initial commit
This commit is contained in:
281
scripts/chat_sft.py
Normal file
281
scripts/chat_sft.py
Normal file
@@ -0,0 +1,281 @@
|
||||
"""
|
||||
Finetune a base model to be a chat model.
|
||||
Run on one GPU e.g. for debugging:
|
||||
|
||||
python -m scripts.chat_sft
|
||||
|
||||
Or torchrun for training:
|
||||
|
||||
torchrun --standalone --nproc_per_node=8 -m scripts.chat_sft
|
||||
"""
|
||||
|
||||
import os
|
||||
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
||||
import copy
|
||||
|
||||
import wandb
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from nanochat.common import compute_init, compute_cleanup, get_base_dir, print0, DummyWandb
|
||||
from nanochat.checkpoint_manager import load_model
|
||||
from nanochat.checkpoint_manager import save_checkpoint
|
||||
from nanochat.engine import Engine
|
||||
from scripts.chat_eval import run_chat_eval
|
||||
|
||||
from tasks.common import TaskMixture, TaskSequence
|
||||
from tasks.mmlu import MMLU
|
||||
from tasks.arc import ARC
|
||||
from tasks.gsm8k import GSM8K
|
||||
from tasks.humaneval import HumanEval
|
||||
from tasks.smoltalk import SmolTalk
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# SFT Hyperparameters
|
||||
run = "dummy" # wandb run name default ("dummy" is special - we won't log to wandb)
|
||||
# input model options
|
||||
source = "mid" # base|mid , which checkpoint to load the model from (base model or midtrained model)
|
||||
model_tag = None # model tag to load the model from (base model or midtrained model)
|
||||
step = None # step to load the model from (base model or midtrained model)
|
||||
# compute/precision
|
||||
dtype = "bfloat16"
|
||||
device_batch_size = 4 # max to avoid OOM
|
||||
# optimization
|
||||
num_epochs = 1
|
||||
max_iterations = -1 # override number of iterations (-1 = use num_epochs * num_iterations)
|
||||
target_examples_per_step = 32
|
||||
unembedding_lr = 0.004
|
||||
embedding_lr = 0.2
|
||||
matrix_lr = 0.02
|
||||
weight_decay = 0.0
|
||||
init_lr_frac = 0.02
|
||||
# evaluation and logging there of
|
||||
eval_every = 100
|
||||
eval_steps = 100
|
||||
eval_metrics_every = 200
|
||||
# now allow CLI to override the settings via the configurator lol
|
||||
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
|
||||
exec(open(os.path.join('nanochat', 'configurator.py')).read()) # overrides from command line or config file
|
||||
user_config = {k: globals()[k] for k in config_keys} # possibly useful for logging
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
# Compute init
|
||||
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
|
||||
master_process = ddp_rank == 0
|
||||
dtype = torch.float32 if dtype == 'float32' else torch.bfloat16
|
||||
autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=dtype)
|
||||
|
||||
# wandb logging init
|
||||
use_dummy_wandb = run == "dummy" or not master_process
|
||||
wandb_run = DummyWandb() if use_dummy_wandb else wandb.init(project="nanochat-sft", name=run, config=user_config, save_code=True)
|
||||
|
||||
# Load the model and tokenizer
|
||||
model, tokenizer, meta = load_model(source, device, phase="train", model_tag=model_tag, step=step)
|
||||
orig_model = model # original, uncompiled model
|
||||
# model = torch.compile(model, dynamic=True) # doesn't work super well because of variable lengths of inputs
|
||||
engine = Engine(model, tokenizer) # will be used for inline model evaluation only
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Task data mixture we'll train on
|
||||
|
||||
train_ds = TaskMixture([
|
||||
ARC(subset="ARC-Easy", split="train"), # 2.3K rows
|
||||
ARC(subset="ARC-Challenge", split="train"), # 1.1K rows
|
||||
