Model
```json
{
"mainTags": [
{
"name": "master",
"source": "main",
"taskCount": 150,
"isActive": true
}
],
"externalTags": [
{
"name": "projectname",
"source": "external",
"filename": "tasks_projectname.json",
"taskCount": 25,
"isReadOnly": true
}
]
}
```
## APIs and Integrations
1. **File System Discovery API**
- Directory scanning with pattern matching
- JSON file validation and parsing
- Error handling for corrupted or malformed files
- File modification time tracking for cache invalidation
2. **Enhanced Tag Management API**
- `scanForExternalTaskFiles(projectRoot)` - Discover external template files
- `getExternalTagsFromFiles(projectRoot)` - Extract tag names from external files
- `readExternalTagData(projectRoot, tagName)` - Read specific external tag data
- `getAvailableTags(projectRoot)` - Combined main and external tag listing
3. **Tag Resolution Enhancement**
- Modified `readJSON()` with external file fallback
- Enhanced `tags()` function with external tag display
- Updated `useTag()` function supporting external tag switching
- Read-only enforcement for external tag operations
## Infrastructure Requirements
1. **File System Access**
- Read permissions for tasks directory
- JSON parsing capabilities
- Pattern matching and regex support
- Error handling for file system operations
2. **Backward Compatibility**
- Existing tag operations continue unchanged
- Main tasks.json structure preserved
- No breaking changes to current workflows
- Graceful degradation when external files unavailable
# Development Roadmap
## Phase 1: Core External File Discovery (Foundation)
1. **External File Scanner Implementation**
- Create `scanForExternalTaskFiles()` function in utils.js
- Implement file pattern matching for `tasks_*.json` files
- Add error handling for file system access issues
- Test with various filename patterns and edge cases
2. **Tag Name Extraction System**
- Implement `getExternalTagsFromFiles()` function
- Create regex pattern for extracting tag names from filenames
- Add validation to ensure tag names match internal tag key format
- Handle special characters and invalid filename patterns
3. **External Tag Data Reader**
- Create `readExternalTagData()` function
- Implement JSON parsing with error handling
- Add validation for required tag structure
- Ignore 'master' key in external files to prevent conflicts
## Phase 2: Tag Resolution Enhancement (Core Integration)
1. **Enhanced Tag Registry**
- Implement `getAvailableTags()` function combining main and external sources
- Create tag metadata structure including source information
- Add deduplication logic prioritizing main tags over external
- Implement caching mechanism for performance optimization
2. **Modified readJSON Function**
- Add external file fallback when tag not found in main tasks.json
- Maintain precedence rule: main tasks.json overrides external files
- Preserve existing error handling and validation patterns
- Ensure read-only access for external tags
3. **Tag Listing Enhancement**
- Update `tags()` function to display external tags with `(imported)` indicator
- Show external tag metadata and task counts
- Maintain current tag highlighting and sorting functionality
- Add visual distinction between main and external tags
## Phase 3: User Interface Integration (User Experience)
1. **Tag Switching Enhancement**
- Update `useTag()` function to support external tag switching
- Add read-only warnings when switching to external tags
- Update state.json with external tag context information
- Maintain current tag switching behavior for main tags
2. **Error Handling and User Feedback**
- Implement comprehensive error messages for malformed external files
- Add user guidance for proper external file structure
- Create warnings for read-only operations on external tags
- Ensure graceful degradation when external files are corrupted
3. **Documentation and Help Integration**
- Update command help text to include external tag information
- Add examples of external file structure and usage
- Create troubleshooting guide for common external file issues
- Document file naming conventions and best practices
## Phase 4: Advanced Features and Optimization (Enhancement)
1. **Performance Optimization**
- Implement file modification time caching
- Add lazy loading for external tag data
- Optimize file scanning for directories with many files
- Create efficient tag resolution caching mechanism
2. **Advanced External File Features**
- Support for nested external file directories
- Batch external file validation and reporting
- External file metadata display and management
- Integration with version control ignore patterns
3. **Team Collaboration Features**
- Shared external file validation
- External file conflict detection and resolution
- Team template sharing guidelines and documentation
- Integration with git workflows for template management
# Logical Dependency Chain
## Foundation Layer (Must Be Built First)
1. **External File Scanner**
- Core requirement for all other functionality
- Provides the discovery mechanism for external template files
- Must handle file system access and pattern matching reliably
2. **Tag Name Extraction**
- Depends on file scanner functionality
- Required for identifying available external tags
- Must validate tag names against internal format requirements
3. **External Tag Data Reader**
- Depends on tag name extraction
- Provides access to external tag content
- Must handle JSON parsing and validation safely
## Integration Layer (Builds on Foundation)
4. **Enhanced Tag Registry**
- Depends on all foundation components
- Combines main and external tag sources
- Required for unified tag management across the system
5. **Modified readJSON Function**
- Depends on enhanced tag registry
- Provides fallback mechanism for tag resolution
- Critical for maintaining backward compatibility
6. **Tag Listing Enhancement**
- Depends on enhanced tag registry
- Provides user visibility into external tags
- Required for user discovery of available templates
## User Experience Layer (Completes the Feature)
7. **Tag Switching Enhancement**
- Depends on modified readJSON and tag listing
- Enables user interaction with external tags
- Must enforce read-only access properly
8. **Error Handling and User Feedback**
- Can be developed in parallel with other UX components
- Enhances reliability and user experience
- Should be integrated throughout development process
9. **Documentation and Help Integration**
- Should be developed alongside implementation
- Required for user adoption and proper usage
- Can be completed in parallel with advanced features
## Optimization Layer (Performance and Advanced Features)
10. **Performance Optimization**
- Can be developed after core functionality is stable
- Improves user experience with large numbers of external files
- Not blocking for initial release
11. **Advanced External File Features**
- Can be developed independently after core features
- Enhances power user workflows
- Optional for initial release
12. **Team Collaboration Features**
- Depends on stable core functionality
- Enhances team workflows and template sharing
- Can be prioritized based on user feedback
