mirror of
https://github.com/hiyouga/LlamaFactory.git
synced 2026-02-03 21:03:10 +00:00
[deps] adapt to transformers v5 (#10147)
Co-authored-by: frozenleaves <frozen@Mac.local> Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
This commit is contained in:
@@ -18,7 +18,7 @@ init_config:
|
|||||||
name: init_on_meta
|
name: init_on_meta
|
||||||
|
|
||||||
### data
|
### data
|
||||||
train_dataset: data/v1_sft_demo.yaml
|
train_dataset: data/v1_sft_demo.yaml
|
||||||
|
|
||||||
### training
|
### training
|
||||||
output_dir: outputs/test_fsdp2
|
output_dir: outputs/test_fsdp2
|
||||||
|
|||||||
@@ -40,10 +40,10 @@ dependencies = [
|
|||||||
"torch>=2.4.0",
|
"torch>=2.4.0",
|
||||||
"torchvision>=0.19.0",
|
"torchvision>=0.19.0",
|
||||||
"torchaudio>=2.4.0",
|
"torchaudio>=2.4.0",
|
||||||
"transformers>=4.51.0,<=4.57.1,!=4.52.0,!=4.57.0",
|
"transformers>=4.51.0,<=5.0.0,!=4.52.0,!=4.57.0",
|
||||||
"datasets>=2.16.0,<=4.0.0",
|
"datasets>=2.16.0,<=4.0.0",
|
||||||
"accelerate>=1.3.0,<=1.11.0",
|
"accelerate>=1.3.0,<=1.11.0",
|
||||||
"peft>=0.14.0,<=0.17.1",
|
"peft>=0.18.0,<=0.18.1",
|
||||||
"trl>=0.18.0,<=0.24.0",
|
"trl>=0.18.0,<=0.24.0",
|
||||||
"torchdata>=0.10.0,<=0.11.0",
|
"torchdata>=0.10.0,<=0.11.0",
|
||||||
# gui
|
# gui
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
deepspeed>=0.10.0,<=0.16.9
|
deepspeed>=0.10.0,<=0.18.4
|
||||||
|
|||||||
@@ -94,10 +94,10 @@ def check_version(requirement: str, mandatory: bool = False) -> None:
|
|||||||
|
|
||||||
def check_dependencies() -> None:
|
def check_dependencies() -> None:
|
||||||
r"""Check the version of the required packages."""
|
r"""Check the version of the required packages."""
|
||||||
check_version("transformers>=4.51.0,<=4.57.1")
|
check_version("transformers>=4.51.0,<=5.0.0")
|
||||||
check_version("datasets>=2.16.0,<=4.0.0")
|
check_version("datasets>=2.16.0,<=4.0.0")
|
||||||
check_version("accelerate>=1.3.0,<=1.11.0")
|
check_version("accelerate>=1.3.0,<=1.11.0")
|
||||||
check_version("peft>=0.14.0,<=0.17.1")
|
check_version("peft>=0.18.0,<=0.18.1")
|
||||||
check_version("trl>=0.18.0,<=0.24.0")
|
check_version("trl>=0.18.0,<=0.24.0")
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -65,7 +65,9 @@ class DataArguments:
|
|||||||
)
|
)
|
||||||
mix_strategy: Literal["concat", "interleave_under", "interleave_over", "interleave_once"] = field(
|
mix_strategy: Literal["concat", "interleave_under", "interleave_over", "interleave_once"] = field(
|
||||||
default="concat",
|
default="concat",
|
||||||
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling/sampling w.o. replacement)."},
|
metadata={
|
||||||
|
"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling/sampling w.o. replacement)."
|
||||||
|
},
|
||||||
)
|
)
|
||||||
interleave_probs: str | None = field(
|
interleave_probs: str | None = field(
|
||||||
default=None,
|
default=None,
|
||||||
|
|||||||
@@ -206,9 +206,6 @@ class BaseModelArguments:
|
|||||||
if self.model_name_or_path is None:
|
if self.model_name_or_path is None:
|
||||||
raise ValueError("Please provide `model_name_or_path`.")
|
raise ValueError("Please provide `model_name_or_path`.")
|
||||||
|
|
||||||
if self.split_special_tokens and self.use_fast_tokenizer:
|
|
||||||
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
|
|
||||||
|
|
||||||
if self.adapter_name_or_path is not None: # support merging multiple lora weights
|
if self.adapter_name_or_path is not None: # support merging multiple lora weights
|
||||||
self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
|
self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
|
||||||
|
|
||||||
|
|||||||
@@ -139,10 +139,6 @@ def _verify_model_args(
|
|||||||
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
|
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
|
||||||
raise ValueError("Quantized model only accepts a single adapter. Merge them first.")
|
raise ValueError("Quantized model only accepts a single adapter. Merge them first.")
|
||||||
|
|
||||||
if data_args.template == "yi" and model_args.use_fast_tokenizer:
|
|
||||||
logger.warning_rank0("We should use slow tokenizer for the Yi models. Change `use_fast_tokenizer` to False.")
