mirror of
https://github.com/karpathy/nanochat.git
synced 2026-01-30 04:22:02 +00:00
353 lines
16 KiB
Python
353 lines
16 KiB
Python
"""
|
|
Muon optimizer adapted and simplified from modded-nanogpt.
|
|
https://github.com/KellerJordan/modded-nanogpt
|
|
|
|
Background:
|
|
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
|
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
|
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
|
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
|
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
|
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
|
performance at all relative to UV^T, where USV^T = G is the SVD.
|
|
|
|
Here, an alternative to Newton-Schulz iteration with potentially better convergence properties:
|
|
Polar Express Sign Method for orthogonalization.
|
|
https://arxiv.org/pdf/2505.16932
|
|
by Noah Amsel, David Persson, Christopher Musco, Robert M. Gower.
|
|
|
|
Some of the changes in nanochat implementation:
|
|
- Uses a simpler, more general approach to parameter grouping and stacking
|
|
- Uses a single fused kernel for the momentum -> polar_express -> variance_reduction -> update step
|
|
- Makes no assumptions about model architecture (e.g. that attention weights are fused into QKVO format)
|
|
"""
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
import torch.distributed as dist
|
|
|
|
# Coefficients for Polar Express (computed for num_iters=5, safety_factor=2e-2, cushion=2)
|
|
# From https://arxiv.org/pdf/2505.16932
|
|
polar_express_coeffs = [
|
|
(8.156554524902461, -22.48329292557795, 15.878769915207462),
|
|
(4.042929935166739, -2.808917465908714, 0.5000178451051316),
|
|
(3.8916678022926607, -2.772484153217685, 0.5060648178503393),
|
|
(3.285753657755655, -2.3681294933425376, 0.46449024233003106),
|
|
(2.3465413258596377, -1.7097828382687081, 0.42323551169305323),
|
|
]
|
|
|
|
@torch.compile(dynamic=False, fullgraph=True)
|
|
def muon_step_fused(
|
|
stacked_grads: Tensor,
|
|
stacked_params: Tensor,
|
|
momentum_buffer: Tensor,
|
|
second_momentum_buffer: Tensor,
|
|
momentum_t: Tensor,
|
|
lr_t: Tensor,
|
|
wd_t: Tensor,
|
|
beta2_t: Tensor,
|
|
ns_steps: int,
|
|
red_dim: int,
|
|
) -> None:
|
|
"""
|
|
Fused Muon step: momentum -> polar_express -> variance_reduction -> cautious_update
|
|
All in one compiled graph to eliminate Python overhead between ops.
|
|
Some of the constants are 0-D CPU tensors to avoid recompilation when values change.
|
|
"""
|
|
|
|
# Nesterov momentum
|
|
momentum = momentum_t.to(stacked_grads.dtype)
|
|
momentum_buffer.lerp_(stacked_grads, 1 - momentum)
|
|
g = stacked_grads.lerp_(momentum_buffer, momentum)
|
|
|
|
# Polar express
|
|
X = g.bfloat16()
|
|
if g.size(-2) > g.size(-1):
|
|
X = X.mT
|
|
X = X / (X.norm(dim=(-2, -1), keepdim=True) * 1.02 + 1e-6)
|
|
for a, b, c in polar_express_coeffs[:ns_steps]:
|
|
A = X @ X.mT
|
|
B = b * A + c * (A @ A)
|
|
X = a * X + B @ X
|
|
if g.size(-2) > g.size(-1):
|
|
X = X.mT
|
|
g = X
|
|
|
|
# Variance reduction
|
|
beta2 = beta2_t.to(g.dtype)
|
|
v_mean = g.float().square().mean(dim=red_dim, keepdim=True)
|
|
red_dim_size = g.size(red_dim)
|
|
v_norm_sq = v_mean.sum(dim=(-2, -1), keepdim=True) * red_dim_size
|
|
v_norm = v_norm_sq.sqrt()
|
|
second_momentum_buffer.lerp_(v_mean.to(dtype=second_momentum_buffer.dtype), 1 - beta2)
|
|
step_size = second_momentum_buffer.clamp_min(1e-10).rsqrt()
|
|
scaled_sq_sum = (v_mean * red_dim_size) * step_size.float().square()
|
|
v_norm_new = scaled_sq_sum.sum(dim=(-2, -1), keepdim=True).sqrt()
|
|
final_scale = step_size * (v_norm / v_norm_new.clamp_min(1e-10))
|
|
g = g * final_scale.to(g.dtype)
|
|
|
|
# Cautious weight decay + parameter update
|
|
lr = lr_t.to(g.dtype)
|
|
wd = wd_t.to(g.dtype)
|
|
mask = (g * stacked_params) >= 0
|
|
stacked_params.sub_(lr * g + lr * wd * stacked_params * mask)
|
|
|
|
class Muon(torch.optim.Optimizer):
|
|
"""
|
|
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
|
|
https://kellerjordan.github.io/posts/muon/
|
|
|
|
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
|
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
|
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
|
the advantage that it can be stably run in bfloat16 on the GPU.