# Risks and Mitigations
## Technical Challenges
### File System Performance
**Risk**: Scanning for external files on every tag operation could impact performance with large directories.
**Mitigation**:
- Implement file modification time caching to avoid unnecessary rescans
- Use lazy loading for external tag data - only read when accessed
- Add configurable limits on number of external files to scan
- Optimize file pattern matching with efficient regex patterns
### External File Corruption
**Risk**: Malformed or corrupted external JSON files could break tag operations.
**Mitigation**:
- Implement robust JSON parsing with comprehensive error handling
- Add file validation before attempting to parse external files
- Gracefully skip corrupted files and continue with valid ones
- Provide clear error messages guiding users to fix malformed files
### Tag Name Conflicts
**Risk**: External files might contain tag names that conflict with main tasks.json tags.
**Mitigation**:
- Implement strict precedence rule: main tasks.json always overrides external files
- Add warnings when external tags are ignored due to conflicts
- Document naming conventions to avoid common conflicts
- Provide validation tools to check for potential conflicts
## MVP Definition
### Core Feature Scope
**Risk**: Including too many advanced features could delay the core functionality.
**Mitigation**:
- Define MVP as basic external file discovery + tag switching
- Focus on the silent discovery mechanism as the primary value proposition
- Defer advanced features like nested directories and batch operations
- Ensure each phase delivers complete, usable functionality
### User Experience Complexity
**Risk**: The read-only nature of external tags might confuse users.
**Mitigation**:
- Provide clear visual indicators for external tags in all interfaces
- Add explicit warnings when users attempt to modify external tag contexts
- Document the read-only behavior and its rationale clearly
- Consider future enhancement for external tag modification workflows
### Backward Compatibility
**Risk**: Changes to tag resolution logic might break existing workflows.
**Mitigation**:
- Maintain existing tag operations unchanged for main tasks.json
- Add external file support as enhancement, not replacement
- Test thoroughly with existing task structures and workflows
- Provide migration path if any breaking changes are necessary
## Resource Constraints
### Development Complexity
**Risk**: Integration with existing tag management system could be complex.
**Mitigation**:
- Phase implementation to minimize risk of breaking existing functionality
- Create comprehensive test suite covering both main and external tag scenarios
- Use feature flags to enable/disable external file support during development
- Implement thorough error handling to prevent system failures
### File System Dependencies
**Risk**: Different operating systems might handle file operations differently.
**Mitigation**:
- Use Node.js built-in file system APIs for cross-platform compatibility
- Test on multiple operating systems (Windows, macOS, Linux)
- Handle file path separators and naming conventions properly
- Add fallback mechanisms for file system access issues
### User Adoption
**Risk**: Users might not understand or adopt the external file template system.
**Mitigation**:
- Create clear documentation with practical examples
- Provide sample external template files for common use cases
- Integrate help and guidance directly into the CLI interface
- Gather user feedback early and iterate on the user experience
# Appendix
## External File Naming Convention
### Filename Pattern
- **Format**: `tasks_[tagname].json`
- **Examples**: `tasks_feature-auth.json`, `tasks_v2-migration.json`, `tasks_project-alpha.json`
- **Validation**: Tag name must match internal tag key format (alphanumeric, hyphens, underscores)
### File Structure Requirements
```json
{
"meta": {
"projectName": "Required: Human-readable project name",
"version": "Optional: Template version",
"templateSource": "Optional: Source identifier",
"createdAt": "Optional: ISO-8601 timestamp"
},
"tags": {
"[tagname]": {
"meta": {
"name": "Required: Tag display name",
"description": "Optional: Tag description",
"createdAt": "Optional: ISO-8601 timestamp"
},
"tasks": [
// Required: Array of task objects following standard task structure
]
}
}
}
```
## Implementation Functions Specification
### Core Discovery Functions
```javascript
// Scan tasks directory for external template files
function scanForExternalTaskFiles(projectRoot) {
// Returns: Array of external file paths
}
// Extract tag names from external filenames
function getExternalTagsFromFiles(projectRoot) {
// Returns: Array of external tag names
}
// Read specific external tag data
function readExternalTagData(projectRoot, tagName) {
// Returns: Tag data object or null if not found
}
// Get combined main and external tags
function getAvailableTags(projectRoot) {
// Returns: Combined tag registry with metadata
}
```
### Integration Points
```javascript
// Enhanced readJSON with external fallback
function readJSON(projectRoot, tag = null) {
// Modified to check external files when tag not found in main
}
// Enhanced tags listing with external indicators
function tags(projectRoot, options = {}) {
// Modified to display external tags with (imported) suffix
}
// Enhanced tag switching with external support
function useTag(projectRoot, tagName) {
// Modified to support switching to external tags (read-only)
}
```
## Error Handling Specifications
### File System Errors
- **ENOENT**: External file not found - gracefully skip and continue
- **EACCES**: Permission denied - warn user and continue with available files
- **EISDIR**: Directory instead of file - skip and continue scanning
### JSON Parsing Errors
- **SyntaxError**: Malformed JSON - skip file and log warning with filename
- **Missing required fields**: Skip file and provide specific error message
- **Invalid tag structure**: Skip file and guide user to correct format
### Tag Conflict Resolution
- **Duplicate tag names**: Main tasks.json takes precedence, log warning
- **Invalid tag names**: Skip external file and provide naming guidance
- **Master key in external**: Ignore master key, process other tags normally
</PRD>

View File

@@ -0,0 +1,373 @@
{
"meta": {
"generatedAt": "2025-05-27T16:34:53.088Z",
"tasksAnalyzed": 1,
"totalTasks": 84,
"analysisCount": 45,
"thresholdScore": 5,
"projectName": "Taskmaster",
"usedResearch": true
},
"complexityAnalysis": [
{
"taskId": 24,
"taskTitle": "Implement AI-Powered Test Generation Command",
"complexityScore": 7,
"recommendedSubtasks": 5,
"expansionPrompt": "Break down the implementation of the AI-powered test generation command into detailed subtasks covering: command structure setup, AI prompt engineering, test file generation logic, integration with Claude API, and comprehensive error handling.",
"reasoning": "This task involves complex integration with an AI service (Claude), requires sophisticated prompt engineering, and needs to generate structured code files. The existing 3 subtasks are a good start but could be expanded to include more detailed steps for AI integration, error handling, and test file formatting."