|
|
||||||
model_args.use_fast_tokenizer = False
|
|
||||||
|
|
||||||
|
|
||||||
def _check_extra_dependencies(
|
def _check_extra_dependencies(
|
||||||
model_args: "ModelArguments",
|
model_args: "ModelArguments",
|
||||||
@@ -188,9 +184,7 @@ def _check_extra_dependencies(
|
|||||||
|
|
||||||
if training_args is not None:
|
if training_args is not None:
|
||||||
if training_args.deepspeed:
|
if training_args.deepspeed:
|
||||||
# pin deepspeed version < 0.17 because of https://github.com/deepspeedai/DeepSpeed/issues/7347
|
|
||||||
check_version("deepspeed", mandatory=True)
|
check_version("deepspeed", mandatory=True)
|
||||||
check_version("deepspeed>=0.10.0,<=0.16.9")
|
|
||||||
|
|
||||||
if training_args.predict_with_generate:
|
if training_args.predict_with_generate:
|
||||||
check_version("jieba", mandatory=True)
|
check_version("jieba", mandatory=True)
|
||||||
|
|||||||
@@ -22,7 +22,6 @@ from transformers import (
|
|||||||
AutoModelForImageTextToText,
|
AutoModelForImageTextToText,
|
||||||
AutoModelForSeq2SeqLM,
|
AutoModelForSeq2SeqLM,
|
||||||
AutoModelForTextToWaveform,
|
AutoModelForTextToWaveform,
|
||||||
AutoModelForVision2Seq,
|
|
||||||
AutoProcessor,
|
AutoProcessor,
|
||||||
AutoTokenizer,
|
AutoTokenizer,
|
||||||
)
|
)
|
||||||
@@ -166,11 +165,9 @@ def load_model(
|
|||||||
else:
|
else:
|
||||||
if type(config) in AutoModelForImageTextToText._model_mapping.keys(): # image-text
|
if type(config) in AutoModelForImageTextToText._model_mapping.keys(): # image-text
|
||||||
load_class = AutoModelForImageTextToText
|
load_class = AutoModelForImageTextToText
|
||||||
elif type(config) in AutoModelForVision2Seq._model_mapping.keys(): # image-text
|
|
||||||
load_class = AutoModelForVision2Seq
|
|
||||||
elif type(config) in AutoModelForSeq2SeqLM._model_mapping.keys(): # audio-text
|
elif type(config) in AutoModelForSeq2SeqLM._model_mapping.keys(): # audio-text
|
||||||
load_class = AutoModelForSeq2SeqLM
|
load_class = AutoModelForSeq2SeqLM
|
||||||
elif type(config) in AutoModelForTextToWaveform._model_mapping.keys(): # audio hack for qwen omni
|
elif type(config) in AutoModelForTextToWaveform._model_mapping.keys(): # audio-text for qwen omni
|
||||||
load_class = AutoModelForTextToWaveform
|
load_class = AutoModelForTextToWaveform
|
||||||
else:
|
else:
|
||||||
load_class = AutoModelForCausalLM
|
load_class = AutoModelForCausalLM
|
||||||
|
|||||||
@@ -374,7 +374,13 @@ _register_composite_model(
|
|||||||
_register_composite_model(
|
_register_composite_model(
|
||||||
model_type="qwen3_omni_moe_thinker",
|
model_type="qwen3_omni_moe_thinker",
|
||||||
projector_key="visual.merger",
|
projector_key="visual.merger",
|
||||||
vision_model_keys=["visual.pos_embed", "visual.patch_embed", "visual.blocks", "visual.deepstack_merger_list", "audio_tower"],
|
vision_model_keys=[
|
||||||
|
"visual.pos_embed",
|
||||||
|
"visual.patch_embed",
|
||||||
|
"visual.blocks",
|
||||||
|
"visual.deepstack_merger_list",
|
||||||
|
"audio_tower",
|
||||||
|
],
|
||||||
language_model_keys=["model", "lm_head"],
|
language_model_keys=["model", "lm_head"],
|
||||||
lora_conflict_keys=["patch_embed"],
|
lora_conflict_keys=["patch_embed"],
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -103,7 +103,9 @@ class FixValueHeadModelCallback(TrainerCallback):
|
|||||||
if args.should_save:
|
if args.should_save:
|
||||||
output_dir = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}")
|
output_dir = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}")
|
||||||
fix_valuehead_checkpoint(
|
fix_valuehead_checkpoint(
|
||||||
model=kwargs.pop("model"), output_dir=output_dir, safe_serialization=args.save_safetensors
|
model=kwargs.pop("model"),
|
||||||
|
output_dir=output_dir,
|
||||||
|
safe_serialization=getattr(args, "save_safetensors", True),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@@ -137,7 +139,7 @@ class PissaConvertCallback(TrainerCallback):
|
|||||||
if isinstance(model, PeftModel):
|
if isinstance(model, PeftModel):
|
||||||
init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights")
|
init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights")
|
||||||
setattr(model.peft_config["default"], "init_lora_weights", True)
|
setattr(model.peft_config["default"], "init_lora_weights", True)
|
||||||
model.save_pretrained(pissa_init_dir, safe_serialization=args.save_safetensors)
|
model.save_pretrained(pissa_init_dir, safe_serialization=getattr(args, "save_safetensors", True))
|
||||||
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)
|
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)
|
||||||
|
|
||||||
@override
|
@override
|
||||||
@@ -155,11 +157,11 @@ class PissaConvertCallback(TrainerCallback):
|
|||||||
if isinstance(model, PeftModel):
|
if isinstance(model, PeftModel):
|
||||||
init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights")
|
init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights")
|
||||||
setattr(model.peft_config["default"], "init_lora_weights", True)
|
setattr(model.peft_config["default"], "init_lora_weights", True)
|
||||||
model.save_pretrained(pissa_backup_dir, safe_serialization=args.save_safetensors)
|
model.save_pretrained(pissa_backup_dir, safe_serialization=getattr(args, "save_safetensors", True))
|
||||||
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)
|
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)
|
||||||
model.save_pretrained(
|
model.save_pretrained(
|
||||||
pissa_convert_dir,
|
pissa_convert_dir,
|
||||||
safe_serialization=args.save_safetensors,
|
safe_serialization=getattr(args, "save_safetensors", True),
|
||||||
path_initial_model_for_weight_conversion=pissa_init_dir,
|
path_initial_model_for_weight_conversion=pissa_init_dir,
|
||||||
)
|
)
|
||||||
model.load_adapter(pissa_backup_dir, "default", is_trainable=True)
|
model.load_adapter(pissa_backup_dir, "default", is_trainable=True)
|
||||||
|
|||||||
@@ -72,7 +72,7 @@ def run_ppo(
|
|||||||
ppo_trainer.ppo_train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
ppo_trainer.ppo_train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||||
ppo_trainer.save_model()
|
ppo_trainer.save_model()
|
||||||
if training_args.should_save:
|
if training_args.should_save:
|
||||||
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
|
fix_valuehead_checkpoint(model, training_args.output_dir, getattr(training_args, "save_safetensors", True))
|
||||||
|
|
||||||
ppo_trainer.save_state() # must be called after save_model to have a folder
|
ppo_trainer.save_state() # must be called after save_model to have a folder
|
||||||
if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||||
|
|||||||
@@ -114,7 +114,7 @@ class PairwiseTrainer(Trainer):
|
|||||||
if state_dict is None:
|
if state_dict is None:
|
||||||
state_dict = self.model.state_dict()
|
state_dict = self.model.state_dict()
|
||||||
|
|
||||||
if self.args.save_safetensors:
|
if getattr(self.args, "save_safetensors", True):
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
|
|
||||||
ptrs = defaultdict(list)
|
ptrs = defaultdict(list)
|
||||||
|
|||||||
@@ -65,7 +65,7 @@ def run_rm(
|
|||||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||||
trainer.save_model()
|
trainer.save_model()
|
||||||
if training_args.should_save:
|
if training_args.should_save:
|
||||||
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
|
fix_valuehead_checkpoint(model, training_args.output_dir, getattr(training_args, "save_safetensors", True))
|
||||||
|
|
||||||
trainer.log_metrics("train", train_result.metrics)
|
trainer.log_metrics("train", train_result.metrics)
|
||||||
trainer.save_metrics("train", train_result.metrics)
|
trainer.save_metrics("train", train_result.metrics)
|
||||||
|
|||||||
@@ -18,7 +18,6 @@ Contains shared fixtures, pytest configuration, and custom markers.