|
|
|
|
Some warnings:
|
|
- This optimizer should not be used for the embedding layer, the final fully connected layer,
|
|
or any {0,1}-D parameters; those should all be optimized by a standard method (e.g., AdamW).
|
|
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
|
|
|
|
Arguments:
|
|
lr: The learning rate used by the internal SGD.
|
|
momentum: The momentum used by the internal SGD.
|
|
ns_steps: The number of Newton-Schulz iteration steps to use.
|
|
beta2: The decay rate for the second moment (variance) estimate. Set to None to disable.
|
|
weight_decay: Cautious weight decay coefficient. Only decays where update and weight agree.
|
|
"""
|
|
def __init__(self, params, lr=0.02, momentum=0.95, ns_steps=5, beta2=0.95, weight_decay=0.0):
|
|
defaults = dict(lr=lr, momentum=momentum, ns_steps=ns_steps, beta2=beta2, weight_decay=weight_decay)
|
|
assert all(p.ndim == 2 for p in params), "Muon expects 2D parameters only"
|
|
params = list(params) # ensure we have a list, not an e.g. (exhaustible) iterator
|
|
# Group by shape so we can stack tensors
|
|
shapes = sorted({p.shape for p in params})
|
|
param_groups = []
|
|
for shape in shapes:
|
|
group_params = [p for p in params if p.shape == shape]
|
|
param_groups.append(dict(params=group_params))
|
|
super().__init__(param_groups, defaults)
|
|
# 0-D CPU tensors to avoid torch.compile recompilation when values change
|
|
self._momentum_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._lr_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._wd_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._beta2_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
|
|
@torch.no_grad()
|
|
def step(self):
|
|
for group in self.param_groups:
|
|
params: list[Tensor] = group["params"]
|
|
if not params:
|
|
continue
|
|
|
|
# Get or create group-level buffers (stored in first param's state for convenience)
|
|
state = self.state[params[0]]
|
|
num_params = len(params) # e.g.: 12 (for a d12 model)
|
|
# e.g.: shape = (768, 3072), device = cuda:0, dtype = torch.float32, for one of the MLP projections
|
|
shape, device, dtype = params[0].shape, params[0].device, params[0].dtype
|
|
|
|
# Momentum for every individual parameter
|
|
if "momentum_buffer" not in state:
|
|
state["momentum_buffer"] = torch.zeros(num_params, *shape, dtype=dtype, device=device)
|
|
momentum_buffer = state["momentum_buffer"] # e.g.: (12, 768, 3072)
|
|
|
|
# Second momentum buffer is factored, either per-row or per-column
|
|
if "second_momentum_buffer" not in state:
|
|
if shape[-2] >= shape[-1]:
|
|
state["second_momentum_buffer"] = torch.zeros(num_params, shape[-2], 1, dtype=dtype, device=device)
|
|
else:
|
|
state["second_momentum_buffer"] = torch.zeros(num_params, 1, shape[-1], dtype=dtype, device=device)
|
|
second_momentum_buffer = state["second_momentum_buffer"] # (12, 1, 3072)
|
|
red_dim = -1 if shape[-2] >= shape[-1] else -2 # e.g.: -2
|
|
|
|
# Stack grads and params
|
|
stacked_grads = torch.stack([p.grad for p in params]) # (12, 768, 3072)
|
|
stacked_params = torch.stack(params) # (12, 768, 3072)
|
|
|
|
# Fill all the 0-D tensors with current values
|
|
self._momentum_t.fill_(group["momentum"])
|
|
self._beta2_t.fill_(group["beta2"] if group["beta2"] is not None else 0.0)
|
|
self._lr_t.fill_(group["lr"] * max(1.0, shape[-2] / shape[-1])**0.5)
|
|
self._wd_t.fill_(group["weight_decay"])
|
|
|
|
# Single fused kernel: momentum -> polar_express -> variance_reduction -> update
|
|
muon_step_fused(
|
|
stacked_grads,
|
|
stacked_params,
|
|
momentum_buffer,
|
|
second_momentum_buffer,
|
|
self._momentum_t,
|
|
self._lr_t,
|
|
self._wd_t,
|
|
self._beta2_t,
|
|
group["ns_steps"],
|
|
red_dim,
|
|
)
|
|
|
|
# Copy back to original params: [(768, 3072), (768, 3072), ...] <- (12, 768, 3072)
|
|
torch._foreach_copy_(params, list(stacked_params.unbind(0)))
|
|
|
|
|
|
class DistMuon(torch.optim.Optimizer):
|
|
"""
|
|
Distributed version of the Muon optimizer.
