add autodetect of device and related stuff. getting weird warnings/errors still, so wip

This commit is contained in:
karpathy
2025-10-16 10:26:19 -07:00
parent 279b74312c
commit 786119d593
4 changed files with 25 additions and 11 deletions

View File

@@ -89,6 +89,16 @@ def get_dist_info():
else:
return False, 0, 0, 1
def autodetect_device_type():
# prefer to use CUDA if available, otherwise use MPS, otherwise fallback on CPU
if torch.cuda.is_available():
device_type = "cuda"
if torch.backends.mps.is_available():
device_type = "mps"
device_type = "cpu"
print0(f"Autodetected device type: {device_type}")
return device_type
def compute_init(device_type="cuda"): # cuda|cpu|mps
"""Basic initialization that we keep doing over and over, so make common."""

View File

@@ -19,7 +19,7 @@ import yaml
import pandas as pd
import torch
from nanochat.common import compute_init, compute_cleanup, print0, get_base_dir
from nanochat.common import compute_init, compute_cleanup, print0, get_base_dir, autodetect_device_type
from nanochat.tokenizer import HuggingFaceTokenizer
from nanochat.checkpoint_manager import load_model
from nanochat.core_eval import evaluate_task
@@ -121,8 +121,10 @@ def main():
assert len(sys.argv) in [1, 2], "Usage: python base_eval.py [hf_path]"
# distributed / precision setup
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16)
device_type = autodetect_device_type()
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
dtype = torch.bfloat16 if device_type == "cuda" else torch.float32 # use fp32 on CPU|MPS
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=dtype)
# Load model and tokenizer from command line or from file system
if len(sys.argv) >= 2:

View File

@@ -9,7 +9,7 @@ torchrun --standalone --nproc_per_node=8 -m scripts.base_loss
import os
import torch
from nanochat.checkpoint_manager import load_model
from nanochat.common import compute_init, print0, compute_cleanup
from nanochat.common import compute_init, print0, compute_cleanup, autodetect_device_type
from nanochat.dataloader import tokenizing_distributed_data_loader
from nanochat.tokenizer import get_token_bytes
from nanochat.loss_eval import evaluate_bpb
@@ -20,15 +20,16 @@ device_batch_size = 32
split_tokens = 20*524288 # number of tokens to evaluate per split
model_tag = None # optional model tag for the output directory name
model_step = None # optional model step for the output directory name
device_type = "" # cuda|cpu|mps (empty => autodetect)
exec(open(os.path.join('nanochat', 'configurator.py')).read()) # overrides from command line or config file
# Load the base model and the tokenizer
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
device_type = autodetect_device_type() if device_type == "" else device_type
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
dtype = torch.bfloat16 if device_type == "cuda" else torch.float32 # use fp32 on CPU|MPS
model, tokenizer, meta = load_model("base", device, phase="eval", model_tag=model_tag, step=model_step)
sequence_len = meta["model_config"]["sequence_len"] # could be arbitrary really
# Set up the precision we'll run with
autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16)
autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=dtype)
# Evaluate the loss on each split
tokens_per_step = device_batch_size * sequence_len * ddp_world_size

View File

@@ -7,7 +7,7 @@ or distributed as:
torchrun --nproc_per_node=8 base_train.py
python -m scripts.base_train --device_type=cpu --depth=4 --max_seq_len=512 --device_batch_size=1 --eval_tokens=512 --total_batch_size=512 --num_iterations=1000
python -m scripts.base_train --device_type=cpu --depth=4 --max_seq_len=512 --device_batch_size=1 --eval_tokens=512 --core_metric_max_per_task=8 --total_batch_size=512 --num_iterations=500
If you have a Macbook, you're better off using device_type=mps instead of cpu
"""
@@ -19,7 +19,7 @@ import torch
from nanochat.gpt import GPT, GPTConfig
from nanochat.dataloader import tokenizing_distributed_data_loader
from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, print_banner, get_base_dir
from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, print_banner, get_base_dir, autodetect_device_type
from nanochat.tokenizer import get_tokenizer, get_token_bytes
from nanochat.checkpoint_manager import save_checkpoint
from nanochat.loss_eval import evaluate_bpb
@@ -31,7 +31,7 @@ print_banner()
# User settings
run = "dummy" # wandb run name default ("dummy" is special - we won't log to wandb)
# Runtime
device_type = "cuda" # cuda|cpu|mps
device_type = "" # cuda|cpu|mps (empty => autodetect good device type default, in order: CUDA > MPS > CPU)
# Model architecture
depth = 20 # the depth of the Transformer model to train, rest of the kwargs are derived
max_seq_len = 2048 # max context length
@@ -62,6 +62,7 @@ user_config = {k: globals()[k] for k in config_keys} # will be useful for loggin
# -----------------------------------------------------------------------------
# Compute init
device_type = autodetect_device_type() if device_type == "" else device_type
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type)
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
dtype = torch.bfloat16 if device_type == "cuda" else torch.float32 # use fp32 on CPU|MPS