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import sys
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
@@ -149,14 +148,7 @@ def _manage_distributed_env(request: FixtureRequest, monkeypatch: MonkeyPatch) -
|
|||||||
devices_str = ",".join(str(i) for i in range(required))
|
devices_str = ",".join(str(i) for i in range(required))
|
||||||
|
|
||||||
monkeypatch.setenv(env_key, devices_str)
|
monkeypatch.setenv(env_key, devices_str)
|
||||||
|
monkeypatch.syspath_prepend(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
||||||
# add project root dir to path for mp run
|
|
||||||
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
|
||||||
if project_root not in sys.path:
|
|
||||||
sys.path.insert(0, project_root)
|
|
||||||
|
|
||||||
os.environ["PYTHONPATH"] = project_root + os.pathsep + os.environ.get("PYTHONPATH", "")
|
|
||||||
|
|
||||||
else: # non-distributed test
|
else: # non-distributed test
|
||||||
if old_value:
|
if old_value:
|
||||||
visible_devices = [v for v in old_value.split(",") if v != ""]
|
visible_devices = [v for v in old_value.split(",") if v != ""]
|
||||||
|
|||||||
@@ -20,6 +20,7 @@ from datasets import load_dataset
|
|||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
from llamafactory.extras.constants import IGNORE_INDEX
|
from llamafactory.extras.constants import IGNORE_INDEX
|
||||||
|
from llamafactory.extras.packages import is_transformers_version_greater_than
|
||||||
from llamafactory.train.test_utils import load_dataset_module
|
from llamafactory.train.test_utils import load_dataset_module
|
||||||
|
|
||||||
|
|
||||||
@@ -52,7 +53,12 @@ def test_feedback_data(num_samples: int):
|
|||||||
for index in indexes:
|
for index in indexes:
|
||||||
messages = original_data["messages"][index]
|
messages = original_data["messages"][index]
|
||||||
ref_input_ids = ref_tokenizer.apply_chat_template(messages)
|
ref_input_ids = ref_tokenizer.apply_chat_template(messages)
|
||||||
prompt_len = len(ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True))
|
ref_prompt_ids = ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True)
|
||||||
|
if is_transformers_version_greater_than("5.0.0"):
|
||||||
|
ref_input_ids = ref_input_ids["input_ids"]
|
||||||
|
ref_prompt_ids = ref_prompt_ids["input_ids"]
|
||||||
|
|
||||||
|
prompt_len = len(ref_prompt_ids)
|
||||||
ref_labels = [IGNORE_INDEX] * prompt_len + ref_input_ids[prompt_len:]
|
ref_labels = [IGNORE_INDEX] * prompt_len + ref_input_ids[prompt_len:]
|
||||||
assert train_dataset["input_ids"][index] == ref_input_ids
|
assert train_dataset["input_ids"][index] == ref_input_ids
|
||||||
assert train_dataset["labels"][index] == ref_labels
|
assert train_dataset["labels"][index] == ref_labels
|
||||||
|
|||||||
@@ -20,6 +20,7 @@ from datasets import load_dataset
|
|||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
from llamafactory.extras.constants import IGNORE_INDEX
|
from llamafactory.extras.constants import IGNORE_INDEX
|
||||||
|
from llamafactory.extras.packages import is_transformers_version_greater_than
|
||||||
from llamafactory.train.test_utils import load_dataset_module
|
from llamafactory.train.test_utils import load_dataset_module
|
||||||
|
|
||||||
|
|
||||||
@@ -63,13 +64,21 @@ def test_pairwise_data(num_samples: int):
|
|||||||
rejected_messages = original_data["conversations"][index] + [original_data["rejected"][index]]
|
rejected_messages = original_data["conversations"][index] + [original_data["rejected"][index]]
|
||||||
chosen_messages = _convert_sharegpt_to_openai(chosen_messages)
|
chosen_messages = _convert_sharegpt_to_openai(chosen_messages)
|
||||||
rejected_messages = _convert_sharegpt_to_openai(rejected_messages)
|
rejected_messages = _convert_sharegpt_to_openai(rejected_messages)
|
||||||
|
|
||||||
ref_chosen_input_ids = ref_tokenizer.apply_chat_template(chosen_messages)
|
ref_chosen_input_ids = ref_tokenizer.apply_chat_template(chosen_messages)
|
||||||
chosen_prompt_len = len(ref_tokenizer.apply_chat_template(chosen_messages[:-1], add_generation_prompt=True))
|
ref_chosen_prompt_ids = ref_tokenizer.apply_chat_template(chosen_messages[:-1], add_generation_prompt=True)
|
||||||
ref_chosen_labels = [IGNORE_INDEX] * chosen_prompt_len + ref_chosen_input_ids[chosen_prompt_len:]
|
|
||||||
ref_rejected_input_ids = ref_tokenizer.apply_chat_template(rejected_messages)
|
ref_rejected_input_ids = ref_tokenizer.apply_chat_template(rejected_messages)
|
||||||
rejected_prompt_len = len(
|
ref_rejected_prompt_ids = ref_tokenizer.apply_chat_template(rejected_messages[:-1], add_generation_prompt=True)
|
||||||
ref_tokenizer.apply_chat_template(rejected_messages[:-1], add_generation_prompt=True)
|
|
||||||
)
|
if is_transformers_version_greater_than("5.0.0"):
|
||||||
|
ref_chosen_input_ids = ref_chosen_input_ids["input_ids"]
|
||||||
|
ref_rejected_input_ids = ref_rejected_input_ids["input_ids"]
|
||||||
|
ref_chosen_prompt_ids = ref_chosen_prompt_ids["input_ids"]
|
||||||
|
ref_rejected_prompt_ids = ref_rejected_prompt_ids["input_ids"]
|
||||||
|
|
||||||
|
chosen_prompt_len = len(ref_chosen_prompt_ids)
|
||||||
|
rejected_prompt_len = len(ref_rejected_prompt_ids)
|
||||||
|
ref_chosen_labels = [IGNORE_INDEX] * chosen_prompt_len + ref_chosen_input_ids[chosen_prompt_len:]
|
||||||
ref_rejected_labels = [IGNORE_INDEX] * rejected_prompt_len + ref_rejected_input_ids[rejected_prompt_len:]
|
ref_rejected_labels = [IGNORE_INDEX] * rejected_prompt_len + ref_rejected_input_ids[rejected_prompt_len:]
|
||||||
assert train_dataset["chosen_input_ids"][index] == ref_chosen_input_ids
|
assert train_dataset["chosen_input_ids"][index] == ref_chosen_input_ids
|
||||||
assert train_dataset["chosen_labels"][index] == ref_chosen_labels
|
assert train_dataset["chosen_labels"][index] == ref_chosen_labels
|
||||||
|
|||||||
@@ -20,6 +20,7 @@ from datasets import load_dataset
|
|||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
from llamafactory.extras.constants import IGNORE_INDEX
|
from llamafactory.extras.constants import IGNORE_INDEX
|
||||||
|
from llamafactory.extras.packages import is_transformers_version_greater_than
|
||||||
from llamafactory.train.test_utils import load_dataset_module
|
from llamafactory.train.test_utils import load_dataset_module
|
||||||
|
|
||||||
|
|
||||||
@@ -59,7 +60,16 @@ def test_supervised_single_turn(num_samples: int):
|
|||||||
{"role": "assistant", "content": original_data["output"][index]},
|
{"role": "assistant", "content": original_data["output"][index]},
|
||||||
]
|
]
|
||||||
ref_input_ids = ref_tokenizer.apply_chat_template(messages)
|
ref_input_ids = ref_tokenizer.apply_chat_template(messages)
|
||||||
|
ref_prompt_ids = ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True)
|
||||||
|
|
