first version of engram following modded nanogpt style

This commit is contained in:
Andrej Karpathy
2026-01-25 18:59:51 +00:00
parent 85b3e95e09
commit 59e36cc727
2 changed files with 58 additions and 8 deletions

View File

@@ -45,6 +45,41 @@ def norm(x):
return F.rms_norm(x, (x.size(-1),)) return F.rms_norm(x, (x.size(-1),))
class BigramEmbed(nn.Module):
"""
Hash bigrams to embeddings. Simple, self-contained, runs on GPU.
Following modded-nanogpt's approach: single hash, no gating.
For each position t, hashes (token[t-1], token[t]) to an index in a large
embedding table. This provides O(1) lookup for local 2-gram patterns,
offloading static pattern reconstruction from the transformer layers.
Ref: https://github.com/KellerJordan/modded-nanogpt/pull/201
Ref: https://arxiv.org/abs/1709.03933 (Hash Embeddings)
"""
def __init__(self, vocab_size: int, embed_dim: int, table_multiplier: int = 5):
super().__init__()
self.bigram_vocab_size = vocab_size * table_multiplier
self.embed = nn.Embedding(self.bigram_vocab_size, embed_dim)
def forward(self, idx: torch.Tensor) -> torch.Tensor:
"""
idx: (B, T) token ids
Returns: (B, T, embed_dim) bigram embeddings
"""
# Hash (prev_token, curr_token) -> index
# Position 0 gets a reserved index (no valid bigram)
rand_int_1 = 36313
rand_int_2 = 27191
mod = self.bigram_vocab_size - 1
h = torch.empty_like(idx, dtype=torch.long)
h[:, 0] = mod # reserved index for position 0
h[:, 1:] = (rand_int_1 * idx[:, 1:] ^ rand_int_2 * idx[:, :-1]) % mod
return self.embed(h)
def has_ve(layer_idx, n_layer): def has_ve(layer_idx, n_layer):
"""Returns True if GPT layer should have Value Embedding (alternating, last layer always included).""" """Returns True if GPT layer should have Value Embedding (alternating, last layer always included)."""
return layer_idx % 2 == (n_layer - 1) % 2 return layer_idx % 2 == (n_layer - 1) % 2
@@ -169,9 +204,13 @@ class GPT(nn.Module):
# Per-layer learnable scalars (inspired by modded-nanogpt) # Per-layer learnable scalars (inspired by modded-nanogpt)
# resid_lambdas: scales the residual stream at each layer (init 1.0 = neutral) # resid_lambdas: scales the residual stream at each layer (init 1.0 = neutral)
# x0_lambdas: blends initial embedding back in at each layer (init 0.0 = disabled) # x0_lambdas: blends initial embedding back in at each layer (init 0.0 = disabled)
# bigram_lambdas: blends bigram embeddings in at each layer (init 0.1 = small contribution)
# Separate parameters so they can have different optimizer treatment # Separate parameters so they can have different optimizer treatment
self.resid_lambdas = nn.Parameter(torch.ones(config.n_layer)) # fake init, real init in init_weights() self.resid_lambdas = nn.Parameter(torch.ones(config.n_layer)) # fake init, real init in init_weights()
self.x0_lambdas = nn.Parameter(torch.zeros(config.n_layer)) # fake init, real init in init_weights() self.x0_lambdas = nn.Parameter(torch.zeros(config.n_layer)) # fake init, real init in init_weights()
self.bigram_lambdas = nn.Parameter(torch.zeros(config.n_layer)) # fake init, real init in init_weights()
# Bigram hash embeddings: O(1) lookup for local 2-gram patterns
self.bigram_embed = BigramEmbed(config.vocab_size, config.n_embd)
# Value embeddings (ResFormer-style): alternating layers, last layer always included # Value embeddings (ResFormer-style): alternating layers, last layer always included
head_dim = config.n_embd // config.n_head head_dim = config.n_embd // config.n_head
kv_dim = config.n_kv_head * head_dim kv_dim = config.n_kv_head * head_dim
@@ -219,7 +258,11 @@ class GPT(nn.Module):
