big change: add pretraining resumption logic so that checkpoints can now be approximately resumed and training can continue. this is useful for very long runs when you don't want the anxiety of your run crashing for some reason. alternatively, it's a way to recover training in the event of loss spikes. i mean, this should have been there in v0 but it's ok. the resumption is approximate to control complexity and bloat, but it's possible we want to change that in the future. to use, set --save_every to a step interval to write checkpoints with, and then use --resume_from_step to resume optimization from a given step. only base model training (pretraining) supports this atm, but it's ok because midtraining is comparably quite a bit faster.

This commit is contained in:
Andrej Karpathy
2025-11-13 15:34:40 +00:00
parent 91f09ccd0d
commit c6abcdfe3a
4 changed files with 145 additions and 63 deletions

View File

@@ -20,10 +20,10 @@ import wandb
import torch
from nanochat.gpt import GPT, GPTConfig
from nanochat.dataloader import tokenizing_distributed_data_loader
from nanochat.dataloader import tokenizing_distributed_data_loader, tokenizing_distributed_data_loader_with_state
from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, print_banner, get_base_dir, autodetect_device_type
from nanochat.tokenizer import get_tokenizer, get_token_bytes
from nanochat.checkpoint_manager import save_checkpoint
from nanochat.checkpoint_manager import save_checkpoint, load_checkpoint
from nanochat.loss_eval import evaluate_bpb
from nanochat.engine import Engine
from scripts.base_eval import evaluate_model
@@ -52,12 +52,14 @@ grad_clip = 1.0 # gradient clipping value (0.0 = disabled)
warmup_ratio = 0.0 # ratio of iterations for LR warmup
warmdown_ratio = 0.2 # ratio of iterations for LR warmdown
final_lr_frac = 0.0 # final LR is this fraction of the initial LR
resume_from_step = -1 # resume training from this step of the optimization (-1 = disable)
# Evaluation
eval_every = 250 # every how many steps to evaluate the model for val bpb
eval_tokens = 20*524288 # number of tokens to evaluate val loss on
core_metric_every = 2000 # every how many steps to evaluate the core metric (-1 = disable)
core_metric_max_per_task = 500 # examples per task in estimating the core metric
sample_every = 2000 # every how many steps to sample from the model
save_every = -1 # every how many steps to save model checkpoints (-1 = disable, and save only at the end of the run)
# Output
model_tag = "" # optionally override the model tag for the output checkpoint directory name
# now allow CLI to override the settings via the configurator lol
@@ -103,16 +105,31 @@ grad_accum_steps = total_batch_size // world_tokens_per_fwdbwd
print0(f"Tokens / micro-batch / rank: {device_batch_size} x {max_seq_len} = {tokens_per_fwdbwd:,}")
print0(f"Tokens / micro-batch: {world_tokens_per_fwdbwd:,}")
print0(f"Total batch size {total_batch_size:,} => gradient accumulation steps: {grad_accum_steps}")
# -----------------------------------------------------------------------------
# Initialize the Model
# Create a new model with random weights
model_config_kwargs = dict(sequence_len=max_seq_len, vocab_size=vocab_size, n_layer=num_layers, n_head=num_heads, n_kv_head=num_kv_heads, n_embd=model_dim)
with torch.device("meta"):
model_config = GPTConfig(**model_config_kwargs)
model = GPT(model_config)
model.to_empty(device=device)
model.init_weights()
orig_model = model # original, uncompiled model, for saving raw model state_dict
model = torch.compile(model, dynamic=False) # TODO: dynamic True/False think through
# If we are resuming, overwrite the model parameters with those of the checkpoint
base_dir = get_base_dir()
output_dirname = model_tag if model_tag else f"d{depth}" # e.g. d12
checkpoint_dir = os.path.join(base_dir, "base_checkpoints", output_dirname)
resuming = resume_from_step != -1
if resuming:
print0(f"Resuming optimization from step {resume_from_step}")
model_data, optimizer_data, meta_data = load_checkpoint(checkpoint_dir, resume_from_step, device, load_optimizer=True, rank=ddp_rank)
model.load_state_dict(model_data, strict=True, assign=True)
del model_data # free up this memory after the copy
orig_model = model # original, uncompiled model, for saving raw model state_dict and for inference/evaluation (because the shapes may change shape)
model = torch.compile(model, dynamic=False) # the inputs to model will never change shape so dynamic=False is safe
num_params = sum(p.numel() for p in model.parameters())
print0(f"Number of parameters: {num_params:,}")
num_flops_per_token = model.estimate_flops()
@@ -143,12 +160,18 @@ print0(f"Total training FLOPs estimate: {num_flops_per_token * total_tokens:e}")
optimizers = model.setup_optimizers(unembedding_lr=unembedding_lr, embedding_lr=embedding_lr, matrix_lr=matrix_lr, weight_decay=weight_decay)
adamw_optimizer, muon_optimizer = optimizers
if resuming:
for opt, dat in zip(optimizers, optimizer_data):
opt.load_state_dict(dat)
