chore: extract loop tools into a separate folder (#755)
This commit is contained in:
@@ -41,15 +41,16 @@ export type LLMConversation = {
|
||||
};
|
||||
|
||||
export interface LLMDelegate {
|
||||
createConversation(task: string, tools: Tool[]): LLMConversation;
|
||||
createConversation(task: string, tools: Tool[], oneShot: boolean): LLMConversation;
|
||||
makeApiCall(conversation: LLMConversation): Promise<LLMToolCall[]>;
|
||||
addToolResults(conversation: LLMConversation, results: Array<{ toolCallId: string; content: string; isError?: boolean }>): void;
|
||||
checkDoneToolCall(toolCall: LLMToolCall): string | null;
|
||||
}
|
||||
|
||||
export async function runTask(delegate: LLMDelegate, client: Client, task: string): Promise<string> {
|
||||
export async function runTask(delegate: LLMDelegate, client: Client, task: string, oneShot: boolean = false): Promise<string> {
|
||||
const { tools } = await client.listTools();
|
||||
const conversation = delegate.createConversation(task, tools);
|
||||
const taskContent = oneShot ? `Perform following task: ${task}.` : `Perform following task: ${task}. Once the task is complete, call the "done" tool.`;
|
||||
const conversation = delegate.createConversation(taskContent, tools, oneShot);
|
||||
|
||||
for (let iteration = 0; iteration < 5; ++iteration) {
|
||||
debug('history')('Making API call for iteration', iteration);
|
||||
@@ -99,8 +100,10 @@ export async function runTask(delegate: LLMDelegate, client: Client, task: strin
|
||||
}
|
||||
}
|
||||
|
||||
// Add tool results to conversation
|
||||
delegate.addToolResults(conversation, toolResults);
|
||||
if (oneShot)
|
||||
return toolResults.map(result => result.content).join('\n');
|
||||
else
|
||||
delegate.addToolResults(conversation, toolResults);
|
||||
}
|
||||
|
||||
throw new Error('Failed to perform step, max attempts reached');
|
||||
|
||||
@@ -14,38 +14,48 @@
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
import Anthropic from '@anthropic-ai/sdk';
|
||||
import type Anthropic from '@anthropic-ai/sdk';
|
||||
import type { LLMDelegate, LLMConversation, LLMToolCall, LLMTool } from './loop.js';
|
||||
import type { Tool } from '@modelcontextprotocol/sdk/types.js';
|
||||
|
||||
const model = 'claude-sonnet-4-20250514';
|
||||
|
||||
export class ClaudeDelegate implements LLMDelegate {
|
||||
private anthropic = new Anthropic();
|
||||
private _anthropic: Anthropic | undefined;
|
||||
|
||||
createConversation(task: string, tools: Tool[]): LLMConversation {
|
||||
async anthropic(): Promise<Anthropic> {
|
||||
if (!this._anthropic) {
|
||||
const anthropic = await import('@anthropic-ai/sdk');
|
||||
this._anthropic = new anthropic.Anthropic();
|
||||
}
|
||||
return this._anthropic;
|
||||
}
|
||||
|
||||
createConversation(task: string, tools: Tool[], oneShot: boolean): LLMConversation {
|
||||
const llmTools: LLMTool[] = tools.map(tool => ({
|
||||
name: tool.name,
|
||||
description: tool.description || '',
|
||||
inputSchema: tool.inputSchema,
|
||||
}));
|
||||
|
||||
// Add the "done" tool
|
||||
llmTools.push({
|
||||
name: 'done',
|
||||
description: 'Call this tool when the task is complete.',
|
||||
inputSchema: {
|
||||
type: 'object',
|
||||
properties: {
|
||||
result: { type: 'string', description: 'The result of the task.' },
|
||||
if (!oneShot) {
|
||||
llmTools.push({
|
||||
name: 'done',
|
||||
description: 'Call this tool when the task is complete.',
|
||||
inputSchema: {
|
||||
type: 'object',
|
||||
properties: {
|
||||
result: { type: 'string', description: 'The result of the task.' },
|
||||
},
|
||||
required: ['result'],
|
||||
},
|
||||
},
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
messages: [{
|
||||
role: 'user',
|
||||
content: `Perform following task: ${task}. Once the task is complete, call the "done" tool.`
|
||||
content: task
|
||||
}],
|
||||
tools: llmTools,
|
||||
};
|
||||
@@ -119,7 +129,8 @@ export class ClaudeDelegate implements LLMDelegate {
|
||||
input_schema: tool.inputSchema,
|
||||
}));
|
||||
|
||||
const response = await this.anthropic.messages.create({
|
||||
const anthropic = await this.anthropic();
|
||||
const response = await anthropic.messages.create({
|
||||
model,
|
||||
max_tokens: 10000,
|
||||
messages: claudeMessages,
|
||||
|
||||
@@ -14,39 +14,48 @@
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
import OpenAI from 'openai';
|
||||
import type OpenAI from 'openai';
|
||||
import type { LLMDelegate, LLMConversation, LLMToolCall, LLMTool } from './loop.js';
|
||||
import type { Tool } from '@modelcontextprotocol/sdk/types.js';
|
||||
|
||||
const model = 'gpt-4.1';
|
||||
|
||||
export class OpenAIDelegate implements LLMDelegate {
|
||||
private openai = new OpenAI();
|
||||
private _openai: OpenAI | undefined;
|
||||
|
||||