GSM8K(subset="main", split="train"), # 8K rows
|
||||
SmolTalk(split="train", stop=10_000), # 10K rows of smoltalk
|
||||
]) # 2.3K + 1.1K + 8K + 10K = 21.4K rows
|
||||
val_ds = SmolTalk(split="test") # general conversations, 24K rows (though we don't actually use all of it)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# DataLoader
|
||||
|
||||
def sft_data_generator(dataset, batch_size):
|
||||
pad_token_id = tokenizer.encode_special("<|assistant_end|>") # use <|assistant_end|> as the pad token is ok, these positions are masked in the loss
|
||||
# prepares a list of tokenized conversations into a batch and yields
|
||||
def collate_and_yield(batch):
|
||||
nrows = len(batch)
|
||||
ncols = max(len(ids) for ids, mask in batch) - 1 # seq of n creates inputs/targets of n-1
|
||||
inputs = torch.full((nrows, ncols), pad_token_id, dtype=torch.long)
|
||||
targets = torch.full((nrows, ncols), -1, dtype=torch.long) # -1 is ignore index
|
||||
for i, (ids, mask) in enumerate(batch):
|
||||
n = len(ids)
|
||||
ids_tensor = torch.tensor(ids, dtype=torch.long)
|
||||
inputs[i, :n-1] = ids_tensor[:-1]
|
||||
# recall -1 is the ignore index, so mask out targets where mask is 0
|
||||
row_targets = ids_tensor[1:]
|
||||
# mask[1:] omits the mask for the BOS token, which is never a target atm so it's ok
|
||||
mask_tensor = torch.tensor(mask[1:], dtype=torch.long)
|
||||
row_targets[mask_tensor == 0] = -1 # mask out targets where mask is 0
|
||||
targets[i, :n-1] = row_targets
|
||||
inputs = inputs.to(device) # move to device
|
||||
targets = targets.to(device)
|
||||
return inputs, targets
|
||||
# iterates over the dataset in epochs, tokenizes
|
||||
batch = []
|
||||
while True:
|
||||
for i in range(ddp_rank, len(dataset), ddp_world_size):
|
||||
doc = dataset[i]
|
||||
ids, mask = tokenizer.render_conversation(doc)
|
||||
batch.append((ids, mask))
|
||||
if len(batch) == batch_size:
|
||||
yield collate_and_yield(batch)
|
||||
batch = []
|
||||
|
||||
examples_per_step = device_batch_size * ddp_world_size
|
||||
print0(f"Target examples per step: {target_examples_per_step}")
|
||||
print0(f"Device batch size: {device_batch_size}")
|
||||
print0(f"Examples per step is device_batch_size * ddp_world_size: {examples_per_step}")
|
||||
assert target_examples_per_step % examples_per_step == 0, "Target examples per step must be divisible by examples per step"
|
||||
grad_accum_steps = target_examples_per_step // examples_per_step
|
||||
print0(f"=> Setting grad accum steps: {grad_accum_steps}")
|
||||
|
||||
num_iterations = (len(train_ds) // target_examples_per_step) * num_epochs
|
||||
if max_iterations >= 0 and num_iterations > max_iterations:
|
||||
print0(f"Number of iterations is too high: {num_iterations}, capping to {max_iterations}")
|
||||
num_iterations = max_iterations
|
||||
train_loader = sft_data_generator(train_ds, batch_size=device_batch_size)
|
||||
build_val_loader = lambda: sft_data_generator(val_ds, batch_size=device_batch_size)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Initialize the Optimizer
|
||||
|
||||
optimizers = model.setup_optimizers(
|
||||
unembedding_lr=unembedding_lr,
|
||||
embedding_lr=embedding_lr,
|
||||
matrix_lr=matrix_lr,
|
||||
weight_decay=weight_decay,
|
||||
)
|
||||
# Set the initial learning rate as a fraction of the base learning rate
|
||||
for opt in optimizers:
|
||||
for group in opt.param_groups:
|
||||
group["lr"] = group["lr"] * init_lr_frac
|
||||
group["initial_lr"] = group["lr"] # save the initial learning so we can decay easily later
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Training loop
|
||||
|
||||
# Learning rate scheduler
|
||||
def get_lr_multiplier(it):