||||||
|
if is_transformers_version_greater_than("5.0.0"):
|
||||||
|
ref_input_ids = ref_input_ids["input_ids"]
|
||||||
|
ref_prompt_ids = ref_prompt_ids["input_ids"]
|
||||||
|
|
||||||
|
prompt_len = len(ref_prompt_ids)
|
||||||
|
ref_label_ids = [IGNORE_INDEX] * prompt_len + ref_input_ids[prompt_len:]
|
||||||
assert train_dataset["input_ids"][index] == ref_input_ids
|
assert train_dataset["input_ids"][index] == ref_input_ids
|
||||||
|
assert train_dataset["labels"][index] == ref_label_ids
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@@ -73,6 +83,10 @@ def test_supervised_multi_turn(num_samples: int):
|
|||||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||||
for index in indexes:
|
for index in indexes:
|
||||||
ref_input_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index])
|
ref_input_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index])
|
||||||
|
if is_transformers_version_greater_than("5.0.0"):
|
||||||
|
ref_input_ids = ref_input_ids["input_ids"]
|
||||||
|
|
||||||
|
# cannot test the label ids in multi-turn case
|
||||||
assert train_dataset["input_ids"][index] == ref_input_ids
|
assert train_dataset["input_ids"][index] == ref_input_ids
|
||||||
|
|
||||||
|
|
||||||
@@ -86,9 +100,12 @@ def test_supervised_train_on_prompt(num_samples: int):
|
|||||||
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
||||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||||
for index in indexes:
|
for index in indexes:
|
||||||
ref_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index])
|
ref_input_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index])
|
||||||
assert train_dataset["input_ids"][index] == ref_ids
|
if is_transformers_version_greater_than("5.0.0"):
|
||||||
assert train_dataset["labels"][index] == ref_ids
|
ref_input_ids = ref_input_ids["input_ids"]
|
||||||
|
|
||||||
|
assert train_dataset["input_ids"][index] == ref_input_ids
|
||||||
|
assert train_dataset["labels"][index] == ref_input_ids
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@@ -103,7 +120,13 @@ def test_supervised_mask_history(num_samples: int):
|
|||||||
for index in indexes:
|
for index in indexes:
|
||||||
messages = original_data["messages"][index]
|
messages = original_data["messages"][index]
|
||||||
ref_input_ids = ref_tokenizer.apply_chat_template(messages)
|
ref_input_ids = ref_tokenizer.apply_chat_template(messages)
|
||||||
prompt_len = len(ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True))
|
ref_prompt_ids = ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True)
|
||||||
|
|
||||||
|
if is_transformers_version_greater_than("5.0.0"):
|
||||||
|
ref_input_ids = ref_input_ids["input_ids"]
|
||||||
|
ref_prompt_ids = ref_prompt_ids["input_ids"]
|
||||||
|
|
||||||
|
prompt_len = len(ref_prompt_ids)
|
||||||
ref_label_ids = [IGNORE_INDEX] * prompt_len + ref_input_ids[prompt_len:]
|
ref_label_ids = [IGNORE_INDEX] * prompt_len + ref_input_ids[prompt_len:]
|
||||||
assert train_dataset["input_ids"][index] == ref_input_ids
|
assert train_dataset["input_ids"][index] == ref_input_ids
|
||||||
assert train_dataset["labels"][index] == ref_label_ids
|
assert train_dataset["labels"][index] == ref_label_ids
|
||||||
|
|||||||
@@ -19,6 +19,7 @@ import pytest
|
|||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
from llamafactory.extras.packages import is_transformers_version_greater_than
|
||||||
from llamafactory.train.test_utils import load_dataset_module
|
from llamafactory.train.test_utils import load_dataset_module
|
||||||
|
|
||||||
|
|
||||||
@@ -55,8 +56,13 @@ def test_unsupervised_data(num_samples: int):
|
|||||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||||
for index in indexes:
|
for index in indexes:
|
||||||
messages = original_data["messages"][index]
|
messages = original_data["messages"][index]
|
||||||
ref_ids = ref_tokenizer.apply_chat_template(messages)
|
ref_input_ids = ref_tokenizer.apply_chat_template(messages)
|
||||||
ref_input_ids = ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True)
|
ref_prompt_ids = ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True)
|
||||||
ref_labels = ref_ids[len(ref_input_ids) :]
|
|
||||||
assert train_dataset["input_ids"][index] == ref_input_ids
|
if is_transformers_version_greater_than("5.0.0"):
|
||||||
|
ref_input_ids = ref_input_ids["input_ids"]
|
||||||
|
ref_prompt_ids = ref_prompt_ids["input_ids"]
|
||||||
|
|
||||||
|
ref_labels = ref_input_ids[len(ref_prompt_ids) :]
|
||||||
|
assert train_dataset["input_ids"][index] == ref_prompt_ids
|
||||||
assert train_dataset["labels"][index] == ref_labels
|
assert train_dataset["labels"][index] == ref_labels
|
||||||
|
|||||||
@@ -17,7 +17,7 @@ import os
|
|||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from transformers import AutoConfig, AutoModelForVision2Seq
|
from transformers import AutoConfig, AutoModelForImageTextToText
|
||||||
|
|
||||||
from llamafactory.data import get_template_and_fix_tokenizer
|
from llamafactory.data import get_template_and_fix_tokenizer
|
||||||
from llamafactory.data.collator import MultiModalDataCollatorForSeq2Seq, prepare_4d_attention_mask
|
from llamafactory.data.collator import MultiModalDataCollatorForSeq2Seq, prepare_4d_attention_mask
|
||||||
@@ -82,7 +82,7 @@ def test_multimodal_collator():
|
|||||||
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
|
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
|
||||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
|
||||||
with torch.device("meta"):
|
with torch.device("meta"):
|
||||||
model = AutoModelForVision2Seq.from_config(config)
|
model = AutoModelForImageTextToText.from_config(config)
|
||||||
|
|
||||||
data_collator = MultiModalDataCollatorForSeq2Seq(
|
data_collator = MultiModalDataCollatorForSeq2Seq(
|
||||||
template=template,
|
template=template,
|
||||||
|
|||||||
@@ -20,6 +20,7 @@ from transformers import AutoTokenizer
|
|||||||
|
|
||||||
from llamafactory.data import get_template_and_fix_tokenizer
|
from llamafactory.data import get_template_and_fix_tokenizer
|
||||||
from llamafactory.data.template import parse_template
|
from llamafactory.data.template import parse_template
|
||||||
|
from llamafactory.extras.packages import is_transformers_version_greater_than
|
||||||
from llamafactory.hparams import DataArguments
|
from llamafactory.hparams import DataArguments
|
||||||
|
|
||||||
|
|
||||||
@@ -65,7 +66,6 @@ def _check_template(
|
|||||||
template_name: str,
|
template_name: str,
|
||||||
prompt_str: str,
|
prompt_str: str,
|
||||||
answer_str: str,
|
answer_str: str,
|
||||||
use_fast: bool,
|
|
||||||
messages: list[dict[str, str]] = MESSAGES,
|
messages: list[dict[str, str]] = MESSAGES,
|
||||||
) -> None:
|
) -> None:
|
||||||
r"""Check template.