},
{
"taskId": 26,
"taskTitle": "Implement Context Foundation for AI Operations",
"complexityScore": 6,
"recommendedSubtasks": 4,
"expansionPrompt": "The current 4 subtasks for implementing the context foundation appear comprehensive. Consider if any additional subtasks are needed for testing, documentation, or integration with existing systems.",
"reasoning": "This task involves creating a foundation for context integration with several well-defined components. The existing 4 subtasks cover the main implementation areas (context-file flag, cursor rules integration, context extraction utility, and command handler updates). The complexity is moderate as it requires careful integration with existing systems but has clear requirements."
},
{
"taskId": 27,
"taskTitle": "Implement Context Enhancements for AI Operations",
"complexityScore": 7,
"recommendedSubtasks": 4,
"expansionPrompt": "The current 4 subtasks for implementing context enhancements appear well-structured. Consider if any additional subtasks are needed for testing, documentation, or performance optimization.",
"reasoning": "This task builds upon the foundation from Task #26 and adds more sophisticated context handling features. The 4 existing subtasks cover the main implementation areas (code context extraction, task history context, PRD context integration, and context formatting). The complexity is higher than the foundation task due to the need for intelligent context selection and optimization."
},
{
"taskId": 28,
"taskTitle": "Implement Advanced ContextManager System",
"complexityScore": 8,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing the advanced ContextManager system appear comprehensive. Consider if any additional subtasks are needed for testing, documentation, or backward compatibility with previous context implementations.",
"reasoning": "This task represents the most complex phase of the context implementation, requiring a sophisticated class design, optimization algorithms, and integration with multiple systems. The 5 existing subtasks cover the core implementation areas, but the complexity is high due to the need for intelligent context prioritization, token management, and performance monitoring."
},
{
"taskId": 40,
"taskTitle": "Implement 'plan' Command for Task Implementation Planning",
"complexityScore": 5,
"recommendedSubtasks": 4,
"expansionPrompt": "The current 4 subtasks for implementing the 'plan' command appear well-structured. Consider if any additional subtasks are needed for testing, documentation, or integration with existing task management workflows.",
"reasoning": "This task involves creating a new command that leverages AI to generate implementation plans. The existing 4 subtasks cover the main implementation areas (retrieving task content, generating plans with AI, formatting in XML, and error handling). The complexity is moderate as it builds on existing patterns for task updates but requires careful AI integration."
},
{
"taskId": 41,
"taskTitle": "Implement Visual Task Dependency Graph in Terminal",
"complexityScore": 8,
"recommendedSubtasks": 10,
"expansionPrompt": "The current 10 subtasks for implementing the visual task dependency graph appear comprehensive. Consider if any additional subtasks are needed for performance optimization with large graphs or additional visualization options.",
"reasoning": "This task involves creating a sophisticated visualization system for terminal display, which is inherently complex due to layout algorithms, ASCII/Unicode rendering, and handling complex dependency relationships. The 10 existing subtasks cover all major aspects of implementation, from CLI interface to accessibility features."
},
{
"taskId": 42,
"taskTitle": "Implement MCP-to-MCP Communication Protocol",
"complexityScore": 9,
"recommendedSubtasks": 8,
"expansionPrompt": "The current 8 subtasks for implementing the MCP-to-MCP communication protocol appear well-structured. Consider if any additional subtasks are needed for security hardening, performance optimization, or comprehensive documentation.",
"reasoning": "This task involves designing and implementing a complex communication protocol between different MCP tools and servers. It requires sophisticated adapter patterns, client-server architecture, and handling of multiple operational modes. The complexity is very high due to the need for standardization, security, and backward compatibility."
},
{
"taskId": 44,
"taskTitle": "Implement Task Automation with Webhooks and Event Triggers",
"complexityScore": 8,
"recommendedSubtasks": 7,
"expansionPrompt": "The current 7 subtasks for implementing task automation with webhooks appear comprehensive. Consider if any additional subtasks are needed for security testing, rate limiting implementation, or webhook monitoring tools.",
"reasoning": "This task involves creating a sophisticated event system with webhooks for integration with external services. The complexity is high due to the need for secure authentication, reliable delivery mechanisms, and handling of various webhook formats and protocols. The existing subtasks cover the main implementation areas but security and monitoring could be emphasized more."
