add engram-lite, add log, tune scaling laws analysis scripts

This commit is contained in:
Andrej Karpathy
2026-01-27 22:31:17 +00:00
parent 59e36cc727
commit c8d93beed2
5 changed files with 346 additions and 35 deletions

View File

@@ -1,13 +1,14 @@
#!/bin/bash
LABEL="jan16"
LABEL="jan26"
FLOPS_BUDGETS=(
1e18
3e18
6e18
2.15e18
4.64e18
1e19
)
DEPTHS=(6 7 8 9 10 11 12 13 14)
DEPTHS=(8 10 12 14 16 18 20)
NPROC_PER_NODE="${NPROC_PER_NODE:-8}"
WANDB_RUN="${WANDB_RUN:-scaling_${LABEL}}"
@@ -23,7 +24,7 @@ RESULTS_FILE="$RESULTS_DIR/results.csv"
# Write CSV header only if file doesn't exist
if [ ! -f "$RESULTS_FILE" ]; then
echo "flops_budget,depth,model_dim,num_params,num_scaling_params,num_iterations,tokens_trained,param_data_ratio,val_bpb,core_score,train_time_sec" > "$RESULTS_FILE"
echo "flops_budget,depth,model_dim,params_wte,params_bigram_embed,params_value_embeds,params_lm_head,params_transformer,params_scalars,params_total,num_iterations,tokens_trained,val_bpb,core_score,train_time_sec" > "$RESULTS_FILE"
fi
log() {
@@ -83,13 +84,19 @@ for flops in "${FLOPS_BUDGETS[@]}"; do
# Extract training stats from the log
LOG_FILE="$RESULTS_DIR/${TAG}_train.log"
NUM_PARAMS=$(grep "Number of parameters:" "$LOG_FILE" | tail -1 | grep -oP '[\d,]+' | head -1 | tr -d ',')
NUM_SCALING_PARAMS=$(grep "Number of parameters:" "$LOG_FILE" | tail -1 | grep -oP 'scaling: [\d,]+' | grep -oP '[\d,]+' | tr -d ',')
# Extract detailed parameter counts (for scaling law analysis with different conventions)
PARAMS_WTE=$(grep "wte:" "$LOG_FILE" | tail -1 | grep -oP '[\d,]+' | tr -d ',')
PARAMS_BIGRAM=$(grep "bigram_embed:" "$LOG_FILE" | tail -1 | grep -oP '[\d,]+' | tr -d ',')
PARAMS_VE=$(grep "value_embeds:" "$LOG_FILE" | tail -1 | grep -oP '[\d,]+' | tr -d ',')
PARAMS_LM=$(grep "lm_head:" "$LOG_FILE" | tail -1 | grep -oP '[\d,]+' | tr -d ',')
PARAMS_TRANSFORMER=$(grep "transformer_matrices:" "$LOG_FILE" | tail -1 | grep -oP '[\d,]+' | tr -d ',')
PARAMS_SCALARS=$(grep "scalars:" "$LOG_FILE" | tail -1 | grep -oP '[\d,]+' | tr -d ',')
PARAMS_TOTAL=$(grep "total:" "$LOG_FILE" | tail -1 | grep -oP '[\d,]+' | tr -d ',')
NUM_ITERS=$(grep "Calculated number of iterations" "$LOG_FILE" | tail -1 | sed 's/.*: //' | tr -d ',')
# Calculate tokens trained (iterations * batch_size, default 524288)
TOKENS_TRAINED=$((NUM_ITERS * 524288))
# Param:data ratio (using scaling params per Kaplan et al.)
PARAM_DATA_RATIO=$(python -c "print(f'{$TOKENS_TRAINED / $NUM_SCALING_PARAMS:.2f}')")
# Model dim
MODEL_DIM=$((d * 64))
# Val BPB from final eval
@@ -102,10 +109,10 @@ for flops in "${FLOPS_BUDGETS[@]}"; do
CORE_SCORE="0.0"
fi
log " Params: $NUM_PARAMS, Iters: $NUM_ITERS, Ratio: $PARAM_DATA_RATIO, Val BPB: $VAL_BPB, CORE: $CORE_SCORE"
log " Params: $PARAMS_TOTAL (transformer: $PARAMS_TRANSFORMER), Iters: $NUM_ITERS, Val BPB: $VAL_BPB, CORE: $CORE_SCORE"
# Append to CSV
echo "$flops,$d,$MODEL_DIM,$NUM_PARAMS,$NUM_SCALING_PARAMS,$NUM_ITERS,$TOKENS_TRAINED,$PARAM_DATA_RATIO,$VAL_BPB,$CORE_SCORE,$TRAIN_TIME" >> "$RESULTS_FILE"
echo "$flops,$d,$MODEL_DIM,$PARAMS_WTE,$PARAMS_BIGRAM,$PARAMS_VE,$PARAMS_LM,$PARAMS_TRANSFORMER,$PARAMS_SCALARS,$PARAMS_TOTAL,$NUM_ITERS,$TOKENS_TRAINED,$VAL_BPB,$CORE_SCORE,$TRAIN_TIME" >> "$RESULTS_FILE"
done
done