|
r"""Check template.
|
||||||
@@ -75,13 +75,15 @@ def _check_template(
|
|||||||
template_name: the template name.
|
template_name: the template name.
|
||||||
prompt_str: the string corresponding to the prompt part.
|
prompt_str: the string corresponding to the prompt part.
|
||||||
answer_str: the string corresponding to the answer part.
|
answer_str: the string corresponding to the answer part.
|
||||||
use_fast: whether to use fast tokenizer.
|
|
||||||
messages: the list of messages.
|
messages: the list of messages.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=use_fast, token=HF_TOKEN)
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||||
content_str = tokenizer.apply_chat_template(messages, tokenize=False)
|
content_str = tokenizer.apply_chat_template(messages, tokenize=False)
|
||||||
content_ids = tokenizer.apply_chat_template(messages, tokenize=True)
|
content_ids = tokenizer.apply_chat_template(messages, tokenize=True)
|
||||||
|
if is_transformers_version_greater_than("5.0.0"):
|
||||||
|
content_ids = content_ids["input_ids"]
|
||||||
|
|
||||||
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template=template_name))
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template=template_name))
|
||||||
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, messages)
|
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, messages)
|
||||||
assert content_str == prompt_str + answer_str
|
assert content_str == prompt_str + answer_str
|
||||||
@@ -90,9 +92,8 @@ def _check_template(
|
|||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.parametrize("use_fast", [True, False])
|
def test_encode_oneturn():
|
||||||
def test_encode_oneturn(use_fast: bool):
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
|
|
||||||
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
||||||
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
|
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
|
||||||
prompt_str = (
|
prompt_str = (
|
||||||
@@ -106,9 +107,8 @@ def test_encode_oneturn(use_fast: bool):
|
|||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.parametrize("use_fast", [True, False])
|
def test_encode_multiturn():
|
||||||
def test_encode_multiturn(use_fast: bool):
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
|
|
||||||
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
||||||
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES)
|
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES)
|
||||||
prompt_str_1 = (
|
prompt_str_1 = (
|
||||||
@@ -128,11 +128,10 @@ def test_encode_multiturn(use_fast: bool):
|
|||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.parametrize("use_fast", [True, False])
|
|
||||||
@pytest.mark.parametrize("cot_messages", [True, False])
|
@pytest.mark.parametrize("cot_messages", [True, False])
|
||||||
@pytest.mark.parametrize("enable_thinking", [True, False, None])
|
@pytest.mark.parametrize("enable_thinking", [True, False, None])
|
||||||
def test_reasoning_encode_oneturn(use_fast: bool, cot_messages: bool, enable_thinking: bool):
|
def test_reasoning_encode_oneturn(cot_messages: bool, enable_thinking: bool):
|
||||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B", use_fast=use_fast)
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
|
||||||
data_args = DataArguments(template="qwen3", enable_thinking=enable_thinking)
|
data_args = DataArguments(template="qwen3", enable_thinking=enable_thinking)
|
||||||
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
||||||
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES_WITH_THOUGHT if cot_messages else MESSAGES)
|
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES_WITH_THOUGHT if cot_messages else MESSAGES)
|
||||||
@@ -155,11 +154,10 @@ def test_reasoning_encode_oneturn(use_fast: bool, cot_messages: bool, enable_thi
|
|||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.parametrize("use_fast", [True, False])
|
|
||||||
@pytest.mark.parametrize("cot_messages", [True, False])
|
@pytest.mark.parametrize("cot_messages", [True, False])
|
||||||
@pytest.mark.parametrize("enable_thinking", [True, False, None])
|
@pytest.mark.parametrize("enable_thinking", [True, False, None])
|
||||||
def test_reasoning_encode_multiturn(use_fast: bool, cot_messages: bool, enable_thinking: bool):
|
def test_reasoning_encode_multiturn(cot_messages: bool, enable_thinking: bool):
|
||||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B", use_fast=use_fast)
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
|
||||||
data_args = DataArguments(template="qwen3", enable_thinking=enable_thinking)
|
data_args = DataArguments(template="qwen3", enable_thinking=enable_thinking)
|
||||||
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
||||||
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES_WITH_THOUGHT if cot_messages else MESSAGES)
|
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES_WITH_THOUGHT if cot_messages else MESSAGES)
|
||||||
@@ -185,10 +183,9 @@ def test_reasoning_encode_multiturn(use_fast: bool, cot_messages: bool, enable_t
|
|||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.parametrize("use_fast", [True, False])
|
def test_jinja_template():
|
||||||
def test_jinja_template(use_fast: bool):
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
|
||||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
|
|
||||||
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
||||||
tokenizer.chat_template = template._get_jinja_template(tokenizer) # llama3 template no replace
|
tokenizer.chat_template = template._get_jinja_template(tokenizer) # llama3 template no replace
|
||||||
assert tokenizer.chat_template != ref_tokenizer.chat_template
|
assert tokenizer.chat_template != ref_tokenizer.chat_template
|
||||||
@@ -222,8 +219,7 @@ def test_get_stop_token_ids():
|
|||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||||
@pytest.mark.parametrize("use_fast", [True, False])
|
def test_gemma_template():
|
||||||
def test_gemma_template(use_fast: bool):
|
|
||||||
prompt_str = (
|
prompt_str = (
|
||||||
f"<bos><start_of_turn>user\n{MESSAGES[0]['content']}<end_of_turn>\n"
|
f"<bos><start_of_turn>user\n{MESSAGES[0]['content']}<end_of_turn>\n"
|
||||||
f"<start_of_turn>model\n{MESSAGES[1]['content']}<end_of_turn>\n"
|
f"<start_of_turn>model\n{MESSAGES[1]['content']}<end_of_turn>\n"
|
||||||
@@ -231,13 +227,12 @@ def test_gemma_template(use_fast: bool):
|
|||||||
"<start_of_turn>model\n"
|
"<start_of_turn>model\n"
|
||||||
)
|
)
|
||||||
answer_str = f"{MESSAGES[3]['content']}<end_of_turn>\n"
|
answer_str = f"{MESSAGES[3]['content']}<end_of_turn>\n"
|
||||||
_check_template("google/gemma-3-4b-it", "gemma", prompt_str, answer_str, use_fast)
|
_check_template("google/gemma-3-4b-it", "gemma", prompt_str, answer_str)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||||
@pytest.mark.parametrize("use_fast", [True, False])
|
def test_gemma2_template():
|
||||||
def test_gemma2_template(use_fast: bool):
|
|
||||||
prompt_str = (
|
prompt_str = (
|
||||||
f"<bos><start_of_turn>user\n{MESSAGES[0]['content']}<end_of_turn>\n"
|
f"<bos><start_of_turn>user\n{MESSAGES[0]['content']}<end_of_turn>\n"
|
||||||
f"<start_of_turn>model\n{MESSAGES[1]['content']}<end_of_turn>\n"
|
f"<start_of_turn>model\n{MESSAGES[1]['content']}<end_of_turn>\n"
|
||||||
@@ -245,13 +240,12 @@ def test_gemma2_template(use_fast: bool):
|
|||||||
"<start_of_turn>model\n"
|
"<start_of_turn>model\n"
|
||||||
)
|
)
|
||||||
answer_str = f"{MESSAGES[3]['content']}<end_of_turn>\n"
|
answer_str = f"{MESSAGES[3]['content']}<end_of_turn>\n"
|
||||||
_check_template("google/gemma-2-2b-it", "gemma2", prompt_str, answer_str, use_fast)
|
_check_template("google/gemma-2-2b-it", "gemma2", prompt_str, answer_str)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||||
@pytest.mark.parametrize("use_fast", [True, False])
|
def test_llama3_template():
|
||||||
def test_llama3_template(use_fast: bool):
|
|
||||||
prompt_str = (
|
prompt_str = (
|
||||||
f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{MESSAGES[0]['content']}<|eot_id|>"
|
f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{MESSAGES[0]['content']}<|eot_id|>"
|
||||||
f"<|start_header_id|>assistant<|end_header_id|>\n\n{MESSAGES[1]['content']}<|eot_id|>"
|
f"<|start_header_id|>assistant<|end_header_id|>\n\n{MESSAGES[1]['content']}<|eot_id|>"
|
||||||
@@ -259,14 +253,11 @@ def test_llama3_template(use_fast: bool):
|
|||||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||||
)
|
)
|
||||||
answer_str = f"{MESSAGES[3]['content']}<|eot_id|>"
|
answer_str = f"{MESSAGES[3]['content']}<|eot_id|>"
|
||||||
_check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str, use_fast)
|
_check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.parametrize(
|
def test_llama4_template():
|
||||||
"use_fast", [True, pytest.param(False, marks=pytest.mark.xfail(reason="Llama 4 has no slow tokenizer."))]