},
{
"taskId": 45,
"taskTitle": "Implement GitHub Issue Import Feature",
"complexityScore": 6,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing the GitHub issue import feature appear well-structured. Consider if any additional subtasks are needed for handling GitHub API rate limiting, caching, or supporting additional issue metadata.",
"reasoning": "This task involves integrating with the GitHub API to import issues as tasks. The complexity is moderate as it requires API authentication, data mapping, and error handling. The existing 5 subtasks cover the main implementation areas from design to end-to-end implementation."
},
{
"taskId": 46,
"taskTitle": "Implement ICE Analysis Command for Task Prioritization",
"complexityScore": 7,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing the ICE analysis command appear comprehensive. Consider if any additional subtasks are needed for visualization of ICE scores or integration with other prioritization methods.",
"reasoning": "This task involves creating an AI-powered analysis system for task prioritization using the ICE methodology. The complexity is high due to the need for sophisticated scoring algorithms, AI integration, and report generation. The existing subtasks cover the main implementation areas from algorithm design to integration with existing systems."
},
{
"taskId": 47,
"taskTitle": "Enhance Task Suggestion Actions Card Workflow",
"complexityScore": 6,
"recommendedSubtasks": 6,
"expansionPrompt": "The current 6 subtasks for enhancing the task suggestion actions card workflow appear well-structured. Consider if any additional subtasks are needed for user testing, accessibility improvements, or performance optimization.",
"reasoning": "This task involves redesigning the UI workflow for task expansion and management. The complexity is moderate as it requires careful UX design and state management but builds on existing components. The 6 existing subtasks cover the main implementation areas from design to testing."
},
{
"taskId": 48,
"taskTitle": "Refactor Prompts into Centralized Structure",
"complexityScore": 4,
"recommendedSubtasks": 3,
"expansionPrompt": "The current 3 subtasks for refactoring prompts into a centralized structure appear appropriate. Consider if any additional subtasks are needed for prompt versioning, documentation, or testing.",
"reasoning": "This task involves a straightforward refactoring to improve code organization. The complexity is relatively low as it primarily involves moving code rather than creating new functionality. The 3 existing subtasks cover the main implementation areas from directory structure to integration."
},
{
"taskId": 49,
"taskTitle": "Implement Code Quality Analysis Command",
"complexityScore": 8,
"recommendedSubtasks": 6,
"expansionPrompt": "The current 6 subtasks for implementing the code quality analysis command appear comprehensive. Consider if any additional subtasks are needed for performance optimization with large codebases or integration with existing code quality tools.",
"reasoning": "This task involves creating a sophisticated code analysis system with pattern recognition, best practice verification, and AI-powered recommendations. The complexity is high due to the need for code parsing, complex analysis algorithms, and integration with AI services. The existing subtasks cover the main implementation areas from algorithm design to user interface."
},
{
"taskId": 50,
"taskTitle": "Implement Test Coverage Tracking System by Task",
"complexityScore": 9,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing the test coverage tracking system appear well-structured. Consider if any additional subtasks are needed for integration with CI/CD systems, performance optimization, or visualization tools.",
"reasoning": "This task involves creating a complex system that maps test coverage to specific tasks and subtasks. The complexity is very high due to the need for sophisticated data structures, integration with coverage tools, and AI-powered test generation. The existing subtasks are comprehensive and cover the main implementation areas from data structure design to AI integration."
},
{
"taskId": 51,
"taskTitle": "Implement Perplexity Research Command",
"complexityScore": 6,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing the Perplexity research command appear comprehensive. Consider if any additional subtasks are needed for caching optimization, result formatting, or integration with other research tools.",
"reasoning": "This task involves creating a new command that integrates with the Perplexity AI API for research. The complexity is moderate as it requires API integration, context extraction, and result formatting. The 5 existing subtasks cover the main implementation areas from API client to caching system."
},
{
"taskId": 52,
"taskTitle": "Implement Task Suggestion Command for CLI",
"complexityScore": 6,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing the task suggestion command appear well-structured. Consider if any additional subtasks are needed for suggestion quality evaluation, user feedback collection, or integration with existing task workflows.",
"reasoning": "This task involves creating a new CLI command that generates contextually relevant task suggestions using AI. The complexity is moderate as it requires AI integration, context collection, and interactive CLI interfaces. The existing subtasks cover the main implementation areas from data collection to user interface."
},
{
"taskId": 53,
"taskTitle": "Implement Subtask Suggestion Feature for Parent Tasks",
"complexityScore": 6,
"recommendedSubtasks": 6,
"expansionPrompt": "The current 6 subtasks for implementing the subtask suggestion feature appear comprehensive. Consider if any additional subtasks are needed for suggestion quality metrics, user feedback collection, or performance optimization.",
"reasoning": "This task involves creating a feature that suggests contextually relevant subtasks for parent tasks. The complexity is moderate as it builds on existing task management systems but requires sophisticated AI integration and context analysis. The 6 existing subtasks cover the main implementation areas from validation to testing."
},
{
"taskId": 55,
"taskTitle": "Implement Positional Arguments Support for CLI Commands",
"complexityScore": 5,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing positional arguments support appear well-structured. Consider if any additional subtasks are needed for backward compatibility testing, documentation updates, or user experience improvements.",
"reasoning": "This task involves modifying the command parsing logic to support positional arguments alongside the existing flag-based syntax. The complexity is moderate as it requires careful handling of different argument styles and edge cases. The 5 existing subtasks cover the main implementation areas from analysis to documentation."