# Per-layer scalars # Per-layer scalars
self.resid_lambdas.fill_(1.0) # 1.0 => typical residual connections at init self.resid_lambdas.fill_(1.0) # 1.0 => typical residual connections at init
self.x0_lambdas.fill_(0.0) # 0.0 => skip connection to input is disabled at init self.x0_lambdas.fill_(0.1) # 0.1 => small initial weight for skip connection to input embedding
self.bigram_lambdas.fill_(0.1) # 0.1 => small initial weight for skip connection to bigram embeddings
# Bigram embeddings: zero init so it starts as identity
nn.init.zeros_(self.bigram_embed.embed.weight)
# Value embeddings (init like c_v: uniform with same std) # Value embeddings (init like c_v: uniform with same std)
for ve in self.value_embeds.values(): for ve in self.value_embeds.values():
@@ -240,6 +283,7 @@ class GPT(nn.Module):
self.transformer.wte.to(dtype=torch.bfloat16) self.transformer.wte.to(dtype=torch.bfloat16)
for ve in self.value_embeds.values(): for ve in self.value_embeds.values():
ve.to(dtype=torch.bfloat16) ve.to(dtype=torch.bfloat16)
self.bigram_embed.to(dtype=torch.bfloat16)
def _precompute_rotary_embeddings(self, seq_len, head_dim, base=10000, device=None): def _precompute_rotary_embeddings(self, seq_len, head_dim, base=10000, device=None):
# TODO: bump base theta more? e.g. 100K is more common more recently # TODO: bump base theta more? e.g. 100K is more common more recently
@@ -305,8 +349,9 @@ class GPT(nn.Module):
nparams = sum(p.numel() for p in self.parameters()) nparams = sum(p.numel() for p in self.parameters())
# Exclude non-matmul params: embeddings and per-layer scalars # Exclude non-matmul params: embeddings and per-layer scalars
value_embeds_numel = sum(ve.weight.numel() for ve in self.value_embeds.values()) value_embeds_numel = sum(ve.weight.numel() for ve in self.value_embeds.values())
nparams_exclude = (self.transformer.wte.weight.numel() + value_embeds_numel + bigram_embed_numel = self.bigram_embed.embed.weight.numel()
self.resid_lambdas.numel() + self.x0_lambdas.numel()) nparams_exclude = (self.transformer.wte.weight.numel() + value_embeds_numel + bigram_embed_numel +
self.resid_lambdas.numel() + self.x0_lambdas.numel() + self.bigram_lambdas.numel())
h, q, t = self.config.n_head, self.config.n_embd // self.config.n_head, self.config.sequence_len h, q, t = self.config.n_head, self.config.n_embd // self.config.n_head, self.config.sequence_len
# Sum attention FLOPs per layer, accounting for sliding window # Sum attention FLOPs per layer, accounting for sliding window
attn_flops = 0 attn_flops = 0
@@ -339,7 +384,9 @@ class GPT(nn.Module):
lm_head_params = list(self.lm_head.parameters()) lm_head_params = list(self.lm_head.parameters())
resid_params = [self.resid_lambdas] resid_params = [self.resid_lambdas]
x0_params = [self.x0_lambdas] x0_params = [self.x0_lambdas]
assert len(list(self.parameters())) == len(matrix_params) + len(embedding_params) + len(lm_head_params) + len(value_embeds_params) + len(resid_params) + len(x0_params) bigram_embed_params = list(self.bigram_embed.parameters())
bigram_lambda_params = [self.bigram_lambdas]
assert len(list(self.parameters())) == len(matrix_params) + len(embedding_params) + len(lm_head_params) + len(value_embeds_params) + len(resid_params) + len(x0_params) + len(bigram_embed_params) + len(bigram_lambda_params)
# Create the AdamW optimizer for the embedding, lm_head, and per-layer scalars # Create the AdamW optimizer for the embedding, lm_head, and per-layer scalars
# Scale the LR for the AdamW parameters by ∝1/√dmodel (having tuned the LRs for 768 dim model) # Scale the LR for the AdamW parameters by ∝1/√dmodel (having tuned the LRs for 768 dim model)
dmodel_lr_scale = (model_dim / 768) ** -0.5 dmodel_lr_scale = (model_dim / 768) ** -0.5