|
|
"""
|
|
def __init__(self, params, lr: float = 0.02, momentum: float = 0.95,
|
|
ns_steps: int = 5, beta2: float = 0.95, weight_decay: float = 0.0):
|
|
defaults = dict(lr=lr, momentum=momentum, ns_steps=ns_steps, beta2=beta2, weight_decay=weight_decay)
|
|
assert all(p.ndim == 2 for p in params), "Muon expects 2D parameters only"
|
|
params = list(params)
|
|
world_size = dist.get_world_size()
|
|
rank = dist.get_rank()
|
|
# Group all parameters by their shape
|
|
shapes = sorted({p.shape for p in params}) # sort for deterministic ordering across ranks
|
|
param_groups = []
|
|
for shape in shapes:
|
|
group_params = [p for p in params if p.shape == shape]
|
|
device, dtype = group_params[0].device, group_params[0].dtype
|
|
assert all(p.device == device for p in group_params)
|
|
assert all(p.dtype == dtype for p in group_params)
|
|
# Compute chunk size for this group (how many params each rank owns)
|
|
chunk_size = (len(group_params) + world_size - 1) // world_size
|
|
if rank == 0:
|
|
print(f"Muon: {len(group_params)} params of shape {shape}, chunk_size={chunk_size}")
|
|
param_groups.append(dict(params=group_params, chunk_size=chunk_size))
|
|
super().__init__(param_groups, defaults)
|
|
# 0-D CPU tensors to avoid torch.compile recompilation when values change
|
|
self._momentum_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._lr_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._wd_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
self._beta2_t = torch.tensor(0.0, dtype=torch.float32, device="cpu")
|
|
|
|
@torch.no_grad()
|
|
def step(self):
|
|
rank = dist.get_rank()
|
|
world_size = dist.get_world_size()
|
|
|
|
# Ensure all grads exist
|
|
assert all(p.grad is not None for group in self.param_groups for p in group["params"]), "All params must have grads"
|
|
|
|
# First pass: stack grads and kick off reduce_scatter for each group
|
|
group_infos = []
|
|
for group in self.param_groups:
|
|
params: list[Tensor] = group["params"]
|
|
chunk_size = group["chunk_size"]
|
|
padded_num_params = chunk_size * world_size
|
|
shape = params[0].shape
|
|
device, dtype = params[0].device, params[0].dtype
|
|
|
|
# Stack all gradients into a single tensor (single kernel via torch.stack)
|
|
grad_stack = torch.stack([p.grad for p in params])
|
|
stacked_grads = torch.empty(padded_num_params, *shape, dtype=dtype, device=device)
|
|
stacked_grads[:len(params)].copy_(grad_stack)
|
|
# Zero-pad if we have fewer params than padded size
|
|
if len(params) < padded_num_params:
|
|
stacked_grads[len(params):].zero_()
|
|
|
|
# Output buffer for this rank's chunk
|
|
grad_chunk = torch.empty(chunk_size, *shape, dtype=dtype, device=device)
|
|
|
|
# Async reduce_scatter on the stacked tensor
|
|
reduce_future = dist.reduce_scatter_tensor(
|
|
grad_chunk, stacked_grads, op=dist.ReduceOp.AVG, async_op=True
|
|
).get_future()
|
|
|
|
group_infos.append(dict(
|
|
grad_chunk=grad_chunk,
|
|
reduce_future=reduce_future,
|
|
stacked_grads=stacked_grads, # reuse for all_gather output
|
|
))
|
|
|
|
# Second pass: wait for reduce, compute batched updates, kick off all_gather
|
|
all_gather_futures = []
|
|
for group, info in zip(self.param_groups, group_infos):
|
|
info["reduce_future"].wait()
|
|
|
|
params = group["params"]
|
|
chunk_size = group["chunk_size"]
|
|
shape = params[0].shape
|
|
device, dtype = params[0].device, params[0].dtype
|
|
grad_chunk = info["grad_chunk"]