},
{
"taskId": 57,
"taskTitle": "Enhance Task-Master CLI User Experience and Interface",
"complexityScore": 7,
"recommendedSubtasks": 6,
"expansionPrompt": "The current 6 subtasks for enhancing the CLI user experience appear comprehensive. Consider if any additional subtasks are needed for accessibility testing, internationalization, or performance optimization.",
"reasoning": "This task involves a significant overhaul of the CLI interface to improve user experience. The complexity is high due to the breadth of changes (logging, visual elements, interactive components, etc.) and the need for consistent design across all commands. The 6 existing subtasks cover the main implementation areas from log management to help systems."
},
{
"taskId": 60,
"taskTitle": "Implement Mentor System with Round-Table Discussion Feature",
"complexityScore": 8,
"recommendedSubtasks": 7,
"expansionPrompt": "The current 7 subtasks for implementing the mentor system appear well-structured. Consider if any additional subtasks are needed for mentor personality consistency, discussion quality evaluation, or performance optimization with multiple mentors.",
"reasoning": "This task involves creating a sophisticated mentor simulation system with round-table discussions. The complexity is high due to the need for personality simulation, complex LLM integration, and structured discussion management. The 7 existing subtasks cover the main implementation areas from architecture to testing."
},
{
"taskId": 62,
"taskTitle": "Add --simple Flag to Update Commands for Direct Text Input",
"complexityScore": 4,
"recommendedSubtasks": 8,
"expansionPrompt": "The current 8 subtasks for implementing the --simple flag appear comprehensive. Consider if any additional subtasks are needed for user experience testing or documentation updates.",
"reasoning": "This task involves adding a simple flag option to bypass AI processing for updates. The complexity is relatively low as it primarily involves modifying existing command handlers and adding a flag. The 8 existing subtasks are very detailed and cover all aspects of implementation from command parsing to testing."
},
{
"taskId": 63,
"taskTitle": "Add pnpm Support for the Taskmaster Package",
"complexityScore": 5,
"recommendedSubtasks": 8,
"expansionPrompt": "The current 8 subtasks for adding pnpm support appear comprehensive. Consider if any additional subtasks are needed for CI/CD integration, performance comparison, or documentation updates.",
"reasoning": "This task involves ensuring the package works correctly with pnpm as an alternative package manager. The complexity is moderate as it requires careful testing of installation processes and scripts across different environments. The 8 existing subtasks cover all major aspects from documentation to binary verification."
},
{
"taskId": 64,
"taskTitle": "Add Yarn Support for Taskmaster Installation",
"complexityScore": 5,
"recommendedSubtasks": 9,
"expansionPrompt": "The current 9 subtasks for adding Yarn support appear comprehensive. Consider if any additional subtasks are needed for performance testing, CI/CD integration, or compatibility with different Yarn versions.",
"reasoning": "This task involves ensuring the package works correctly with Yarn as an alternative package manager. The complexity is moderate as it requires careful testing of installation processes and scripts across different environments. The 9 existing subtasks are very detailed and cover all aspects from configuration to testing."
},
{
"taskId": 65,
"taskTitle": "Add Bun Support for Taskmaster Installation",
"complexityScore": 6,
"recommendedSubtasks": 6,
"expansionPrompt": "The current 6 subtasks for adding Bun support appear well-structured. Consider if any additional subtasks are needed for handling Bun-specific issues, performance testing, or documentation updates.",
"reasoning": "This task involves adding support for the newer Bun package manager. The complexity is slightly higher than the other package manager tasks due to Bun's differences from Node.js and potential compatibility issues. The 6 existing subtasks cover the main implementation areas from research to documentation."
},
{
"taskId": 67,
"taskTitle": "Add CLI JSON output and Cursor keybindings integration",
"complexityScore": 5,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing JSON output and Cursor keybindings appear well-structured. Consider if any additional subtasks are needed for testing across different operating systems, documentation updates, or user experience improvements.",
"reasoning": "This task involves two distinct features: adding JSON output to CLI commands and creating a keybindings installation command. The complexity is moderate as it requires careful handling of different output formats and OS-specific file paths. The 5 existing subtasks cover the main implementation areas for both features."
},
{
"taskId": 68,
"taskTitle": "Ability to create tasks without parsing PRD",
"complexityScore": 3,
"recommendedSubtasks": 2,
"expansionPrompt": "The current 2 subtasks for implementing task creation without PRD appear appropriate. Consider if any additional subtasks are needed for validation, error handling, or integration with existing task management workflows.",
"reasoning": "This task involves a relatively simple modification to allow task creation without requiring a PRD document. The complexity is low as it primarily involves creating a form interface and saving functionality. The 2 existing subtasks cover the main implementation areas of UI design and data saving."
},
{
"taskId": 72,
"taskTitle": "Implement PDF Generation for Project Progress and Dependency Overview",
"complexityScore": 7,
"recommendedSubtasks": 6,
"expansionPrompt": "The current 6 subtasks for implementing PDF generation appear comprehensive. Consider if any additional subtasks are needed for handling large projects, additional visualization options, or integration with existing reporting tools.",
"reasoning": "This task involves creating a feature to generate PDF reports of project progress and dependency visualization. The complexity is high due to the need for PDF generation, data collection, and visualization integration. The 6 existing subtasks cover the main implementation areas from library selection to export options."
},
{
"taskId": 75,
"taskTitle": "Integrate Google Search Grounding for Research Role",
"complexityScore": 5,
"recommendedSubtasks": 4,
"expansionPrompt": "The current 4 subtasks for integrating Google Search Grounding appear well-structured. Consider if any additional subtasks are needed for testing with different query types, error handling, or performance optimization.",
"reasoning": "This task involves updating the AI service layer to enable Google Search Grounding for research roles. The complexity is moderate as it requires careful integration with the existing AI service architecture and conditional logic. The 4 existing subtasks cover the main implementation areas from service layer modification to testing."