|
|
||||||
)
|
|
||||||
def test_llama4_template(use_fast: bool):
|
|
||||||
prompt_str = (
|
prompt_str = (
|
||||||
f"<|begin_of_text|><|header_start|>user<|header_end|>\n\n{MESSAGES[0]['content']}<|eot|>"
|
f"<|begin_of_text|><|header_start|>user<|header_end|>\n\n{MESSAGES[0]['content']}<|eot|>"
|
||||||
f"<|header_start|>assistant<|header_end|>\n\n{MESSAGES[1]['content']}<|eot|>"
|
f"<|header_start|>assistant<|header_end|>\n\n{MESSAGES[1]['content']}<|eot|>"
|
||||||
@@ -274,18 +265,11 @@ def test_llama4_template(use_fast: bool):
|
|||||||
"<|header_start|>assistant<|header_end|>\n\n"
|
"<|header_start|>assistant<|header_end|>\n\n"
|
||||||
)
|
)
|
||||||
answer_str = f"{MESSAGES[3]['content']}<|eot|>"
|
answer_str = f"{MESSAGES[3]['content']}<|eot|>"
|
||||||
_check_template(TINY_LLAMA4, "llama4", prompt_str, answer_str, use_fast)
|
_check_template(TINY_LLAMA4, "llama4", prompt_str, answer_str)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
|
||||||
"use_fast",
|
|
||||||
[
|
|
||||||
pytest.param(True, marks=pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")),
|
|
||||||
pytest.param(False, marks=pytest.mark.xfail(reason="Phi-4 slow tokenizer is broken.")),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
def test_phi4_template(use_fast: bool):
|
def test_phi4_template():
|
||||||
prompt_str = (
|
prompt_str = (
|
||||||
f"<|im_start|>user<|im_sep|>{MESSAGES[0]['content']}<|im_end|>"
|
f"<|im_start|>user<|im_sep|>{MESSAGES[0]['content']}<|im_end|>"
|
||||||
f"<|im_start|>assistant<|im_sep|>{MESSAGES[1]['content']}<|im_end|>"
|
f"<|im_start|>assistant<|im_sep|>{MESSAGES[1]['content']}<|im_end|>"
|
||||||
@@ -293,13 +277,12 @@ def test_phi4_template(use_fast: bool):
|
|||||||
"<|im_start|>assistant<|im_sep|>"
|
"<|im_start|>assistant<|im_sep|>"
|
||||||
)
|
)
|
||||||
answer_str = f"{MESSAGES[3]['content']}<|im_end|>"
|
answer_str = f"{MESSAGES[3]['content']}<|im_end|>"
|
||||||
_check_template("microsoft/phi-4", "phi4", prompt_str, answer_str, use_fast)
|
_check_template("microsoft/phi-4", "phi4", prompt_str, answer_str)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
||||||
@pytest.mark.parametrize("use_fast", [True, False])
|
def test_qwen2_5_template():
|
||||||
def test_qwen2_5_template(use_fast: bool):
|
|
||||||
prompt_str = (
|
prompt_str = (
|
||||||
"<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n"
|
"<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n"
|
||||||
f"<|im_start|>user\n{MESSAGES[0]['content']}<|im_end|>\n"
|
f"<|im_start|>user\n{MESSAGES[0]['content']}<|im_end|>\n"
|
||||||
@@ -308,13 +291,12 @@ def test_qwen2_5_template(use_fast: bool):
|
|||||||
"<|im_start|>assistant\n"
|
"<|im_start|>assistant\n"
|
||||||
)
|
)
|
||||||
answer_str = f"{MESSAGES[3]['content']}<|im_end|>\n"
|
answer_str = f"{MESSAGES[3]['content']}<|im_end|>\n"
|
||||||
_check_template("Qwen/Qwen2.5-7B-Instruct", "qwen", prompt_str, answer_str, use_fast)
|
_check_template("Qwen/Qwen2.5-7B-Instruct", "qwen", prompt_str, answer_str)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.parametrize("use_fast", [True, False])
|
|
||||||
@pytest.mark.parametrize("cot_messages", [True, False])
|
@pytest.mark.parametrize("cot_messages", [True, False])
|
||||||
def test_qwen3_template(use_fast: bool, cot_messages: bool):
|
def test_qwen3_template(cot_messages: bool):
|
||||||
prompt_str = (
|
prompt_str = (
|
||||||
f"<|im_start|>user\n{MESSAGES[0]['content']}<|im_end|>\n"
|
f"<|im_start|>user\n{MESSAGES[0]['content']}<|im_end|>\n"
|
||||||
f"<|im_start|>assistant\n{MESSAGES[1]['content']}<|im_end|>\n"
|
f"<|im_start|>assistant\n{MESSAGES[1]['content']}<|im_end|>\n"
|
||||||
@@ -328,12 +310,12 @@ def test_qwen3_template(use_fast: bool, cot_messages: bool):
|
|||||||
answer_str = f"{MESSAGES_WITH_THOUGHT[3]['content']}<|im_end|>\n"
|
answer_str = f"{MESSAGES_WITH_THOUGHT[3]['content']}<|im_end|>\n"
|
||||||
messages = MESSAGES_WITH_THOUGHT
|
messages = MESSAGES_WITH_THOUGHT
|
||||||
|
|
||||||
_check_template("Qwen/Qwen3-8B", "qwen3", prompt_str, answer_str, use_fast, messages=messages)
|
_check_template("Qwen/Qwen3-8B", "qwen3", prompt_str, answer_str, messages=messages)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
def test_parse_llama3_template():
|
def test_parse_llama3_template():
|
||||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, token=HF_TOKEN)
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
|
||||||
template = parse_template(tokenizer)
|
template = parse_template(tokenizer)
|
||||||
assert template.format_user.slots == [
|
assert template.format_user.slots == [
|
||||||
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
||||||
@@ -348,7 +330,7 @@ def test_parse_llama3_template():
|
|||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
||||||
def test_parse_qwen_template():
|
def test_parse_qwen_template():
|
||||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct", token=HF_TOKEN)
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct")
|
||||||
template = parse_template(tokenizer)
|
template = parse_template(tokenizer)
|
||||||
assert template.__class__.__name__ == "Template"
|
assert template.__class__.__name__ == "Template"
|
||||||
assert template.format_user.slots == ["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]
|
assert template.format_user.slots == ["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]
|
||||||
@@ -361,7 +343,7 @@ def test_parse_qwen_template():
|
|||||||
@pytest.mark.runs_on(["cpu", "mps"])