|
|
|
|
# How many params does this rank actually own?
|
|
start_idx = rank * chunk_size
|
|
num_owned = min(chunk_size, max(0, len(params) - start_idx))
|
|
|
|
# Get or create group-level state (stored keyed by first param)
|
|
state = self.state[params[0]]
|
|
|
|
# Momentum buffer
|
|
if "momentum_buffer" not in state:
|
|
state["momentum_buffer"] = torch.zeros(chunk_size, *shape, dtype=dtype, device=device)
|
|
momentum_buffer = state["momentum_buffer"]
|
|
|
|
# Second momentum buffer is factored, either per-row or per-column
|
|
if "second_momentum_buffer" not in state:
|
|
if shape[-2] >= shape[-1]:
|
|
state["second_momentum_buffer"] = torch.zeros(chunk_size, shape[-2], 1, dtype=dtype, device=device)
|
|
else:
|
|
state["second_momentum_buffer"] = torch.zeros(chunk_size, 1, shape[-1], dtype=dtype, device=device)
|
|
second_momentum_buffer = state["second_momentum_buffer"]
|
|
red_dim = -1 if shape[-2] >= shape[-1] else -2
|
|
|
|
# Build updated_params tensor for all_gather
|
|
updated_params = torch.empty(chunk_size, *shape, dtype=dtype, device=device)
|
|
|
|
if num_owned > 0:
|
|
# Stack owned params (single kernel via torch.stack)
|
|
owned_params = [params[start_idx + i] for i in range(num_owned)]
|
|
stacked_owned_params = torch.stack(owned_params)
|
|
|
|
# Get owned slices of buffers and grads
|
|
owned_grads = grad_chunk[:num_owned]
|
|
owned_momentum = momentum_buffer[:num_owned]
|
|
owned_second_momentum = second_momentum_buffer[:num_owned]
|
|
|
|
# Fill 0-D tensors with current values
|
|
self._momentum_t.fill_(group["momentum"])
|
|
self._beta2_t.fill_(group["beta2"] if group["beta2"] is not None else 0.0)
|
|
self._lr_t.fill_(group["lr"] * max(1.0, shape[-2] / shape[-1])**0.5)
|
|
self._wd_t.fill_(group["weight_decay"])
|
|
|
|
# Single fused kernel: momentum -> polar_express -> variance_reduction -> update
|
|
muon_step_fused(
|
|
owned_grads,
|
|
stacked_owned_params,
|
|
owned_momentum,
|
|
owned_second_momentum,
|
|
self._momentum_t,
|
|
self._lr_t,
|
|
self._wd_t,
|
|
self._beta2_t,
|
|
group["ns_steps"],
|
|
red_dim,
|
|
)
|
|
|
|
# Copy updated params to output buffer
|
|
updated_params[:num_owned].copy_(stacked_owned_params)
|
|
|
|
# Zero-pad the rest (for ranks that own fewer params)
|
|
if num_owned < chunk_size:
|
|
updated_params[num_owned:].zero_()
|
|
|
|
# Reuse stacked_grads buffer for all_gather output
|
|
stacked_params = info["stacked_grads"]
|
|
|
|
# Async all_gather to replicate updated params to all ranks
|
|
gather_future = dist.all_gather_into_tensor(
|
|
stacked_params, updated_params, async_op=True
|
|
).get_future()
|
|
|
|
all_gather_futures.append(dict(
|
|
gather_future=gather_future,
|
|
stacked_params=stacked_params,
|
|
params=params,
|
|
))
|
|
|
|
# Final pass: wait for all_gather and copy back to params
|
|
for info in all_gather_futures:
|
|
info["gather_future"].wait()
|
|
stacked_params = info["stacked_params"]
|
|
params = info["params"]
|
|
# Batched copy back (single kernel instead of N individual copies)
|
|
torch._foreach_copy_(params, list(stacked_params[:len(params)].unbind(0)))
|