diff --git a/README.md b/README.md index 64fca63..1d156c6 100644 --- a/README.md +++ b/README.md @@ -95,7 +95,7 @@ And a bit more about computing environments that will run nanochat: ## Running on CPU / MPS -If you'd like to tinker with nanochat on your Macbook or a CPU machine, there is a work in progress [CPU|MPS PR](https://github.com/karpathy/nanochat/pull/88) up here. If you're on Macbook, use `--device_type=mps` when running `base_train.py`. See the PR and its diff for more. You're not going to get too far without GPU nodes, but at least you'll be able to run the code and maybe train a very tiny LLM with some patience. +nanochat cn be run on CPU or on MPS (if you're on Macbook), and will automatically try to detect what device is best to run on. You're not going to get too far without GPUs, but at least you'll be able to run the code paths and maybe train a tiny LLM with some patience. For an example of how to make all the run commands much smaller (feel free to tune!), you can refer to [dev/runcpu.sh](dev/runcpu.sh) file. You'll see that I'm essentially restricting all scripts to train smaller models, to run for shorter number of iterations, etc. This functionality is new, slightly gnarly (touched a lot of code), and was merged in this [CPU|MPS PR](https://github.com/karpathy/nanochat/pull/88) on Oct 21, 2025. ## Customization diff --git a/dev/runcpu.sh b/dev/runcpu.sh new file mode 100644 index 0000000..2d73dfc --- /dev/null +++ b/dev/runcpu.sh @@ -0,0 +1,84 @@ +#!/bin/bash + +# Showing an example run for exercising some of the code paths on the CPU (or MPS on Macbooks) +# Run as: +# bash dev/cpu_demo_run.sh + +# NOTE: Training LLMs requires GPU compute and $$$. You will not get far on your Macbook. +# Think of this run as educational/fun demo, not something you should expect to work well. +# This is also why I hide this script away in dev/ + +# all the setup stuff +export OMP_NUM_THREADS=1 +NANOCHAT_BASE_DIR="$HOME/.cache/nanochat" +mkdir -p $NANOCHAT_BASE_DIR +command -v uv &> /dev/null || curl -LsSf https://astral.sh/uv/install.sh | sh +[ -d ".venv" ] || uv venv +uv sync +source .venv/bin/activate +if [ -z "$WANDB_RUN" ]; then + WANDB_RUN=dummy +fi +curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y +source "$HOME/.cargo/env" +uv run maturin develop --release --manifest-path rustbpe/Cargo.toml +EVAL_BUNDLE_URL=https://karpathy-public.s3.us-west-2.amazonaws.com/eval_bundle.zip +if [ ! -d "$NANOCHAT_BASE_DIR/eval_bundle" ]; then + curl -L -o eval_bundle.zip $EVAL_BUNDLE_URL + unzip -q eval_bundle.zip + rm eval_bundle.zip + mv eval_bundle $NANOCHAT_BASE_DIR +fi + +# wipe the report +python -m nanochat.report reset + +# train tokenizer on ~1B characters +python -m nanochat.dataset -n 4 +python -m scripts.tok_train --max_chars=1000000000 +python -m scripts.tok_eval + +# train a very small 4 layer model on the CPU +# each optimization step processes a single sequence of 1024 tokens +# we only run 50 steps of optimization (bump this to get better results) +python -m scripts.base_train \ + --depth=4 \ + --max_seq_len=1024 \ + --device_batch_size=1 \ + --total_batch_size=1024 \ + --eval_every=50 \ + --eval_tokens=4096 \ + --core_metric_every=50 \ + --core_metric_max_per_task=12 \ + --sample_every=50 \ + --num_iterations=50 +python -m scripts.base_loss --device_batch_size=1 --split_tokens=4096 +python -m scripts.base_eval --max-per-task=5 + +# midtraining +python -m scripts.mid_train \ + --max_seq_len=1024 \ + --device_batch_size=1 \ + --eval_every=50 \ + --eval_tokens=4096 \ + --total_batch_size=1024 \ + --num_iterations=100 +# eval results will be terrible, this is just to execute the code paths. +# note that we lower the execution memory limit to 1MB to avoid warnings on smaller systems +python -m scripts.chat_eval --source=mid --max-new-tokens=128 --max-problems=20 + +# SFT +python -m scripts.chat_sft \ + --device_batch_size=1 \ + --target_examples_per_step=4 \ + --num_iterations=100 \ + --eval_steps=4 \ + --eval_metrics_max_problems=16 + +# Chat CLI +# python -m scripts.chat_cli -p "Why is the sky blue?" + +# Chat Web +# python -m scripts.chat_web + +python -m nanochat.report generate diff --git a/nanochat/common.py b/nanochat/common.py index 8b10df9..3ec9992 100644 --- a/nanochat/common.py +++ b/nanochat/common.py @@ -89,32 +89,46 @@ def get_dist_info(): else: return False, 0, 0, 1 -def compute_init(): +def autodetect_device_type(): + # prefer to use CUDA if available, otherwise use MPS, otherwise fallback on CPU + if torch.cuda.is_available(): + device_type = "cuda" + elif torch.backends.mps.is_available(): + device_type = "mps" + else: + device_type = "cpu" + print0(f"Autodetected device type: {device_type}") + return device_type + +def compute_init(device_type="cuda"): # cuda|cpu|mps """Basic initialization that we keep doing over and over, so make common.""" - # CUDA is currently required - assert torch.cuda.is_available(), "CUDA is needed for a distributed run atm" + assert device_type in ["cuda", "mps", "cpu"], "Invalid device