},
{
"taskId": 76,
"taskTitle": "Develop E2E Test Framework for Taskmaster MCP Server (FastMCP over stdio)",
"complexityScore": 8,
"recommendedSubtasks": 7,
"expansionPrompt": "The current 7 subtasks for developing the E2E test framework appear comprehensive. Consider if any additional subtasks are needed for test result reporting, CI/CD integration, or performance benchmarking.",
"reasoning": "This task involves creating a sophisticated end-to-end testing framework for the MCP server. The complexity is high due to the need for subprocess management, protocol handling, and robust test case definition. The 7 existing subtasks cover the main implementation areas from architecture to documentation."
},
{
"taskId": 77,
"taskTitle": "Implement AI Usage Telemetry for Taskmaster (with external analytics endpoint)",
"complexityScore": 7,
"recommendedSubtasks": 18,
"expansionPrompt": "The current 18 subtasks for implementing AI usage telemetry appear very comprehensive. Consider if any additional subtasks are needed for security hardening, privacy compliance, or user feedback collection.",
"reasoning": "This task involves creating a telemetry system to track AI usage metrics. The complexity is high due to the need for secure data transmission, comprehensive data collection, and integration across multiple commands. The 18 existing subtasks are extremely detailed and cover all aspects of implementation from core utility to provider-specific updates."
},
{
"taskId": 80,
"taskTitle": "Implement Unique User ID Generation and Storage During Installation",
"complexityScore": 4,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing unique user ID generation appear well-structured. Consider if any additional subtasks are needed for privacy compliance, security auditing, or integration with the telemetry system.",
"reasoning": "This task involves generating and storing a unique user identifier during installation. The complexity is relatively low as it primarily involves UUID generation and configuration file management. The 5 existing subtasks cover the main implementation areas from script structure to documentation."
},
{
"taskId": 81,
"taskTitle": "Task #81: Implement Comprehensive Local Telemetry System with Future Server Integration Capability",
"complexityScore": 8,
"recommendedSubtasks": 6,
"expansionPrompt": "The current 6 subtasks for implementing the comprehensive local telemetry system appear well-structured. Consider if any additional subtasks are needed for data migration, storage optimization, or visualization tools.",
"reasoning": "This task involves expanding the telemetry system to capture additional metrics and implement local storage with future server integration capability. The complexity is high due to the breadth of data collection, storage requirements, and privacy considerations. The 6 existing subtasks cover the main implementation areas from data collection to user-facing benefits."
},
{
"taskId": 82,
"taskTitle": "Update supported-models.json with token limit fields",
"complexityScore": 3,
"recommendedSubtasks": 1,
"expansionPrompt": "This task appears straightforward enough to be implemented without further subtasks. Focus on researching accurate token limit values for each model and ensuring backward compatibility.",
"reasoning": "This task involves a simple update to the supported-models.json file to include new token limit fields. The complexity is low as it primarily involves research and data entry. No subtasks are necessary as the task is well-defined and focused."
},
{
"taskId": 83,
"taskTitle": "Update config-manager.js defaults and getters",
"complexityScore": 4,
"recommendedSubtasks": 1,
"expansionPrompt": "This task appears straightforward enough to be implemented without further subtasks. Focus on updating the DEFAULTS object and related getter functions while maintaining backward compatibility.",
"reasoning": "This task involves updating the config-manager.js module to replace maxTokens with more specific token limit fields. The complexity is relatively low as it primarily involves modifying existing code rather than creating new functionality. No subtasks are necessary as the task is well-defined and focused."
},
{
"taskId": 84,
"taskTitle": "Implement token counting utility",
"complexityScore": 5,
"recommendedSubtasks": 1,
"expansionPrompt": "This task appears well-defined enough to be implemented without further subtasks. Focus on implementing accurate token counting for different models and proper fallback mechanisms.",
"reasoning": "This task involves creating a utility function to count tokens for different AI models. The complexity is moderate as it requires integration with the tiktoken library and handling different tokenization schemes. No subtasks are necessary as the task is well-defined and focused."
},
{
"taskId": 69,
"taskTitle": "Enhance Analyze Complexity for Specific Task IDs",
"complexityScore": 7,
"recommendedSubtasks": 6,
"expansionPrompt": "Break down the task 'Enhance Analyze Complexity for Specific Task IDs' into 6 subtasks focusing on: 1) Core logic modification to accept ID parameters, 2) Report merging functionality, 3) CLI interface updates, 4) MCP tool integration, 5) Documentation updates, and 6) Comprehensive testing across all components.",
"reasoning": "This task involves modifying existing functionality across multiple components (core logic, CLI, MCP) with complex logic for filtering tasks and merging reports. The implementation requires careful handling of different parameter combinations and edge cases. The task has interdependent components that need to work together seamlessly, and the report merging functionality adds significant complexity."
},
{
"taskId": 70,
"taskTitle": "Implement 'diagram' command for Mermaid diagram generation",
"complexityScore": 6,
"recommendedSubtasks": 5,
"expansionPrompt": "Break down the 'diagram' command implementation into 5 subtasks: 1) Command interface and parameter handling, 2) Task data extraction and transformation to Mermaid syntax, 3) Diagram rendering with status color coding, 4) Output formatting and file export functionality, and 5) Error handling and edge case management.",
"reasoning": "This task requires implementing a new feature rather than modifying existing code, which reduces complexity from integration challenges. However, it involves working with visualization logic, dependency mapping, and multiple output formats. The color coding based on status and handling of dependency relationships adds moderate complexity. The task is well-defined but requires careful attention to diagram formatting and error handling."