del optimizer_data # free up the memory
# -----------------------------------------------------------------------------
# Initialize the DataLoaders for train/val
base_dir = get_base_dir()
tokens_dir = os.path.join(base_dir, "tokenized_data")
train_loader = tokenizing_distributed_data_loader(device_batch_size, max_seq_len, split="train", device=device)
dataloader_resume_state_dict = None if not resuming else meta_data["dataloader_state_dict"]
train_loader = tokenizing_distributed_data_loader_with_state(device_batch_size, max_seq_len, split="train", device=device, resume_state_dict=dataloader_resume_state_dict)
build_val_loader = lambda: tokenizing_distributed_data_loader(device_batch_size, max_seq_len, split="val", device=device)
x, y = next(train_loader) # kick off load of the very first batch of data
x, y, dataloader_state_dict = next(train_loader) # kick off load of the very first batch of data
# -----------------------------------------------------------------------------
# Set up hyperparameter schedulers
@@ -171,15 +194,25 @@ def get_muon_momentum(it):
momentum = (1 - frac) * 0.85 + frac * 0.95
return momentum
# -----------------------------------------------------------------------------
# Loop state (variables updated by the training loop)
if not resuming:
step = 0
min_val_bpb = float("inf")
smooth_train_loss = 0 # EMA of training loss
total_training_time = 0 # total wall-clock time of training
else:
step = meta_data["step"]
loop_state = meta_data["loop_state"]
min_val_bpb = loop_state["min_val_bpb"]
smooth_train_loss = loop_state["smooth_train_loss"]
total_training_time = loop_state["total_training_time"]
# -----------------------------------------------------------------------------
# Training loop
min_val_bpb = float("inf")
smooth_train_loss = 0 # EMA of training loss
ema_beta = 0.9 # EMA decay factor
total_training_time = 0 # total wall-clock time of training
# note that we run +1 steps only so that we can eval and save at the end
for step in range(num_iterations + 1):
last_step = step == num_iterations
while True:
last_step = step == num_iterations # loop runs num_iterations+1 times so that we can eval/save at the end
flops_so_far = num_flops_per_token * total_batch_size * step
# once in a while: evaluate the val bpb (all ranks participate)
@@ -237,25 +270,31 @@ for step in range(num_iterations + 1):
print0(tokenizer.decode(sample[0]))
model.train()
# save checkpoint at the end of the run (only on master process)
if master_process and last_step:
output_dirname = model_tag if model_tag else f"d{depth}" # e.g. d12
checkpoint_dir = os.path.join(base_dir, "base_checkpoints", output_dirname)
# save checkpoint: at the end of the run, or every save_every steps, except at the first step or the resume step
if last_step or (step > 0 and step != resume_from_step and save_every > 0 and step % save_every == 0):
save_checkpoint(
checkpoint_dir,
step,
orig_model.state_dict(),
[opt.state_dict() for opt in optimizers], # TODO: make sure saving across ranks is done correctly
{
orig_model.state_dict(), # model parameters
[opt.state_dict() for opt in optimizers], # optimizer states
{ # metadata saved as json
"step": step,
"val_bpb": val_bpb, # loss at last step
"model_config": model_config_kwargs,
"user_config": user_config, # inputs to the training script
"device_batch_size": device_batch_size,
"max_seq_len": max_seq_len,
}
"dataloader_state_dict": dataloader_state_dict,
"loop_state": { # all loop state (other than step) so that we can resume training
"min_val_bpb": min_val_bpb,
"smooth_train_loss": smooth_train_loss,
"total_training_time": total_training_time,
},
},
rank=ddp_rank,
)
# termination conditions (TODO: possibly also add loss explosions etc.)
if last_step:
break
@@ -270,7 +309,7 @@ for step in range(num_iterations + 1):
train_loss = loss.detach() # for logging
loss = loss / grad_accum_steps # each .backward() is a grad sum => normalize loss here
loss.backward()
x, y = next(train_loader) # prefetch the next batch while the GPU is busy with forward/backward
x, y, dataloader_state_dict = next(train_loader) # prefetch the next batch while the GPU is busy with forward/backward
# gradient clipping
grad_clip_enabled = grad_clip > 0.0
if grad_clip_enabled:
@@ -293,6 +332,7 @@ for step in range(num_iterations + 1):
# -------------------------------------------------------------------------
# logging
ema_beta = 0.9 # EMA decay factor for some smoothing just for nicer logging
smooth_train_loss = ema_beta * smooth_train_loss + (1 - ema_beta) * train_loss.item() # EMA the training loss
debiased_smooth_loss = smooth_train_loss / (1 - ema_beta**(step + 1)) # debias the EMA
pct_done = 100 * step / num_iterations
@@ -319,6 +359,9 @@ for step in range(num_iterations + 1):
log_data["train/grad_norm"] = grad_norm
wandb_run.log(log_data)
# state update
step += 1
# print a few more stats
print0(f"Peak memory usage: {get_max_memory() / 1024 / 1024:.2f}MiB")
print0(f"Total training time: {total_training_time/60:.2f}m")