|
@pytest.mark.runs_on(["cpu", "mps"])
|
||||||
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
||||||
def test_parse_qwen3_template():
|
def test_parse_qwen3_template():
|
||||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B", token=HF_TOKEN)
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
|
||||||
template = parse_template(tokenizer)
|
template = parse_template(tokenizer)
|
||||||
assert template.__class__.__name__ == "ReasoningTemplate"
|
assert template.__class__.__name__ == "ReasoningTemplate"
|
||||||
assert template.format_user.slots == ["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]
|
assert template.format_user.slots == ["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]
|
||||||
|
|||||||
@@ -16,7 +16,8 @@ import os
|
|||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
from transformers import AutoConfig, AutoModelForVision2Seq
|
from safetensors.torch import load_file
|
||||||
|
from transformers import AutoConfig, AutoModelForImageTextToText
|
||||||
|
|
||||||
from llamafactory.extras.packages import is_transformers_version_greater_than
|
from llamafactory.extras.packages import is_transformers_version_greater_than
|
||||||
from llamafactory.hparams import FinetuningArguments, ModelArguments
|
from llamafactory.hparams import FinetuningArguments, ModelArguments
|
||||||
@@ -36,7 +37,7 @@ def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bo
|
|||||||
)
|
)
|
||||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
|
||||||
with torch.device("meta"):
|
with torch.device("meta"):
|
||||||
model = AutoModelForVision2Seq.from_config(config)
|
model = AutoModelForImageTextToText.from_config(config)
|
||||||
|
|
||||||
model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True)
|
model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True)
|
||||||
for name, param in model.named_parameters():
|
for name, param in model.named_parameters():
|
||||||
@@ -56,7 +57,7 @@ def test_visual_lora(freeze_vision_tower: bool, freeze_language_model: bool):
|
|||||||
)
|
)
|
||||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
|
||||||
with torch.device("meta"):
|
with torch.device("meta"):
|
||||||
model = AutoModelForVision2Seq.from_config(config)
|
model = AutoModelForImageTextToText.from_config(config)
|
||||||
|
|
||||||
model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True)
|
model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True)
|
||||||
trainable_params, frozen_params = set(), set()
|
trainable_params, frozen_params = set(), set()
|
||||||
@@ -86,13 +87,14 @@ def test_visual_model_save_load():
|
|||||||
finetuning_args = FinetuningArguments(finetuning_type="full")
|
finetuning_args = FinetuningArguments(finetuning_type="full")
|
||||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
|
||||||
with torch.device("meta"):
|
with torch.device("meta"):
|
||||||
model = AutoModelForVision2Seq.from_config(config)
|
model = AutoModelForImageTextToText.from_config(config)
|
||||||
|
|
||||||
model = init_adapter(config, model, model_args, finetuning_args, is_trainable=False)
|
model = init_adapter(config, model, model_args, finetuning_args, is_trainable=False)
|
||||||
|
model.to_empty(device="cpu")
|
||||||
loaded_model_weight = dict(model.named_parameters())
|
loaded_model_weight = dict(model.named_parameters())
|
||||||
|
|
||||||
model.save_pretrained(os.path.join("output", "qwen2_vl"), max_shard_size="10GB", safe_serialization=False)
|
model.save_pretrained(os.path.join("output", "qwen2_vl"), max_shard_size="10GB", safe_serialization=True)
|
||||||
saved_model_weight = torch.load(os.path.join("output", "qwen2_vl", "pytorch_model.bin"), weights_only=False)
|
saved_model_weight = load_file(os.path.join("output", "qwen2_vl", "model.safetensors"))
|
||||||
|
|
||||||
if is_transformers_version_greater_than("4.52.0"):
|
if is_transformers_version_greater_than("4.52.0"):
|
||||||
assert "model.language_model.layers.0.self_attn.q_proj.weight" in loaded_model_weight
|
assert "model.language_model.layers.0.self_attn.q_proj.weight" in loaded_model_weight
|
||||||
|
|||||||
@@ -1,2 +1,2 @@
|
|||||||
# change if test fails or cache is outdated
|
# change if test fails or cache is outdated
|
||||||
0.9.5.105
|
0.9.5.106
|
||||||
|
|||||||
@@ -23,6 +23,13 @@ from llamafactory.v1.core.utils.rendering import Renderer
|
|||||||
from llamafactory.v1.utils.types import Processor
|
from llamafactory.v1.utils.types import Processor
|
||||||
|
|
||||||
|
|
||||||
|
def _get_input_ids(inputs: list | dict) -> list:
|
||||||
|
if not isinstance(inputs, list):
|
||||||
|
return inputs["input_ids"]
|
||||||
|
else:
|
||||||
|
return inputs
|
||||||
|
|
||||||
|
|
||||||
HF_MESSAGES = [
|
HF_MESSAGES = [
|
||||||
{"role": "system", "content": "You are a helpful assistant."},
|
{"role": "system", "content": "You are a helpful assistant."},
|
||||||
{"role": "user", "content": "What is LLM?"},
|
{"role": "user", "content": "What is LLM?"},
|
||||||
@@ -81,15 +88,15 @@ def test_chatml_rendering():
|
|||||||
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
|
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
|
||||||
renderer = Renderer(template="chatml", processor=tokenizer)
|
renderer = Renderer(template="chatml", processor=tokenizer)
|
||||||
|
|
||||||
hf_inputs = tokenizer.apply_chat_template(HF_MESSAGES[:-1], add_generation_prompt=True)
|
hf_inputs = _get_input_ids(tokenizer.apply_chat_template(HF_MESSAGES[:-1], add_generation_prompt=True))