},
{
"taskId": 85,
"taskTitle": "Update ai-services-unified.js for dynamic token limits",
"complexityScore": 7,
"recommendedSubtasks": 5,
"expansionPrompt": "Break down the update of ai-services-unified.js for dynamic token limits into subtasks such as: (1) Import and integrate the token counting utility, (2) Refactor _unifiedServiceRunner to calculate and enforce dynamic token limits, (3) Update error handling for token limit violations, (4) Add and verify logging for token usage, (5) Write and execute tests for various prompt and model scenarios.",
"reasoning": "This task involves significant code changes to a core function, integration of a new utility, dynamic logic for multiple models, and robust error handling. It also requires comprehensive testing for edge cases and integration, making it moderately complex and best managed by splitting into focused subtasks."
},
{
"taskId": 87,
"taskTitle": "Implement validation and error handling",
"complexityScore": 5,
"recommendedSubtasks": 4,
"expansionPrompt": "Decompose this task into: (1) Add validation logic for model and config loading, (2) Implement error handling and fallback mechanisms, (3) Enhance logging and reporting for token usage, (4) Develop helper functions for configuration suggestions and improvements.",
"reasoning": "This task is primarily about adding validation, error handling, and logging. While important for robustness, the logic is straightforward and can be modularized into a few clear subtasks."
},
{
"taskId": 89,
"taskTitle": "Introduce Prioritize Command with Enhanced Priority Levels",
"complexityScore": 6,
"recommendedSubtasks": 5,
"expansionPrompt": "Expand this task into: (1) Implement the prioritize command with all required flags and shorthands, (2) Update CLI output and help documentation for new priority levels, (3) Ensure backward compatibility with existing commands, (4) Add error handling for invalid inputs, (5) Write and run tests for all command scenarios.",
"reasoning": "This CLI feature requires command parsing, updating internal logic for new priority levels, documentation, and robust error handling. The complexity is moderate due to the need for backward compatibility and comprehensive testing."
},
{
"taskId": 90,
"taskTitle": "Implement Subtask Progress Analyzer and Reporting System",
"complexityScore": 8,
"recommendedSubtasks": 6,
"expansionPrompt": "Break down the analyzer implementation into: (1) Design and implement progress tracking logic, (2) Develop status validation and issue detection, (3) Build the reporting system with multiple output formats, (4) Integrate analyzer with the existing task management system, (5) Optimize for performance and scalability, (6) Write unit, integration, and performance tests.",
"reasoning": "This is a complex, multi-faceted feature involving data analysis, reporting, integration, and performance optimization. It touches many parts of the system and requires careful design, making it one of the most complex tasks in the list."
},
{
"taskId": 91,
"taskTitle": "Implement Move Command for Tasks and Subtasks",
"complexityScore": 7,
"recommendedSubtasks": 5,
"expansionPrompt": "Expand this task into: (1) Implement move logic for tasks and subtasks, (2) Handle edge cases (invalid ids, non-existent parents, circular dependencies), (3) Update CLI to support move command with flags, (4) Ensure data integrity and update relationships, (5) Write and execute tests for various move scenarios.",
"reasoning": "Moving tasks and subtasks requires careful handling of hierarchical data, edge cases, and data integrity. The command must be robust and user-friendly, necessitating multiple focused subtasks for safe implementation."
},
{
"taskId": 92,
"taskTitle": "Add Global Joke Flag to All CLI Commands",
"complexityScore": 8,
"recommendedSubtasks": 7,
"expansionPrompt": "Break down the implementation of the global --joke flag into the following subtasks: (1) Update CLI foundation to support global flags, (2) Develop the joke-service module with joke management and category support, (3) Integrate joke output into existing output utilities, (4) Update all CLI commands for joke flag compatibility, (5) Add configuration options for joke categories and custom jokes, (6) Implement comprehensive testing (flag recognition, output, content, integration, performance, regression), (7) Update documentation and usage examples.",
"reasoning": "This task requires changes across the CLI foundation, output utilities, all command modules, and configuration management. It introduces a new service module, global flag handling, and output logic that must not interfere with existing features (including JSON output). The need for robust testing and backward compatibility further increases complexity. The scope spans multiple code areas and requires careful integration, justifying a high complexity score and a detailed subtask breakdown to manage risk and ensure maintainability.[2][3][5]"
},
{
"taskId": 94,
"taskTitle": "Implement Standalone 'research' CLI Command for AI-Powered Queries",
"complexityScore": 7,
"recommendedSubtasks": 6,
"expansionPrompt": "Break down the implementation of the 'research' CLI command into logical subtasks covering command registration, parameter handling, context gathering, AI service integration, output formatting, and documentation.",
"reasoning": "This task has moderate to high complexity (7/10) due to multiple interconnected components: CLI argument parsing, integration with AI services, context gathering from various sources, and output formatting with different modes. The cyclomatic complexity would be significant with multiple decision paths for handling different flags and options. The task requires understanding existing patterns and extending the codebase in a consistent manner, suggesting the need for careful decomposition into manageable subtasks."
},
{
"taskId": 86,
"taskTitle": "Implement GitHub Issue Export Feature",
"complexityScore": 9,
"recommendedSubtasks": 10,
"expansionPrompt": "Break down the implementation of the GitHub Issue Export Feature into detailed subtasks covering: command structure and CLI integration, GitHub API client development, authentication and error handling, task-to-issue mapping logic, content formatting and markdown conversion, bidirectional linking and metadata management, extensible architecture and adapter interfaces, configuration and settings management, documentation, and comprehensive testing (unit, integration, edge cases, performance).",
"reasoning": "This task involves designing and implementing a robust, extensible export system with deep integration into GitHub, including bidirectional workflows, complex data mapping, error handling, and support for future platforms. The requirements span CLI design, API integration, content transformation, metadata management, extensibility, configuration, and extensive testing. The breadth and depth of these requirements, along with the need for maintainability and future extensibility, place this task at a high complexity level. Breaking it into at least 10 subtasks will ensure each major component and concern is addressed systematically, reducing risk and improving quality."