@@ -348,8 +395,10 @@ class GPT(nn.Module):
dict(params=lm_head_params, lr=unembedding_lr * dmodel_lr_scale), dict(params=lm_head_params, lr=unembedding_lr * dmodel_lr_scale),
dict(params=embedding_params, lr=embedding_lr * dmodel_lr_scale), dict(params=embedding_params, lr=embedding_lr * dmodel_lr_scale),
dict(params=value_embeds_params, lr=embedding_lr * dmodel_lr_scale), # same LR as token embedding dict(params=value_embeds_params, lr=embedding_lr * dmodel_lr_scale), # same LR as token embedding
dict(params=bigram_embed_params, lr=embedding_lr * dmodel_lr_scale), # same LR as token embedding
dict(params=resid_params, lr=scalar_lr * 0.01), # these are a lot more sensitive because they accumulate in the residual stream dict(params=resid_params, lr=scalar_lr * 0.01), # these are a lot more sensitive because they accumulate in the residual stream
dict(params=x0_params, lr=scalar_lr, betas=(0.96, 0.95)), # higher beta1 for x0 scalars dict(params=x0_params, lr=scalar_lr, betas=(0.96, 0.95)), # higher beta1 for x0 scalars
dict(params=bigram_lambda_params, lr=scalar_lr, betas=(0.96, 0.95)), # same treatment as x0 lambdas
] ]
adamw_kwargs = dict(betas=adam_betas, eps=1e-10, weight_decay=0.0) # NOTE: weight decay is hardcoded to 0.0 for AdamW, only used in Muon adamw_kwargs = dict(betas=adam_betas, eps=1e-10, weight_decay=0.0) # NOTE: weight decay is hardcoded to 0.0 for AdamW, only used in Muon
AdamWFactory = DistAdamW if ddp else partial(torch.optim.AdamW, fused=True) AdamWFactory = DistAdamW if ddp else partial(torch.optim.AdamW, fused=True)
@@ -377,11 +426,12 @@ class GPT(nn.Module):
cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T] # truncate cache to current sequence length cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T] # truncate cache to current sequence length
# Forward the trunk of the Transformer # Forward the trunk of the Transformer
x = self.transformer.wte(idx) x = self.transformer.wte(idx) # embed current token
x0_bigram = self.bigram_embed(idx) # embed current bigram (via hash lookup)
x = norm(x) x = norm(x)
x0 = x # save initial normalized embedding for x0 residual x0 = x # save initial normalized embedding for x0 residual
for i, block in enumerate(self.transformer.h): for i, block in enumerate(self.transformer.h):
x = self.resid_lambdas[i] * x + self.x0_lambdas[i] * x0 x = self.resid_lambdas[i] * x + self.x0_lambdas[i] * x0 + self.bigram_lambdas[i] * x0_bigram
ve = self.value_embeds[str(i)](idx) if str(i) in self.value_embeds else None ve = self.value_embeds[str(i)](idx) if str(i) in self.value_embeds else None
x = block(x, ve, cos_sin, self.window_sizes[i], kv_cache) x = block(x, ve, cos_sin, self.window_sizes[i], kv_cache)
x = norm(x) x = norm(x)

View File

@@ -1,11 +1,11 @@
""" """
Train model. From root directory of the project, run as: Train model. From root directory of the project, run as:
python -m scripts.base_train.py python -m scripts.base_train
or distributed as: or distributed as:
torchrun --nproc_per_node=8 -m scripts.base_train.py torchrun --nproc_per_node=8 -m scripts.base_train
If you are only on CPU/Macbook, you'll want to train a much much smaller LLM. Example: If you are only on CPU/Macbook, you'll want to train a much much smaller LLM. Example:
python -m scripts.base_train --depth=4 --max-seq-len=512 --device-batch-size=1 --eval-tokens=512 --core-metric-every=-1 --total-batch-size=512 --num-iterations=20 python -m scripts.base_train --depth=4 --max-seq-len=512 --device-batch-size=1 --eval-tokens=512 --core-metric-every=-1 --total-batch-size=512 --num-iterations=20