type atm" + if device_type == "cuda": + assert torch.cuda.is_available(), "Your PyTorch installation is not configured for CUDA but device_type is 'cuda'" + if device_type == "mps": + assert torch.backends.mps.is_available(), "Your PyTorch installation is not configured for MPS but device_type is 'mps'" # Reproducibility torch.manual_seed(42) - torch.cuda.manual_seed(42) + if device_type == "cuda": + torch.cuda.manual_seed(42) # skipping full reproducibility for now, possibly investigate slowdown later # torch.use_deterministic_algorithms(True) - # torch.backends.cudnn.deterministic = True - # torch.backends.cudnn.benchmark = False # Precision - torch.set_float32_matmul_precision("high") # uses tf32 instead of fp32 for matmuls + if device_type == "cuda": + torch.set_float32_matmul_precision("high") # uses tf32 instead of fp32 for matmuls - # Distributed setup: Distributed Data Parallel (DDP), optional + # Distributed setup: Distributed Data Parallel (DDP), optional, and requires CUDA ddp, ddp_rank, ddp_local_rank, ddp_world_size = get_dist_info() - if ddp: + if ddp and device_type == "cuda": device = torch.device("cuda", ddp_local_rank) torch.cuda.set_device(device) # make "cuda" default to this device dist.init_process_group(backend="nccl", device_id=device) dist.barrier() else: - device = torch.device("cuda") + device = torch.device(device_type) # mps|cpu if ddp_rank == 0: logger.info(f"Distributed world size: {ddp_world_size}") diff --git a/nanochat/dataloader.py b/nanochat/dataloader.py index 6636f54..3d479a1 100644 --- a/nanochat/dataloader.py +++ b/nanochat/dataloader.py @@ -6,7 +6,7 @@ from nanochat.common import get_dist_info from nanochat.dataset import parquets_iter_batched from nanochat.tokenizer import get_tokenizer -def tokenizing_distributed_data_loader(B, T, split, tokenizer_threads=4, tokenizer_batch_size=128): +def tokenizing_distributed_data_loader(B, T, split, tokenizer_threads=4, tokenizer_batch_size=128, device="cuda"): """Stream pretraining text from parquet files, tokenize, yield training batches.""" assert split in ["train", "val"], "split must be 'train' or 'val'" ddp, ddp_rank, ddp_local_rank, ddp_world_size = get_dist_info() @@ -43,6 +43,6 @@ def tokenizing_distributed_data_loader(B, T, split, tokenizer_threads=4, tokeniz inputs_cpu = scratch[:-1].to(dtype=torch.int32) targets_cpu = scratch[1:] # Reshape to 2D and move to GPU async - inputs = inputs_cpu.view(B, T).to(device="cuda", dtype=torch.int32, non_blocking=True) - targets = targets_cpu.view(B, T).to(device="cuda", dtype=torch.int64, non_blocking=True) + inputs = inputs_cpu.view(B, T).to(device=device, dtype=torch.int32, non_blocking=True) + targets = targets_cpu.view(B, T).to(device=device, dtype=torch.int64, non_blocking=True) yield inputs, targets diff --git a/nanochat/execution.py b/nanochat/execution.py index cda179d..d5ce388 100644 --- a/nanochat/execution.py +++ b/nanochat/execution.py @@ -146,13 +146,12 @@ def reliability_guard(maximum_memory_bytes: Optional[int] = None): with caution. """ - if maximum_memory_bytes is not None: + if platform.uname().system != "Darwin": + # These resource limit calls seem to fail on macOS (Darwin), skip? import resource - resource.setrlimit(resource.RLIMIT_AS, (maximum_memory_bytes, maximum_memory_bytes)) resource.setrlimit(resource.RLIMIT_DATA, (maximum_memory_bytes, maximum_memory_bytes)) - if not platform.uname().system == "Darwin": - resource.setrlimit(resource.RLIMIT_STACK, (maximum_memory_bytes, maximum_memory_bytes)) + resource.setrlimit(resource.RLIMIT_STACK, (maximum_memory_bytes, maximum_memory_bytes)) faulthandler.disable() @@ -225,6 +224,7 @@ def _unsafe_execute(code: str, timeout: float, maximum_memory_bytes: Optional[in rmtree = shutil.rmtree rmdir = os.rmdir chdir = os.chdir + unlink = os.unlink # Disable functionalities that can make destructive changes to the test. reliability_guard(maximum_memory_bytes=maximum_memory_bytes) @@ -282,6 +282,7 @@ def _unsafe_execute(code: str, timeout: float, maximum_memory_bytes: Optional[in shutil.rmtree = rmtree os.rmdir = rmdir os.chdir = chdir + os.unlink = unlink def execute_code( diff --git a/nanochat/gpt.py b/nanochat/gpt.py index 5a066b2..d744550 100644 --- a/nanochat/gpt.py +++ b/nanochat/gpt.py @@ -169,8 +169,6 @@ class GPT(nn.Module): cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim) self.register_buffer("cos", cos, persistent=False) # persistent=False means it's not saved to the checkpoint self.register_buffer("sin", sin, persistent=False) - # Cast the embeddings from fp32 to bf16: optim can tolerate it and it saves memory: both in the model and the activations - self.transformer.wte.to(dtype=torch.bfloat16) def init_weights(self): self.apply(self._init_weights) @@ -184,6 +182,9 @@ class GPT(nn.Module): head_dim = self.config.n_embd // self.config.n_head cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim) self.cos, self.sin = cos, sin + # Cast the embeddings from fp32 to bf16: optim can tolerate it and it saves memory: both in the model and the