Files
BMAD-METHOD/expansion-packs/bmad-2d-phaser-game-dev/data/bmad-kb.md
Murat K Ozcan 0b61175d98 feat: transform QA agent into Test Architect with advanced quality ca… (#433)
* feat: transform QA agent into Test Architect with advanced quality capabilities

  - Add 6 specialized quality assessment commands
  - Implement risk-based testing with scoring
  - Create quality gate system with deterministic decisions
  - Add comprehensive test design and NFR validation
  - Update documentation with stage-based workflow integration

* feat: transform QA agent into Test Architect with advanced quality capabilities

  - Add 6 specialized quality assessment commands
  - Implement risk-based testing with scoring
  - Create quality gate system with deterministic decisions
  - Add comprehensive test design and NFR validation
  - Update documentation with stage-based workflow integration

* docs: refined the docs for test architect

* fix: addressed review comments from manjaroblack, round 1

* fix: addressed review comments from manjaroblack, round 1

---------

Co-authored-by: Murat Ozcan <murat@mac.lan>
Co-authored-by: Brian <bmadcode@gmail.com>
2025-08-15 21:02:37 -05:00

251 lines
9.2 KiB
Markdown

# Game Development BMad Knowledge Base
## Overview
This game development expansion of BMad-Method specializes in creating 2D games using Phaser 3 and TypeScript. It extends the core BMad framework with game-specific agents, workflows, and best practices for professional game development.
### Game Development Focus
- **Target Engine**: Phaser 3.70+ with TypeScript 5.0+
- **Platform Strategy**: Web-first with mobile optimization
- **Development Approach**: Agile story-driven development
- **Performance Target**: 60 FPS on target devices
- **Architecture**: Component-based game systems
## Core Game Development Philosophy
### Player-First Development
You are developing games as a "Player Experience CEO" - thinking like a game director with unlimited creative resources and a singular vision for player enjoyment. Your AI agents are your specialized game development team:
- **Direct**: Provide clear game design vision and player experience goals
- **Refine**: Iterate on gameplay mechanics until they're compelling
- **Oversee**: Maintain creative alignment across all development disciplines
- **Playfocus**: Every decision serves the player experience
### Game Development Principles
1. **PLAYER_EXPERIENCE_FIRST**: Every mechanic must serve player engagement and fun
2. **ITERATIVE_DESIGN**: Prototype, test, refine - games are discovered through iteration
3. **TECHNICAL_EXCELLENCE**: 60 FPS performance and cross-platform compatibility are non-negotiable
4. **STORY_DRIVEN_DEV**: Game features are implemented through detailed development stories
5. **BALANCE_THROUGH_DATA**: Use metrics and playtesting to validate game balance
6. **DOCUMENT_EVERYTHING**: Clear specifications enable proper game implementation
7. **START_SMALL_ITERATE_FAST**: Core mechanics first, then expand and polish
8. **EMBRACE_CREATIVE_CHAOS**: Games evolve - adapt design based on what's fun
## Game Development Workflow
### Phase 1: Game Concept and Design
1. **Game Designer**: Start with brainstorming and concept development
- Use \*brainstorm to explore game concepts and mechanics
- Create Game Brief using game-brief-tmpl
- Develop core game pillars and player experience goals
2. **Game Designer**: Create comprehensive Game Design Document
- Use game-design-doc-tmpl to create detailed GDD
- Define all game mechanics, progression, and balance
- Specify technical requirements and platform targets
3. **Game Designer**: Develop Level Design Framework
- Create level-design-doc-tmpl for content guidelines
- Define level types, difficulty progression, and content structure
- Establish performance and technical constraints for levels
### Phase 2: Technical Architecture
4. **Solution Architect** (or Game Designer): Create Technical Architecture
- Use game-architecture-tmpl to design technical implementation
- Define Phaser 3 systems, performance optimization, and code structure
- Align technical architecture with game design requirements
### Phase 3: Story-Driven Development
5. **Game Scrum Master**: Break down design into development stories
- Use create-game-story task to create detailed implementation stories
- Each story should be immediately actionable by game developers
- Apply game-story-dod-checklist to ensure story quality
6. **Game Developer**: Implement game features story by story
- Follow TypeScript strict mode and Phaser 3 best practices
- Maintain 60 FPS performance target throughout development
- Use test-driven development for game logic components
7. **Iterative Refinement**: Continuous playtesting and improvement
- Test core mechanics early and often
- Validate game balance through metrics and player feedback
- Iterate on design based on implementation discoveries
## Game-Specific Development Guidelines
### Phaser 3 + TypeScript Standards
**Project Structure:**
```text
game-project/
├── src/
│ ├── scenes/ # Game scenes (BootScene, MenuScene, GameScene)
│ ├── gameObjects/ # Custom game objects and entities