|
||||
lrm = 1.0 - it / num_iterations
|
||||
return lrm
|
||||
|
||||
# Go!
|
||||
step = 0
|
||||
train_iter = iter(train_loader)
|
||||
for step in range(num_iterations):
|
||||
last_step = step == num_iterations - 1
|
||||
|
||||
# evaluate the validation loss
|
||||
if last_step or step % eval_every == 0:
|
||||
model.eval()
|
||||
val_iter = iter(build_val_loader())
|
||||
losses = []
|
||||
for _ in range(eval_steps):
|
||||
val_inputs, val_targets = next(val_iter)
|
||||
with torch.no_grad(), autocast_ctx:
|
||||
loss = model(val_inputs, val_targets)
|
||||
losses.append(loss)
|
||||
val_loss = torch.stack(losses).mean() # average over eval_steps
|
||||
if ddp:
|
||||
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG) # average over ranks
|
||||
val_loss = val_loss.item()
|
||||
print0(f"Step {step:05d} | Validation loss: {val_loss:.6f}")
|
||||
wandb_run.log({
|
||||
"step": step,
|
||||
"val_loss": val_loss,
|
||||
})
|
||||
model.train()
|
||||
|
||||
# evlauate MMLU accuracy
|
||||
if last_step or (step > 0 and step % eval_metrics_every == 0):
|
||||
model.eval()
|
||||
metrics = {}
|
||||
with torch.no_grad(), autocast_ctx:
|
||||
# note that because these are inside no_grad, we can usually afford to at least ~2X the batch size
|
||||
metrics["mmlu_acc"] = run_chat_eval("MMLU", model, tokenizer, engine, batch_size=device_batch_size*2, max_problems=1024)
|
||||
metrics["arc_easy_acc"] = run_chat_eval("ARC-Easy", model, tokenizer, engine, batch_size=device_batch_size*2, max_problems=1024)
|
||||
metrics["gsm8k_acc"] = run_chat_eval("GSM8K", model, tokenizer, engine, max_problems=64)
|
||||
metrics["humaneval_acc"] = run_chat_eval("HumanEval", model, tokenizer, engine, max_problems=64)
|
||||
metrics_str = ', '.join(f'{k}: {v:.6f}' for k, v in metrics.items())
|
||||
print0(f"Step {step:05d} | {metrics_str}")
|
||||
wandb_run.log({
|
||||
"step": step,
|
||||
**metrics,
|
||||
})
|
||||
model.train()
|
||||
|
||||
if last_step:
|
||||
break
|
||||
|
||||
# evaluate the gradient
|
||||
num_tokens = torch.tensor(0, device=device) # the number of "active" tokens of supervision seen
|
||||
for micro_step in range(grad_accum_steps):
|
||||
train_inputs, train_targets = next(train_iter)
|
||||
with autocast_ctx:
|
||||
loss = model(train_inputs, train_targets)
|
||||
train_loss = loss.detach() # for logging
|
||||
loss = loss / grad_accum_steps # each .backward() is a grad sum => normalize loss here
|
||||
loss.backward() # accumulate the gradient
|
||||
num_tokens += (train_targets >= 0).sum()
|
||||
if ddp:
|
||||
dist.all_reduce(num_tokens, op=dist.ReduceOp.SUM) # sum over ranks
|
||||
|
||||
# learning rate scheduler
|
||||
lrm = get_lr_multiplier(step)
|
||||
for opt in optimizers:
|
||||
for group in opt.param_groups:
|
||||
group["lr"] = group["initial_lr"] * lrm
|
||||
|
||||
# step the optimizers
|
||||
for opt in optimizers:
|
||||
opt.step()
|
||||
model.zero_grad(set_to_none=True)
|
||||
|
||||
# logging
|
||||
train_loss_item = train_loss.item()
|
||||
num_tokens_item = num_tokens.item()
|
||||
print0(f"Step {step:05d}/{num_iterations:05d} | Training loss: {train_loss_item:.6f}| lrm: {lrm:.6f}| num_tokens: {num_tokens_item:,}")
|
||||
wandb_run.log({
|
||||
"step": step,
|
||||
"lrm": lrm,
|
||||
"train_loss": train_loss_item,
|
||||
"num_tokens": num_tokens_item,
|
||||
})
|
||||
step += 1
|
||||
|
||||
# Save the model at the end of the run
|
||||
if master_process:
|
||||
base_dir = get_base_dir()
|
||||
depth = model.config.n_layer
|
||||
model_tag = f"d{depth}" # base the model tag on the depth of the base model
|
||||
checkpoint_dir = os.path.join(base_dir, "chatsft_checkpoints", model_tag)
|
||||
model_config_kwargs = model.config.__dict__ # slightly naughty, abusing the simplicity of GPTConfig, TODO nicer
|
||||
save_checkpoint(
|
||||
checkpoint_dir,
|
||||
step,
|
||||
model.state_dict(),
|
||||
None, # note: we don't bother to save the optimizer state
|
||||
{
|
||||
"step": step,
|
||||
"val_loss": val_loss,
|
||||
**metrics,
|
||||
"model_config": model_config_kwargs,
|
||||
}
|
||||
)
|
||||
print(f"✅ Saved model checkpoint to {checkpoint_dir}")
|
||||
|
||||
# Log to report
|
||||
from nanochat.report import get_report
|
||||
get_report().log(section="Chat SFT", data=[
|
||||
user_config, # CLI args
|
||||
{
|
||||
"Training rows": len(train_ds),
|
||||
"Number of iterations": num_iterations,
|
||||
"Training loss": train_loss_item,
|
||||
"Validation loss": val_loss,
|
||||
},
|
||||
])
|
||||
|
||||
# Cleanup
|
||||
wandb_run.finish()
|
||||
compute_cleanup()
|
||||
Reference in New Issue
Block a user