createConversation(task: string, tools: Tool[]): LLMConversation {
|
||||
async openai(): Promise<OpenAI> {
|
||||
if (!this._openai) {
|
||||
const oai = await import('openai');
|
||||
this._openai = new oai.OpenAI();
|
||||
}
|
||||
return this._openai;
|
||||
}
|
||||
|
||||
createConversation(task: string, tools: Tool[], oneShot: boolean): LLMConversation {
|
||||
const genericTools: LLMTool[] = tools.map(tool => ({
|
||||
name: tool.name,
|
||||
description: tool.description || '',
|
||||
inputSchema: tool.inputSchema,
|
||||
}));
|
||||
|
||||
// Add the "done" tool
|
||||
genericTools.push({
|
||||
name: 'done',
|
||||
description: 'Call this tool when the task is complete.',
|
||||
inputSchema: {
|
||||
type: 'object',
|
||||
properties: {
|
||||
result: { type: 'string', description: 'The result of the task.' },
|
||||
if (!oneShot) {
|
||||
genericTools.push({
|
||||
name: 'done',
|
||||
description: 'Call this tool when the task is complete.',
|
||||
inputSchema: {
|
||||
type: 'object',
|
||||
properties: {
|
||||
result: { type: 'string', description: 'The result of the task.' },
|
||||
},
|
||||
required: ['result'],
|
||||
},
|
||||
required: ['result'],
|
||||
},
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
messages: [{
|
||||
role: 'user',
|
||||
content: `Peform following task: ${task}. Once the task is complete, call the "done" tool.`
|
||||
content: task
|
||||
}],
|
||||
tools: genericTools,
|
||||
};
|
||||
@@ -108,7 +117,8 @@ export class OpenAIDelegate implements LLMDelegate {
|
||||
},
|
||||
}));
|
||||
|
||||
const response = await this.openai.chat.completions.create({
|
||||
const openai = await this.openai();
|
||||
const response = await openai.chat.completions.create({
|
||||
model,
|
||||
messages: openaiMessages,
|
||||
tools: openaiTools,
|
||||
|
||||
@@ -1,85 +0,0 @@
|
||||
/**
|
||||
* Copyright (c) Microsoft Corporation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
import { Client } from '@modelcontextprotocol/sdk/client/index.js';
|
||||
import dotenv from 'dotenv';
|
||||
import { z } from 'zod';
|
||||
|
||||
import { contextFactory } from '../browserContextFactory.js';
|
||||
import { BrowserServerBackend } from '../browserServerBackend.js';
|
||||
import { Context } from '../context.js';
|
||||
import { logUnhandledError } from '../log.js';
|
||||
import { InProcessTransport } from '../mcp/inProcessTransport.js';
|
||||
import * as mcpServer from '../mcp/server.js';
|
||||
import * as mcpTransport from '../mcp/transport.js';
|
||||
import { packageJSON } from '../package.js';
|
||||
import { runTask } from './loop.js';
|
||||
import { OpenAIDelegate } from './loopOpenAI.js';
|
||||
|
||||
import type { FullConfig } from '../config.js';
|
||||
import type { ServerBackend } from '../mcp/server.js';
|
||||
|
||||
const oneToolSchema: mcpServer.ToolSchema<any> = {
|
||||
name: 'browser',
|
||||
title: 'Perform a task with the browser',
|
||||
description: 'Perform a task with the browser. It can click, type, export, capture screenshot, drag, hover, select options, etc.',
|
||||
inputSchema: z.object({
|
||||
task: z.string().describe('The task to perform with the browser'),
|
||||
}),
|
||||
type: 'readOnly',
|
||||
};
|
||||
|
||||
export async function runOneTool(config: FullConfig) {
|
||||
dotenv.config();
|
||||
const serverBackendFactory = () => new OneToolServerBackend(config);
|
||||
await mcpTransport.start(serverBackendFactory, config.server);
|
||||
}
|
||||
|
||||
class OneToolServerBackend implements ServerBackend {
|
||||
readonly name = 'Playwright';
|
||||
readonly version = packageJSON.version;
|
||||
private _innerClient: Client | undefined;
|
||||
private _config: FullConfig;
|
||||
|
||||
constructor(config: FullConfig) {
|
||||
this._config = config;
|
||||
}
|
||||
|
||||
async initialize() {
|
||||
const client = new Client({ name: 'Playwright Proxy', version: '1.0.0' });
|
||||
const browserContextFactory = contextFactory(this._config.browser);
|
||||
const server = mcpServer.createServer(new BrowserServerBackend(this._config, browserContextFactory));
|
||||
await client.connect(new InProcessTransport(server));
|
||||
await client.ping();
|
||||
this._innerClient = client;
|
||||
}
|
||||
|
||||
tools(): mcpServer.ToolSchema<any>[] {
|
||||
return [oneToolSchema];
|
||||
}
|
||||
|
||||
async callTool(schema: mcpServer.ToolSchema<any>, parsedArguments: any): Promise<mcpServer.ToolResponse> {
|
||||
const delegate = new OpenAIDelegate();
|
||||
const result = await runTask(delegate, this._innerClient!, parsedArguments.task as string);
|
||||
return {
|
||||
content: [{ type: 'text', text: result }],
|
||||
};
|
||||
}
|
||||
|
||||
serverClosed() {
|
||||
void Context.disposeAll().catch(logUnhandledError);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user