│ ├── systems/ # Core game systems (GameState, InputManager, etc.)
│ ├── utils/ # Utility functions and helpers
│ ├── types/ # TypeScript type definitions
│ └── config/ # Game configuration and balance
├── assets/ # Game assets (images, audio, data)
├── docs/
│ ├── stories/ # Development stories
│ └── design/ # Game design documents
└── tests/ # Unit and integration tests
```
**Performance Requirements:**
- Maintain 60 FPS on target devices
- Memory usage under specified limits per level
- Loading times under 3 seconds for levels
- Smooth animation and responsive controls
**Code Quality:**
- TypeScript strict mode compliance
- Component-based architecture
- Object pooling for frequently created/destroyed objects
- Error handling and graceful degradation
### Game Development Story Structure
**Story Requirements:**
- Clear reference to Game Design Document section
- Specific acceptance criteria for game functionality
- Technical implementation details for Phaser 3
- Performance requirements and optimization considerations
- Testing requirements including gameplay validation
**Story Categories:**
- **Core Mechanics**: Fundamental gameplay systems
- **Level Content**: Individual levels and content implementation
- **UI/UX**: User interface and player experience features
- **Performance**: Optimization and technical improvements
- **Polish**: Visual effects, audio, and game feel enhancements
### Quality Assurance for Games
**Testing Approach:**
- Unit tests for game logic (separate from Phaser)
- Integration tests for game systems
- Performance benchmarking and profiling
- Gameplay testing and balance validation
- Cross-platform compatibility testing
**Performance Monitoring:**
- Frame rate consistency tracking
- Memory usage monitoring
- Asset loading performance
- Input responsiveness validation
- Battery usage optimization (mobile)
## Game Development Team Roles
### Game Designer (Alex)
- **Primary Focus**: Game mechanics, player experience, design documentation
- **Key Outputs**: Game Brief, Game Design Document, Level Design Framework
- **Specialties**: Brainstorming, game balance, player psychology, creative direction
### Game Developer (Maya)
- **Primary Focus**: Phaser 3 implementation, technical excellence, performance
- **Key Outputs**: Working game features, optimized code, technical architecture
- **Specialties**: TypeScript/Phaser 3, performance optimization, cross-platform development
### Game Scrum Master (Jordan)
- **Primary Focus**: Story creation, development planning, agile process
- **Key Outputs**: Detailed implementation stories, sprint planning, quality assurance
- **Specialties**: Story breakdown, developer handoffs, process optimization
## Platform-Specific Considerations
### Web Platform
- Browser compatibility across modern browsers
- Progressive loading for large assets
- Touch-friendly mobile controls
- Responsive design for different screen sizes
### Mobile Optimization
- Touch gesture support and responsive controls
- Battery usage optimization
- Performance scaling for different device capabilities
- App store compliance and packaging
### Performance Targets
- **Desktop**: 60 FPS at 1080p resolution
- **Mobile**: 60 FPS on mid-range devices, 30 FPS minimum on low-end
- **Loading**: Initial load under 5 seconds, level transitions under 2 seconds
- **Memory**: Under 100MB total usage, under 50MB per level
## Success Metrics for Game Development
### Technical Metrics
- Frame rate consistency (>90% of time at target FPS)
- Memory usage within budgets
- Loading time targets met
- Zero critical bugs in core gameplay systems
### Player Experience Metrics
- Tutorial completion rate >80%
- Level completion rates appropriate for difficulty curve
- Average session length meets design targets
- Player retention and engagement metrics
### Development Process Metrics
- Story completion within estimated timeframes
- Code quality metrics (test coverage, linting compliance)
- Documentation completeness and accuracy
- Team velocity and delivery consistency
## Common Game Development Patterns
### Scene Management
- Boot scene for initial setup and configuration
- Preload scene for asset loading with progress feedback
- Menu scene for navigation and settings
- Game scenes for actual gameplay
- Clean transitions between scenes with proper cleanup
### Game State Management
- Persistent data (player progress, unlocks, settings)
- Session data (current level, score, temporary state)
- Save/load system with error recovery
- Settings management with platform storage
### Input Handling
- Cross-platform input abstraction
- Touch gesture support for mobile
- Keyboard and gamepad support for desktop
- Customizable control schemes
### Performance Optimization
- Object pooling for bullets, effects, enemies
- Texture atlasing and sprite optimization
- Audio compression and streaming
- Culling and level-of-detail systems
- Memory management and garbage collection optimization
This knowledge base provides the foundation for effective game development using the BMad-Method framework with specialized focus on 2D game creation using Phaser 3 and TypeScript.