Files
automaker/apps/server/src/routes/suggestions/generate-suggestions.ts
Kacper 078ab943a8 fix(server): Add explicit JSON response instructions for Cursor prompts
Cursor was writing JSON to files instead of returning it in the response.
Added clear instructions to all Cursor prompts:
1. DO NOT write any files
2. Return ONLY raw JSON in the response
3. No explanations, no markdown, just JSON

Affected routes:
- generate-spec.ts
- generate-features-from-spec.ts
- validate-issue.ts
- generate-suggestions.ts

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-30 15:44:50 +01:00

337 lines
12 KiB
TypeScript

/**
* Business logic for generating suggestions
*
* Model is configurable via phaseModels.enhancementModel in settings
* (Feature Enhancement in the UI). Supports both Claude and Cursor models.
*/
import { query } from '@anthropic-ai/claude-agent-sdk';
import type { EventEmitter } from '../../lib/events.js';
import { createLogger } from '@automaker/utils';
import { DEFAULT_PHASE_MODELS, isCursorModel } from '@automaker/types';
import { resolveModelString } from '@automaker/model-resolver';
import { createSuggestionsOptions } from '../../lib/sdk-options.js';
import { extractJsonWithArray } from '../../lib/json-extractor.js';
import { ProviderFactory } from '../../providers/provider-factory.js';
import { FeatureLoader } from '../../services/feature-loader.js';
import { getAppSpecPath } from '@automaker/platform';
import * as secureFs from '../../lib/secure-fs.js';
import type { SettingsService } from '../../services/settings-service.js';
import { getAutoLoadClaudeMdSetting } from '../../lib/settings-helpers.js';
const logger = createLogger('Suggestions');
/**
* Extract implemented features from app_spec.txt XML content
*
* Note: This uses regex-based parsing which is sufficient for our controlled
* XML structure. If more complex XML parsing is needed in the future, consider
* using a library like 'fast-xml-parser' or 'xml2js'.
*/
function extractImplementedFeatures(specContent: string): string[] {
const features: string[] = [];
// Match <implemented_features>...</implemented_features> section
const implementedMatch = specContent.match(
/<implemented_features>([\s\S]*?)<\/implemented_features>/
);
if (implementedMatch) {
const implementedSection = implementedMatch[1];
// Extract feature names from <name>...</name> tags using matchAll
const nameRegex = /<name>(.*?)<\/name>/g;
const matches = implementedSection.matchAll(nameRegex);
for (const match of matches) {
features.push(match[1].trim());
}
}
return features;
}
/**
* Load existing context (app spec and backlog features) to avoid duplicates
*/
async function loadExistingContext(projectPath: string): Promise<string> {
let context = '';
// 1. Read app_spec.txt for implemented features
try {
const appSpecPath = getAppSpecPath(projectPath);
const specContent = (await secureFs.readFile(appSpecPath, 'utf-8')) as string;
if (specContent && specContent.trim().length > 0) {
const implementedFeatures = extractImplementedFeatures(specContent);
if (implementedFeatures.length > 0) {
context += '\n\n=== ALREADY IMPLEMENTED FEATURES ===\n';
context += 'These features are already implemented in the codebase:\n';
context += implementedFeatures.map((feature) => `- ${feature}`).join('\n') + '\n';
}
}
} catch (error) {
// app_spec.txt doesn't exist or can't be read - that's okay
logger.debug('No app_spec.txt found or error reading it:', error);
}
// 2. Load existing features from backlog
try {
const featureLoader = new FeatureLoader();
const features = await featureLoader.getAll(projectPath);
if (features.length > 0) {
context += '\n\n=== EXISTING FEATURES IN BACKLOG ===\n';
context += 'These features are already planned or in progress:\n';
context +=
features
.map((feature) => {
const status = feature.status || 'pending';
const title = feature.title || feature.description?.substring(0, 50) || 'Untitled';
return `- ${title} (${status})`;
})
.join('\n') + '\n';
}
} catch (error) {
// Features directory doesn't exist or can't be read - that's okay
logger.debug('No features found or error loading them:', error);
}
return context;
}
/**
* JSON Schema for suggestions output
*/
const suggestionsSchema = {
type: 'object',
properties: {
suggestions: {
type: 'array',
items: {
type: 'object',
properties: {
id: { type: 'string' },
category: { type: 'string' },
description: { type: 'string' },
priority: {
type: 'number',
minimum: 1,
maximum: 3,
},
reasoning: { type: 'string' },
},
required: ['category', 'description', 'priority', 'reasoning'],
},
},
},
required: ['suggestions'],
additionalProperties: false,
};
export async function generateSuggestions(
projectPath: string,
suggestionType: string,
events: EventEmitter,
abortController: AbortController,
settingsService?: SettingsService
): Promise<void> {
const typePrompts: Record<string, string> = {
features: 'Analyze this project and suggest new features that would add value.',
refactoring: 'Analyze this project and identify refactoring opportunities.',
security: 'Analyze this project for security vulnerabilities and suggest fixes.',
performance: 'Analyze this project for performance issues and suggest optimizations.',
};
// Load existing context to avoid duplicates
const existingContext = await loadExistingContext(projectPath);
const prompt = `${typePrompts[suggestionType] || typePrompts.features}
${existingContext}
${existingContext ? '\nIMPORTANT: Do NOT suggest features that are already implemented or already in the backlog above. Focus on NEW ideas that complement what already exists.\n' : ''}