activations + if self.transformer.wte.weight.device.type == "cuda": + self.transformer.wte.to(dtype=torch.bfloat16) def _init_weights(self, module): if isinstance(module, nn.Linear): diff --git a/nanochat/loss_eval.py b/nanochat/loss_eval.py index d103ef6..0100ec3 100644 --- a/nanochat/loss_eval.py +++ b/nanochat/loss_eval.py @@ -33,7 +33,7 @@ def evaluate_bpb(model, batches, steps, token_bytes): loss2d = model(x, y, loss_reduction='none') # (B, T) loss2d = loss2d.view(-1) # flatten y = y.view(-1) # flatten - if (y < 0).any(): + if (y.int() < 0).any(): # mps does not currently have kernel for < 0 for int64, only int32 # slightly more complex code path if some target tokens are ignore_index (e.g. -1) # any target token < 0 is to be ignored: do NOT index token_bytes with negatives valid = y >= 0 diff --git a/nanochat/report.py b/nanochat/report.py index 02cd8b0..d0a65e0 100644 --- a/nanochat/report.py +++ b/nanochat/report.py @@ -283,6 +283,10 @@ class Report: # capture bloat data for summary later (the stuff after Bloat header and until \n\n) bloat_data = re.search(r"### Bloat\n(.*?)\n\n", header_content, re.DOTALL) bloat_data = bloat_data.group(1) if bloat_data else "" + else: + start_time = None # will cause us to not write the total wall clock time + bloat_data = "[bloat data missing]" + print(f"Warning: {header_file} does not exist. Did you forget to run `nanochat reset`?") # process all the individual sections for file_name in EXPECTED_FILES: section_file = os.path.join(report_dir, file_name) diff --git a/pyproject.toml b/pyproject.toml index ef3833a..26625fc 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -11,6 +11,7 @@ dependencies = [ "numpy==1.26.4", "psutil>=7.1.0", "regex>=2025.9.1", + "setuptools>=80.9.0", "tiktoken>=0.11.0", "tokenizers>=0.22.0", "torch>=2.8.0", @@ -22,17 +23,6 @@ dependencies = [ requires = ["maturin>=1.7,<2.0"] build-backend = "maturin" -# target torch to cuda 12.8 -[tool.uv.sources] -torch = [ - { index = "pytorch-cu128" }, -] - -[[tool.uv.index]] -name = "pytorch-cu128" -url = "https://download.pytorch.org/whl/cu128" -explicit = true - [tool.maturin] module-name = "rustbpe" bindings = "pyo3" @@ -53,3 +43,20 @@ testpaths = ["tests"] python_files = ["test_*.py"] python_classes = ["Test*"] python_functions = ["test_*"] + +# target torch to cuda 12.8 +[tool.uv.sources] +torch = [ + { index = "pytorch-cpu", marker = "sys_platform != 'linux'" }, + { index = "pytorch-cu128", marker = "sys_platform == 'linux'" }, +] + +[[tool.uv.index]] +name = "pytorch-cpu" +url = "https://download.pytorch.org/whl/cpu" +explicit = true + +[[tool.uv.index]] +name = "pytorch-cu128" +url = "https://download.pytorch.org/whl/cu128" +explicit = true \ No newline at end of file diff --git a/run1000.sh b/run1000.sh index 2ed5e92..3654bbb 100644 --- a/run1000.sh +++ b/run1000.sh @@ -1,3 +1,5 @@ +#!/bin/bash + # The $1000 tier of nanochat # Designed to run end-to-end for $1000/24 ~= 41.6 hours on an 8XH100 node # A bit sparser on comments, see speedrun.sh for more detail diff --git a/scripts/base_eval.py b/scripts/base_eval.py index a566d49..fc02120 100644 --- a/scripts/base_eval.py +++ b/scripts/base_eval.py @@ -15,11 +15,12 @@ import time import json import random import yaml +from contextlib import nullcontext import pandas as pd import torch -from nanochat.common import compute_init, compute_cleanup, print0, get_base_dir +from nanochat.common import compute_init, compute_cleanup, print0, get_base_dir, autodetect_device_type from nanochat.tokenizer import HuggingFaceTokenizer from nanochat.checkpoint_manager import load_model from nanochat.core_eval import evaluate_task @@ -118,16 +119,21 @@ def load_hf_model(hf_path: str, device): # ----------------------------------------------------------------------------- def main(): - assert len(sys.argv) in [1, 2], "Usage: python base_eval.py [hf_path]" + import argparse + parser = argparse.ArgumentParser() + parser.add_argument('--hf-path', type=str, default=None, help='HuggingFace model path to evaluate') + parser.add_argument('--max-per-task', type=int, default=-1, help='Max examples per task to evaluate (-1 = disable)') + args = parser.parse_args() # distributed / precision setup - ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init() - autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16) + device_type = autodetect_device_type() + ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type) + autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext() # Load model and tokenizer from command line or from file system - if len(sys.argv) >= 2: + if args.hf_path is not None: # atm assume that if a path is given, it's a huggingface model path - hf_path = sys.argv[1] + hf_path = args.hf_path print0(f"Loading huggingface model from: {hf_path}") model, tokenizer = load_hf_model(hf_path, device) model_name = hf_path # just for logging @@ -140,7 +146,7 @@ def main(): # Evaluate the model with autocast_ctx: - out = evaluate_model(model, tokenizer, device) + out = evaluate_model(model, tokenizer, device, max_per_task=args.max_per_task) # Write out the results to a csv file core_metric = None diff --git a/scripts/base_loss.py b/scripts/base_loss.py index ba3876d..abcde5f 100644 --- a/scripts/base_loss.py +++ b/scripts/base_loss.py @@ -7,9 +7,10 @@ Example run as: torchrun --standalone --nproc_per_node=8 -m scripts.base_loss """ import os +from contextlib import nullcontext import torch from nanochat.checkpoint_manager import load_model -from nanochat.common import compute_init, print0, compute_cleanup +from nanochat.common import compute_init, print0, compute_cleanup, autodetect_device_type from nanochat.dataloader import tokenizing_distributed_data_loader from nanochat.tokenizer import get_token_bytes from nanochat.loss_eval import evaluate_bpb @@ -20,15 +21,15 @@ device_batch_size = 32 split_tokens = 20*524288 # number of tokens to evaluate per split model_tag = None # optional model tag for the output directory name model_step = None # optional model step for the output directory name +device_type = "" # cuda|cpu|mps (empty => autodetect) exec(open(os.path.join('nanochat', 'configurator.py')).read()) # overrides from command line or config file # Load the base model and the tokenizer -ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init() +device_type = autodetect_device_type() if device_type == "" else device_type +ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type) model, tokenizer, meta = load_model("base", device, phase="eval", model_tag=model_tag, step=model_step) sequence_len = meta["model_config"]["sequence_len"] # could be arbitrary really - -# Set up the precision we'll run with -autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16) +autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext() # Evaluate the loss on each split tokens_per_step = device_batch_size * sequence_len * ddp_world_size @@ -37,7 +38,7 @@ steps = split_tokens // tokens_per_step token_bytes = get_token_bytes(device=device) bpb_results = {} for split_name in ["train", "val"]: - loader = tokenizing_distributed_data_loader(device_batch_size, sequence_len, split_name) + loader = tokenizing_distributed_data_loader(device_batch_size, sequence_len, split_name, device=device) with autocast_ctx: bpb = evaluate_bpb(model, loader, steps, token_bytes) print0(f"{split_name} bpb: {bpb:.4f}") diff --git a/scripts/base_train.py b/scripts/base_train.py index 9f2cdff..ef7db17 100644 --- a/scripts/base_train.py +++ b/scripts/base_train.py @@ -6,17 +6,22 @@ python base_train.py or distributed as: torchrun --nproc_per_node=8 base_train.py + +If you are only on CPU/Macbook, you'll want to train a much much smaller LLM. Example: +python -m scripts.base_train --depth=4 --max_seq_len=512 --device_batch_size=1 --eval_tokens=512 --core_metric_every=-1 --total_batch_size=512 --num_iterations=20 """ import os os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" import time +from contextlib import nullcontext + import wandb import torch from nanochat.gpt import GPT, GPTConfig from nanochat.dataloader import tokenizing_distributed_data_loader -from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, print_banner, get_base_dir +from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, print_banner, get_base_dir, autodetect_device_type from nanochat.tokenizer import get_tokenizer, get_token_bytes from nanochat.checkpoint_manager import save_checkpoint from nanochat.loss_eval import evaluate_bpb @@ -27,6 +32,8 @@ print_banner() # ----------------------------------------------------------------------------- # User settings run = "dummy" # wandb run name default ("dummy" is special - we won't log to wandb) +# Runtime +device_type = "" # cuda|cpu|mps (empty => autodetect good device type default, in order: CUDA > MPS > CPU) # Model architecture depth = 20 # the depth of the Transformer model to train, rest of the kwargs are derived max_seq_len = 2048 # max context length @@ -45,7 +52,7 @@ grad_clip = 1.0 # gradient clipping value (0.0 = disabled) # Evaluation eval_every = 250 # every how many steps to evaluate the model for val bpb eval_tokens = 20*524288 # number of tokens to evaluate val loss on -core_metric_every = 2000 # every how many steps to evaluate the core metric +core_metric_every = 2000 # every how many steps to evaluate the core metric (-1 = disable) core_metric_max_per_task = 500 # examples per task in estimating the core metric sample_every = 2000 # every how many steps to sample from the model # Output @@ -57,9 +64,12 @@ user_config = {k: globals()[k] for k in config_keys} # will be useful for loggin # ----------------------------------------------------------------------------- # Compute init -ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init() +device_type = autodetect_device_type() if device_type == "" else device_type +ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type) master_process = ddp_rank == 0 # this process will do logging, checkpointing etc. -autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16) +autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext() +synchronize = torch.cuda.synchronize if device_type == "cuda" else lambda: None +get_max_memory = torch.cuda.max_memory_allocated if device_type == "cuda" else lambda: 0 # wandb logging init use_dummy_wandb = run == "dummy" or not master_process @@ -96,7 +106,7 @@ model_config_kwargs = dict(sequence_len=max_seq_len, vocab_size=vocab_size, n_la with torch.device("meta"): model_config = GPTConfig(**model_config_kwargs) model = GPT(model_config) -model.to_empty(device="cuda") +model.to_empty(device=device) model.init_weights() orig_model = model # original, uncompiled model, for saving raw model state_dict model = torch.compile(model, dynamic=False) # TODO: dynamic True/False think through @@ -133,8 +143,8 @@ adamw_optimizer, muon_optimizer = optimizers # Initialize the DataLoaders for train/val base_dir = get_base_dir() tokens_dir = os.path.join(base_dir, "tokenized_data") -train_loader = tokenizing_distributed_data_loader(device_batch_size, max_seq_len, split="train") -build_val_loader = lambda: tokenizing_distributed_data_loader(device_batch_size, max_seq_len, split="val") +train_loader = tokenizing_distributed_data_loader(device_batch_size, max_seq_len, split="train", device=device) +build_val_loader = lambda: tokenizing_distributed_data_loader(device_batch_size, max_seq_len, split="val", device=device) x, y = next(train_loader) # kick off load of the very first batch of data # ----------------------------------------------------------------------------- @@ -193,7 +203,8 @@ for step in range(num_iterations + 1): # once in a while: estimate the CORE metric (all ranks participate) # use the original uncompiled model because the inputs keep changing shape - if last_step or (step > 0 and step % core_metric_every == 0): + results = {} + if core_metric_every > 0 and (last_step or (step > 0 and step % core_metric_every == 0)): model.eval() with autocast_ctx: results = evaluate_model(orig_model, tokenizer, device, max_per_task=core_metric_max_per_task) @@ -252,7 +263,7 @@ for step in range(num_iterations + 1): # ------------------------------------------------------------------------- # single training step # evaluate the gradient - torch.cuda.synchronize() + synchronize() t0 = time.time() for micro_step in range(grad_accum_steps): with autocast_ctx: @@ -275,7 +286,7 @@ for step in range(num_iterations + 1): for opt in optimizers: opt.step() model.zero_grad(set_to_none=True) - torch.cuda.synchronize() + synchronize() t1 = time.time() dt = t1 - t0 # ------------------------------------------------------------------------- @@ -304,7 +315,7 @@ for step in range(num_iterations + 1): }) # print a few more stats -print0(f"Peak memory usage: {torch.cuda.max_memory_allocated() / 1024 / 1024:.2f}MiB") +print0(f"Peak memory usage: {get_max_memory() / 1024 / 1024:.2f}MiB") print0(f"Total training time: {total_training_time/60:.2f}m") print0(f"Minimum validation bpb: {min_val_bpb:.4f}") @@ -326,11 +337,11 @@ get_report().log(section="Base model training", data=[ { # stats about training outcomes "Minimum validation bpb": min_val_bpb, "Final validation bpb": val_bpb, - "CORE metric estimate": results["core_metric"], + "CORE metric estimate": results.get("core_metric", None), "MFU %": f"{mfu:.2f}%", "Total training flops": f"{flops_so_far:e}", "Total training time": f"{total_training_time/60:.2f}m", - "Peak memory usage": f"{torch.cuda.max_memory_allocated() / 1024 / 1024:.2f}MiB", + "Peak memory usage": f"{get_max_memory() / 1024 / 1024:.2f}MiB", } ]) diff --git a/scripts/chat_cli.py b/scripts/chat_cli.py index 3a38147..b14843a 100644 --- a/scripts/chat_cli.py +++ b/scripts/chat_cli.py @@ -6,7 +6,8 @@ python -m scripts.chat_cli -i mid """ import argparse import torch -from nanochat.common import compute_init +from nanochat.common import compute_init, autodetect_device_type +from contextlib import nullcontext from nanochat.engine import Engine from nanochat.checkpoint_manager import load_model @@ -17,11 +18,16 @@ parser.add_argument('-s', '--step', type=int, default=None, help='Step to load') parser.add_argument('-p', '--prompt', type=str, default='', help='Prompt the model, get a single response back') parser.add_argument('-t', '--temperature', type=float, default=0.6, help='Temperature for generation') parser.add_argument('-k', '--top-k', type=int, default=50, help='Top-k sampling parameter') +parser.add_argument('--device-type', type=str, default='', choices=['cuda', 'cpu', 'mps'], help='Device type for evaluation: cuda|cpu|mps. empty => autodetect') +parser.add_argument('-d', '--dtype', type=str, default='bfloat16', choices=['float32', 'bfloat16']) args = parser.parse_args() # Init the model and tokenizer -ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init() -autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16) + +device_type = autodetect_device_type() if args.device_type == "" else args.device_type +ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type) +ptdtype = torch.float32 if args.dtype == 