|
||||||
v1_inputs = renderer.render_messages(V1_MESSAGES[:-1], is_generate=True)
|
v1_inputs = renderer.render_messages(V1_MESSAGES[:-1], is_generate=True)
|
||||||
assert v1_inputs["input_ids"] == hf_inputs
|
assert v1_inputs["input_ids"] == hf_inputs
|
||||||
assert v1_inputs["attention_mask"] == [1] * len(hf_inputs)
|
assert v1_inputs["attention_mask"] == [1] * len(hf_inputs)
|
||||||
assert v1_inputs["labels"] == [-100] * len(hf_inputs)
|
assert v1_inputs["labels"] == [-100] * len(hf_inputs)
|
||||||
assert v1_inputs["loss_weights"] == [0.0] * len(hf_inputs)
|
assert v1_inputs["loss_weights"] == [0.0] * len(hf_inputs)
|
||||||
|
|
||||||
hf_inputs_part = tokenizer.apply_chat_template(HF_MESSAGES[:-1], add_generation_prompt=False)
|
hf_inputs_part = _get_input_ids(tokenizer.apply_chat_template(HF_MESSAGES[:-1], add_generation_prompt=False))
|
||||||
hf_inputs_full = tokenizer.apply_chat_template(HF_MESSAGES, add_generation_prompt=False)
|
hf_inputs_full = _get_input_ids(tokenizer.apply_chat_template(HF_MESSAGES, add_generation_prompt=False))
|
||||||
v1_inputs_full = renderer.render_messages(V1_MESSAGES, is_generate=False)
|
v1_inputs_full = renderer.render_messages(V1_MESSAGES, is_generate=False)
|
||||||
assert v1_inputs_full["input_ids"] == hf_inputs_full
|
assert v1_inputs_full["input_ids"] == hf_inputs_full
|
||||||
assert v1_inputs_full["attention_mask"] == [1] * len(hf_inputs_full)
|
assert v1_inputs_full["attention_mask"] == [1] * len(hf_inputs_full)
|
||||||
@@ -124,17 +131,21 @@ def test_qwen3_nothink_rendering():
|
|||||||
tokenizer: Processor = AutoTokenizer.from_pretrained("Qwen/Qwen3-4B-Instruct-2507")
|
tokenizer: Processor = AutoTokenizer.from_pretrained("Qwen/Qwen3-4B-Instruct-2507")
|
||||||
renderer = Renderer(template="qwen3_nothink", processor=tokenizer)
|
renderer = Renderer(template="qwen3_nothink", processor=tokenizer)
|
||||||
|
|
||||||
hf_inputs = tokenizer.apply_chat_template(HF_MESSAGES_WITH_TOOLS[:-1], tools=V1_TOOLS, add_generation_prompt=True)
|
hf_inputs = _get_input_ids(
|
||||||
|
tokenizer.apply_chat_template(HF_MESSAGES_WITH_TOOLS[:-1], tools=V1_TOOLS, add_generation_prompt=True)
|
||||||
|
)
|
||||||
v1_inputs = renderer.render_messages(V1_MESSAGES_WITH_TOOLS[:-1], tools=json.dumps(V1_TOOLS), is_generate=True)
|
v1_inputs = renderer.render_messages(V1_MESSAGES_WITH_TOOLS[:-1], tools=json.dumps(V1_TOOLS), is_generate=True)
|
||||||
assert v1_inputs["input_ids"] == hf_inputs
|
assert v1_inputs["input_ids"] == hf_inputs
|
||||||
assert v1_inputs["attention_mask"] == [1] * len(hf_inputs)
|
assert v1_inputs["attention_mask"] == [1] * len(hf_inputs)
|
||||||
assert v1_inputs["labels"] == [-100] * len(hf_inputs)
|
assert v1_inputs["labels"] == [-100] * len(hf_inputs)
|
||||||
assert v1_inputs["loss_weights"] == [0.0] * len(hf_inputs)
|
assert v1_inputs["loss_weights"] == [0.0] * len(hf_inputs)
|
||||||
|
|
||||||
hf_inputs_part = tokenizer.apply_chat_template(
|
hf_inputs_part = _get_input_ids(
|
||||||
HF_MESSAGES_WITH_TOOLS[:-1], tools=V1_TOOLS, add_generation_prompt=False
|
tokenizer.apply_chat_template(HF_MESSAGES_WITH_TOOLS[:-1], tools=V1_TOOLS, add_generation_prompt=False)
|
||||||
|
)
|
||||||
|
hf_inputs_full = _get_input_ids(
|
||||||
|
tokenizer.apply_chat_template(HF_MESSAGES_WITH_TOOLS, tools=V1_TOOLS, add_generation_prompt=False)
|
||||||
)
|
)
|
||||||
hf_inputs_full = tokenizer.apply_chat_template(HF_MESSAGES_WITH_TOOLS, tools=V1_TOOLS, add_generation_prompt=False)
|
|
||||||
v1_inputs_full = renderer.render_messages(V1_MESSAGES_WITH_TOOLS, tools=json.dumps(V1_TOOLS), is_generate=False)
|
v1_inputs_full = renderer.render_messages(V1_MESSAGES_WITH_TOOLS, tools=json.dumps(V1_TOOLS), is_generate=False)
|
||||||
assert v1_inputs_full["input_ids"] == hf_inputs_full
|
assert v1_inputs_full["input_ids"] == hf_inputs_full
|
||||||
assert v1_inputs_full["attention_mask"] == [1] * len(hf_inputs_full)
|
assert v1_inputs_full["attention_mask"] == [1] * len(hf_inputs_full)
|
||||||
@@ -187,7 +198,7 @@ def test_qwen3_nothink_rendering_remote(num_samples: int):
|
|||||||
def test_process_sft_samples():
|
def test_process_sft_samples():
|
||||||
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
|
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
|
||||||
renderer = Renderer(template="chatml", processor=tokenizer)
|
renderer = Renderer(template="chatml", processor=tokenizer)
|
||||||
hf_inputs = tokenizer.apply_chat_template(HF_MESSAGES)
|
hf_inputs = _get_input_ids(tokenizer.apply_chat_template(HF_MESSAGES))
|
||||||
|
|
||||||
samples = [{"messages": V1_MESSAGES, "extra_info": "test", "_dataset_name": "default"}]
|
samples = [{"messages": V1_MESSAGES, "extra_info": "test", "_dataset_name": "default"}]
|
||||||
model_inputs = renderer.process_samples(samples)
|
model_inputs = renderer.process_samples(samples)
|
||||||
@@ -200,7 +211,7 @@ def test_process_sft_samples():
|
|||||||
def test_process_dpo_samples():
|
def test_process_dpo_samples():
|
||||||
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
|
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
|
||||||
renderer = Renderer(template="chatml", processor=tokenizer)
|
renderer = Renderer(template="chatml", processor=tokenizer)
|
||||||
hf_inputs = tokenizer.apply_chat_template(HF_MESSAGES)
|
hf_inputs = _get_input_ids(tokenizer.apply_chat_template(HF_MESSAGES))
|
||||||
|
|
||||||
samples = [
|
samples = [
|
||||||
{
|
{
|
||||||
|
|||||||
Reference in New Issue
Block a user