Files
LlamaFactory/tests/data/processor/test_unsupervised.py
浮梦 bf04ca6af8 [deps] adapt to transformers v5 (#10147)
Co-authored-by: frozenleaves <frozen@Mac.local>
Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
2026-02-02 12:07:19 +08:00

69 lines
2.5 KiB
Python

# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import pytest
from datasets import load_dataset
from transformers import AutoTokenizer
from llamafactory.extras.packages import is_transformers_version_greater_than
from llamafactory.train.test_utils import load_dataset_module
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
TINY_DATA = os.getenv("TINY_DATA", "llamafactory/tiny-supervised-dataset")
TRAIN_ARGS = {
"model_name_or_path": TINY_LLAMA3,
"stage": "ppo",
"do_train": True,
"finetuning_type": "full",
"reward_model": "",
"reward_model_type": "full",
"dataset": "system_chat",
"dataset_dir": "REMOTE:" + DEMO_DATA,
"template": "llama3",
"cutoff_len": 8192,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
"report_to": "none", # transfromers compatibility
}
@pytest.mark.runs_on(["cpu", "mps"])
@pytest.mark.parametrize("num_samples", [16])
def test_unsupervised_data(num_samples: int):
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples)
for index in indexes:
messages = original_data["messages"][index]
ref_input_ids = ref_tokenizer.apply_chat_template(messages)
ref_prompt_ids = ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True)
if is_transformers_version_greater_than("5.0.0"):
ref_input_ids = ref_input_ids["input_ids"]
ref_prompt_ids = ref_prompt_ids["input_ids"]
ref_labels = ref_input_ids[len(ref_prompt_ids) :]
assert train_dataset["input_ids"][index] == ref_prompt_ids
assert train_dataset["labels"][index] == ref_labels