'float32' else torch.bfloat16 +autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type == "cuda" else nullcontext() model, tokenizer, meta = load_model(args.source, device, phase="eval", model_tag=args.model_tag, step=args.step) # Special tokens for the chat state machine diff --git a/scripts/chat_eval.py b/scripts/chat_eval.py index df6a01a..03d34c3 100644 --- a/scripts/chat_eval.py +++ b/scripts/chat_eval.py @@ -10,11 +10,12 @@ torchrun --nproc_per_node=8 -m scripts.chat_eval -- -a ARC-Easy import argparse from functools import partial +from contextlib import nullcontext import torch import torch.distributed as dist -from nanochat.common import compute_init, compute_cleanup, get_dist_info, print0 +from nanochat.common import compute_init, compute_cleanup, get_dist_info, print0, autodetect_device_type from nanochat.checkpoint_manager import load_model from nanochat.engine import Engine @@ -191,11 +192,13 @@ if __name__ == "__main__": parser.add_argument('-g', '--model-tag', type=str, default=None, help='Model tag to load') parser.add_argument('-s', '--step', type=int, default=None, help='Step to load') parser.add_argument('-x', '--max-problems', type=int, default=None, help='Max problems to evaluate') + parser.add_argument('--device-type', type=str, default='', choices=['cuda', 'cpu', 'mps'], help='Device type for evaluation: cuda|cpu|mps. empty => autodetect') args = parser.parse_args() - ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init() + device_type = autodetect_device_type() if args.device_type == "" else args.device_type + ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type) ptdtype = torch.float32 if args.dtype == 'float32' else torch.bfloat16 - autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=ptdtype) + autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type == "cuda" else nullcontext() model, tokenizer, meta = load_model(args.source, device, phase="eval", model_tag=args.model_tag, step=args.step) engine = Engine(model, tokenizer) diff --git a/scripts/chat_sft.py b/scripts/chat_sft.py index e21d7a4..aeab77e 100644 --- a/scripts/chat_sft.py +++ b/scripts/chat_sft.py @@ -15,8 +15,9 @@ os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" import wandb import torch import torch.distributed as dist +from contextlib import nullcontext -from nanochat.common import compute_init, compute_cleanup, get_base_dir, print0, DummyWandb +from nanochat.common import compute_init, compute_cleanup, get_base_dir, print0, DummyWandb, autodetect_device_type from nanochat.checkpoint_manager import load_model from nanochat.checkpoint_manager import save_checkpoint from nanochat.engine import Engine @@ -36,11 +37,12 @@ source = "mid" # base|mid , which checkpoint to load the model from (base model model_tag = None # model tag to load the model from (base model or midtrained model) step = None # step to load the model from (base model or midtrained model) # compute/precision +device_type = "" # cuda|cpu|mps (empty => autodetect) dtype = "bfloat16" device_batch_size = 4 # max to avoid OOM # optimization num_epochs = 1 -max_iterations = -1 # override number of iterations (-1 = use num_epochs * num_iterations) +num_iterations = -1 # override number of iterations (-1 = disable, use num_epochs to derive it) target_examples_per_step = 32 unembedding_lr = 0.004 embedding_lr = 0.2 @@ -51,6 +53,7 @@ init_lr_frac = 0.02 eval_every = 100 eval_steps = 100 eval_metrics_every = 200 +eval_metrics_max_problems = 1024 # now allow CLI to override the settings via the configurator lol config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))] exec(open(os.path.join('nanochat', 'configurator.py')).read()) # overrides from command line or config file @@ -58,10 +61,11 @@ user_config = {k: globals()[k] for k in config_keys} # possibly useful for loggi # ----------------------------------------------------------------------------- # Compute init -ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init() +device_type = autodetect_device_type() if device_type == "" else device_type +ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type) master_process = ddp_rank == 0 -dtype = torch.float32 if dtype == 'float32' else torch.bfloat16 -autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=dtype) +ptdtype = torch.float32 if dtype == 'float32' else torch.bfloat16 +autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type == "cuda" else nullcontext() # wandb logging init use_dummy_wandb = run == "dummy" or not master_process @@ -128,10 +132,10 @@ assert target_examples_per_step % examples_per_step == 0, "Target examples per s grad_accum_steps = target_examples_per_step // examples_per_step print0(f"=> Setting grad accum steps: {grad_accum_steps}") -num_iterations = (len(train_ds) // target_examples_per_step) * num_epochs -if max_iterations >= 0 and num_iterations > max_iterations: - print0(f"Number of iterations is too high: {num_iterations}, capping to {max_iterations}") - num_iterations = max_iterations +if num_iterations == -1: + # derive