Look at the codebase and provide 3-5 concrete suggestions.
For each suggestion, provide:
1. A category (e.g., "User Experience", "Security", "Performance")
2. A clear description of what to implement
3. Priority (1=high, 2=medium, 3=low)
4. Brief reasoning for why this would help
The response will be automatically formatted as structured JSON.`;
// Don't send initial message - let the agent output speak for itself
// The first agent message will be captured as an info entry
// Load autoLoadClaudeMd setting
const autoLoadClaudeMd = await getAutoLoadClaudeMdSetting(
projectPath,
settingsService,
'[Suggestions]'
);
// Get model from phase settings (Feature Enhancement = enhancementModel)
const settings = await settingsService?.getGlobalSettings();
const enhancementModel =
settings?.phaseModels?.enhancementModel || DEFAULT_PHASE_MODELS.enhancementModel;
const model = resolveModelString(enhancementModel);
logger.info('[Suggestions] Using model:', model);
let responseText = '';
let structuredOutput: { suggestions: Array<Record<string, unknown>> } | null = null;
// Route to appropriate provider based on model type
if (isCursorModel(model)) {
// Use Cursor provider for Cursor models
logger.info('[Suggestions] Using Cursor provider');
const provider = ProviderFactory.getProviderForModel(model);
// For Cursor, include the JSON schema in the prompt with clear instructions
const cursorPrompt = `${prompt}
CRITICAL INSTRUCTIONS:
1. DO NOT write any files. Return the JSON in your response only.
2. After analyzing the project, respond with ONLY a JSON object - no explanations, no markdown, just raw JSON.
3. The JSON must match this exact schema:
${JSON.stringify(suggestionsSchema, null, 2)}
Your entire response should be valid JSON starting with { and ending with }. No text before or after.`;
for await (const msg of provider.executeQuery({
prompt: cursorPrompt,
model,
cwd: projectPath,
maxTurns: 250,
allowedTools: ['Read', 'Glob', 'Grep'],
abortController,
readOnly: true, // Suggestions only reads code, doesn't write
})) {
if (msg.type === 'assistant' && msg.message?.content) {
for (const block of msg.message.content) {
if (block.type === 'text' && block.text) {
responseText += block.text;
events.emit('suggestions:event', {
type: 'suggestions_progress',
content: block.text,
});
} else if (block.type === 'tool_use') {
events.emit('suggestions:event', {
type: 'suggestions_tool',
tool: block.name,
input: block.input,
});
}
}
}
}
} else {
// Use Claude SDK for Claude models
logger.info('[Suggestions] Using Claude SDK');
const options = createSuggestionsOptions({
cwd: projectPath,
abortController,
autoLoadClaudeMd,
model, // Pass the model from settings
outputFormat: {
type: 'json_schema',
schema: suggestionsSchema,
},
});
const stream = query({ prompt, options });
for await (const msg of stream) {
if (msg.type === 'assistant' && msg.message.content) {
for (const block of msg.message.content) {
if (block.type === 'text') {
responseText += block.text;
events.emit('suggestions:event', {
type: 'suggestions_progress',
content: block.text,
});
} else if (block.type === 'tool_use') {
events.emit('suggestions:event', {
type: 'suggestions_tool',
tool: block.name,
input: block.input,
});
}
}
} else if (msg.type === 'result' && msg.subtype === 'success') {
// Check for structured output
const resultMsg = msg as any;
if (resultMsg.structured_output) {
structuredOutput = resultMsg.structured_output as {
suggestions: Array<Record<string, unknown>>;
};
logger.debug('Received structured output:', structuredOutput);
}
} else if (msg.type === 'result') {
const resultMsg = msg as any;
if (resultMsg.subtype === 'error_max_structured_output_retries') {
logger.error('Failed to produce valid structured output after retries');
throw new Error('Could not produce valid suggestions output');
} else if (resultMsg.subtype === 'error_max_turns') {
logger.error('Hit max turns limit before completing suggestions generation');
logger.warn(`Response text length: ${responseText.length} chars`);
// Still try to parse what we have
}
}
}
}
// Use structured output if available, otherwise fall back to parsing text
try {
if (structuredOutput && structuredOutput.suggestions) {
// Use structured output directly
events.emit('suggestions:event', {
type: 'suggestions_complete',
suggestions: structuredOutput.suggestions.map((s: Record<string, unknown>, i: number) => ({
...s,
id: s.id || `suggestion-${Date.now()}-${i}`,
})),
});
} else {
// Fallback: try to parse from text using shared extraction utility
logger.warn('No structured output received, attempting to parse from text');
const parsed = extractJsonWithArray<{ suggestions: Array<Record<string, unknown>> }>(
responseText,
'suggestions',
{ logger }
);
if (parsed && parsed.suggestions) {
events.emit('suggestions:event', {
type: 'suggestions_complete',
suggestions: parsed.suggestions.map((s: Record<string, unknown>, i: number) => ({
...s,
id: s.id || `suggestion-${Date.now()}-${i}`,
})),
});
} else {
throw new Error('No valid JSON found in response');
}
}
} catch (error) {
// Log the parsing error for debugging
logger.error('Failed to parse suggestions JSON from AI response:', error);
// Return generic suggestions if parsing fails
events.emit('suggestions:event', {
type: 'suggestions_complete',
suggestions: [
{
id: `suggestion-${Date.now()}-0`,
category: 'Analysis',
description: 'Review the AI analysis output for insights',
priority: 1,
reasoning: 'The AI provided analysis but suggestions need manual review',
},
],
});
}
}