}
]
}

View File

@@ -0,0 +1,53 @@
{
"meta": {
"generatedAt": "2025-06-13T06:52:00.611Z",
"tasksAnalyzed": 5,
"totalTasks": 5,
"analysisCount": 5,
"thresholdScore": 5,
"projectName": "Taskmaster",
"usedResearch": true
},
"complexityAnalysis": [
{
"taskId": 1,
"taskTitle": "Setup Project Repository and Node.js Environment",
"complexityScore": 4,
"recommendedSubtasks": 6,
"expansionPrompt": "Break down the setup process into subtasks such as initializing npm, creating directory structure, installing dependencies, configuring package.json, adding configuration files, and setting up the main entry point.",
"reasoning": "This task involves several standard setup steps that are well-defined and sequential, with low algorithmic complexity but moderate procedural detail. Each step is independent and can be assigned as a subtask, making the overall complexity moderate."
},
{
"taskId": 2,
"taskTitle": "Implement Core Functionality and CLI Interface",
"complexityScore": 7,
"recommendedSubtasks": 7,
"expansionPrompt": "Expand into subtasks for implementing main logic, designing CLI commands, creating the CLI entry point, integrating business logic, adding error handling, formatting output, and ensuring CLI executability.",
"reasoning": "This task requires both application logic and user interface (CLI) development, including error handling and integration. The need to coordinate between core logic and CLI, plus ensuring usability, increases complexity and warrants detailed subtasking."
},
{
"taskId": 3,
"taskTitle": "Implement Testing Suite and Validation",
"complexityScore": 6,
"recommendedSubtasks": 6,
"expansionPrompt": "Divide into subtasks for configuring Jest, writing unit tests, writing integration tests, testing CLI commands, setting up coverage reporting, and preparing test fixtures/mocks.",
"reasoning": "Comprehensive testing involves multiple types of tests and configuration steps. While each is straightforward, the breadth of coverage and need for automation and validation increases the overall complexity."
},
{
"taskId": 4,
"taskTitle": "Setup Node.js Project with CLI Interface",
"complexityScore": 5,
"recommendedSubtasks": 7,
"expansionPrompt": "Break down into subtasks for npm initialization, package.json setup, directory structure creation, dependency installation, CLI entry point creation, package.json bin configuration, and CLI executability.",
"reasoning": "This task combines project setup with initial CLI implementation. While each step is standard, the integration of CLI elements adds a layer of complexity beyond a basic setup."
},
{
"taskId": 5,
"taskTitle": "Implement Core Functionality with Testing",
"complexityScore": 8,
"recommendedSubtasks": 8,
"expansionPrompt": "Expand into subtasks for implementing each feature (A, B, C), setting up the testing framework, writing tests for each feature, integrating CLI with core logic, and adding coverage reporting.",
"reasoning": "This task requires simultaneous development of multiple features, integration with CLI, and comprehensive testing. The coordination and depth required for both implementation and validation make it the most complex among the listed tasks."
}
]
}

9
.taskmaster/state.json Normal file
View File

@@ -0,0 +1,9 @@
{
"currentTag": "master",
"lastSwitched": "2025-06-14T20:37:15.456Z",
"branchTagMapping": {
"v017-adds": "v017-adds",
"next": "next"
},
"migrationNoticeShown": true
}

View File

@@ -0,0 +1,23 @@
# Task ID: 1
# Title: Implement TTS Flag for Taskmaster Commands
# Status: pending
# Dependencies: 16 (Not found)
# Priority: medium
# Description: Add text-to-speech functionality to taskmaster commands with configurable voice options and audio output settings.
# Details:
Implement TTS functionality including:
- Add --tts flag to all relevant taskmaster commands (list, show, generate, etc.)
- Integrate with system TTS engines (Windows SAPI, macOS say command, Linux espeak/festival)
- Create TTS configuration options in the configuration management system
- Add voice selection options (male/female, different languages if available)
- Implement audio output settings (volume, speed, pitch)
- Add TTS-specific error handling for cases where TTS is unavailable
- Create fallback behavior when TTS fails (silent failure or text output)
- Support for reading task titles, descriptions, and status updates aloud
- Add option to read entire task lists or individual task details
- Implement TTS for command confirmations and error messages
- Create TTS output formatting to make spoken text more natural (removing markdown, formatting numbers/dates appropriately)
- Add configuration option to enable/disable TTS globally
# Test Strategy:
Test TTS functionality across different operating systems (Windows, macOS, Linux). Verify that the --tts flag works with all major commands. Test voice configuration options and ensure audio output settings are properly applied. Test error handling when TTS services are unavailable. Verify that text formatting for speech is natural and understandable. Test with various task content types including special characters, code snippets, and long descriptions. Ensure TTS can be disabled and enabled through configuration.

14
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,14 @@
{
"json.schemas": [
{
"fileMatch": ["src/prompts/*.json"],
"url": "./src/prompts/schemas/prompt-template.schema.json"
}
],
"files.associations": {
"src/prompts/*.json": "json"
},
"json.format.enable": true,
"json.validate.enable": true
}

Some files were not shown because too many files have changed in this diff Show More