num_iterations from num_epochs and the size of the dataset + assert num_epochs > 0, "num_epochs must be positive if num_iterations is -1" + num_iterations = (len(train_ds) // target_examples_per_step) * num_epochs train_loader = sft_data_generator(train_ds, batch_size=device_batch_size) build_val_loader = lambda: sft_data_generator(val_ds, batch_size=device_batch_size) @@ -191,8 +195,8 @@ for step in range(num_iterations): metrics = {} with torch.no_grad(), autocast_ctx: # note that because these are inside no_grad, we can usually afford to at least ~2X the batch size - metrics["mmlu_acc"] = run_chat_eval("MMLU", model, tokenizer, engine, batch_size=device_batch_size*2, max_problems=1024) - metrics["arc_easy_acc"] = run_chat_eval("ARC-Easy", model, tokenizer, engine, batch_size=device_batch_size*2, max_problems=1024) + metrics["mmlu_acc"] = run_chat_eval("MMLU", model, tokenizer, engine, batch_size=device_batch_size*2, max_problems=eval_metrics_max_problems) + metrics["arc_easy_acc"] = run_chat_eval("ARC-Easy", model, tokenizer, engine, batch_size=device_batch_size*2, max_problems=eval_metrics_max_problems) metrics_str = ', '.join(f'{k}: {v:.6f}' for k, v in metrics.items()) print0(f"Step {step:05d} | {metrics_str}") wandb_run.log({ diff --git a/scripts/chat_web.py b/scripts/chat_web.py index c07725e..d7479c7 100644 --- a/scripts/chat_web.py +++ b/scripts/chat_web.py @@ -44,8 +44,8 @@ from fastapi.responses import StreamingResponse, HTMLResponse, FileResponse from pydantic import BaseModel from typing import List, Optional, AsyncGenerator from dataclasses import dataclass - -from nanochat.common import compute_init +from contextlib import nullcontext +from nanochat.common import compute_init, autodetect_device_type from nanochat.checkpoint_manager import load_model from nanochat.engine import Engine @@ -69,6 +69,8 @@ parser.add_argument('-m', '--max-tokens', type=int, default=512, help='Default m parser.add_argument('-g', '--model-tag', type=str, default=None, help='Model tag to load') parser.add_argument('-s', '--step', type=int, default=None, help='Step to load') parser.add_argument('-p', '--port', type=int, default=8000, help='Port to run the server on') +parser.add_argument('-d', '--dtype', type=str, default='bfloat16', choices=['float32', 'bfloat16']) +parser.add_argument('--device-type', type=str, default='', choices=['cuda', 'cpu', 'mps'], help='Device type for evaluation: cuda|cpu|mps. empty => autodetect') parser.add_argument('--host', type=str, default='0.0.0.0', help='Host to bind the server to') args = parser.parse_args() @@ -80,7 +82,9 @@ logging.basicConfig( ) logger = logging.getLogger(__name__) -ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init() +device_type = autodetect_device_type() if args.device_type == "" else args.device_type +ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type) +ptdtype = torch.float32 if args.dtype == 'float32' else torch.bfloat16 @dataclass class Worker: @@ -95,21 +99,33 @@ class WorkerPool: """Pool of workers, each with a model replica on a different GPU.""" def __init__(self, num_gpus: Optional[int] = None): - self.num_gpus = num_gpus if num_gpus is not None else torch.cuda.device_count() + if num_gpus is None: + if device_type == "cuda": + num_gpus = torch.cuda.device_count() + else: + num_gpus = 1 # e.g. cpu|mps + self.num_gpus = num_gpus self.workers: List[Worker] = [] self.available_workers: asyncio.Queue = asyncio.Queue() async def initialize(self, source: str, model_tag: Optional[str] = None, step: Optional[int] = None): """Load model on each GPU.""" print(f"Initializing worker pool with {self.num_gpus} GPUs...") + if self.num_gpus > 1: + assert device_type == "cuda", "Only CUDA supports multiple workers/GPUs. cpu|mps does not." for gpu_id in range(self.num_gpus): - device = torch.device(f"cuda:{gpu_id}") - print(f"Loading model on GPU {gpu_id}...") + + if device_type == "cuda": + device = torch.device(f"cuda:{gpu_id}") + print(f"Loading model on GPU {gpu_id}...") + else: + device = torch.device(device_type) # e.g. cpu|mps + print(f"Loading model on {device_type}...") model, tokenizer, _ = load_model(source, device, phase="eval", model_tag=model_tag, step=step) engine = Engine(model, tokenizer) - autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16) + autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type == "cuda" else nullcontext() worker = Worker( gpu_id=gpu_id, diff --git a/scripts/mid_train.py b/scripts/mid_train.py index 8b87816..c731d57 100644 --- a/scripts/mid_train.py +++ b/scripts/mid_train.py @@ -15,8 +15,8 @@ os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" import time import wandb import torch - -from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, get_base_dir +from contextlib import nullcontext +from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, get_base_dir, autodetect_device_type from nanochat.tokenizer import get_token_bytes from nanochat.checkpoint_manager import save_checkpoint from nanochat.loss_eval import evaluate_bpb @@ -31,9 +31,11 @@ from tasks.customjson import CustomJSON # ----------------------------------------------------------------------------- run = "dummy" # wandb run name default ("dummy" is special - we won't log to wandb) +device_type = "" # cuda|cpu|mps (empty => autodetect) model_tag = None # model tag to load the model from (base model or midtrained model) step = None # step to load the model from (base model or midtrained model) dtype = "bfloat16" +num_iterations = -1 # explicit number of steps of the optimization (-1 = disable) max_seq_len = 2048 device_batch_size = 32 unembedding_lr = 0.004 @@ -41,7 +43,7 @@ embedding_lr = 0.2 matrix_lr = 0.02 init_lr_frac = 1.0 # initial learning rate is this fraction of the base learning rate weight_decay = 0.0 -eval_every = 150 +eval_every = 150 # -1 = disable eval_tokens = 20*524288 total_batch_size = 524288 dry_run = 0 # dry_run=1 is for experiments: we will log to wandb but we won't write checkpoints or report @@ -51,10 +53,12 @@ user_config = {k: globals()[k] for k in config_keys} # possibly useful for loggi # ----------------------------------------------------------------------------- # Compute init -ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init() +device_type = autodetect_device_type() if device_type == "" else device_type +ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init(device_type) master_process = ddp_rank == 0 -dtype = torch.float32 if dtype == 'float32' else torch.bfloat16 -autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=dtype) +autocast_ctx = torch.amp.autocast(device_type=device_type, dtype=torch.bfloat16) if device_type == "cuda" else nullcontext() +synchronize = torch.cuda.synchronize if device_type == "cuda" else lambda: None +get_max_memory = torch.cuda.max_memory_allocated if device_type == "cuda" else lambda: 0 # wandb logging init use_dummy_wandb = run == "dummy" or not master_process @@ -117,6 +121,7 @@ def mid_data_generator(split): token_buffer = deque() scratch = torch.empty(needed_tokens, dtype=torch.int64, pin_memory=True) cursor = ddp_rank # increments by ddp_world_size each time, so each rank processes unique documents + it = 0 # iteration counter while True: # Accumulate enough tokens for one iteration before yielding while len(token_buffer) < needed_tokens: @@ -128,6 +133,10 @@ def mid_data_generator(split): cursor -= dataset_size # wrap around for another epoch if split == "train": last_step = True # toggle last_step to True, which will terminate the training loop + # Stopping condition to respect num_iterations, if given + it += 1 + if num_iterations > 0 and it >= num_iterations: + last_step = True # toggle last_step to True, which will terminate the training loop # Build up inputs/targets and yield for i in range(needed_tokens): scratch[i] = token_buffer.popleft() @@ -136,7 +145,10 @@ def mid_data_generator(split): inputs = inputs_cpu.view(device_batch_size, max_seq_len).to(device=device, dtype=torch.int32, non_blocking=True) targets = targets_cpu.view(device_batch_size, max_seq_len).to(device=device, dtype=torch.int64, non_blocking=True) if split == "train": - approx_progress = cursor / dataset_size # approximate progress as a fraction of the dataset + if num_iterations > 0: + approx_progress = it / num_iterations # calculate progress from the max number of iterations + else: + approx_progress = cursor / dataset_size # approximate progress as a fraction of the dataset yield inputs, targets train_loader = mid_data_generator("train") @@ -172,7 +184,7 @@ while True: last_step = bool(last_step_tensor.item()) # once in a while: evaluate the val bpb (all ranks participate) - if last_step or step % eval_every == 0: + if eval_every > 0 and (last_step or step % eval_every == 0): model.eval() val_loader = build_val_loader() eval_steps = eval_tokens // (device_batch_size * max_seq_len * ddp_world_size) @@ -219,7 +231,7 @@ while True: # ------------------------------------------------------------------------- # single training step # evaluate the gradient - torch.cuda.synchronize() + synchronize() t0 = time.time() for micro_step in range(grad_accum_steps): with autocast_ctx: @@ -240,7 +252,7 @@ while True: for opt in optimizers: opt.step() model.zero_grad(set_to_none=True) - torch.cuda.synchronize() + synchronize() t1 = time.time() dt = t1 - t0 # ------------------------------------------------------------------------- @@ -272,7 +284,7 @@ while True: }) # print a few more stats -print0(f"Peak memory usage: {torch.cuda.max_memory_allocated() / 1024 / 1024:.2f}MiB") +print0(f"Peak memory usage: {get_max_memory() / 1024 / 1024:.2f}MiB") print0(f"Total training time: {total_training_time/60:.2f}m") print0(f"Minimum validation bpb: {min_val_bpb:.4f}") diff --git a/uv.lock b/uv.lock index 7636b81..8c381ee 100644 --- a/uv.lock +++ b/uv.lock @@ -2002,3 +2002,4 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/94/c3/b2e9f38bc3e11191981d57ea08cab2166e74ea770024a646617c9cddd9f6/yarl-1.20.1-cp313-cp313t-win_amd64.whl", hash = "sha256:541d050a355bbbc27e55d906bc91cb6fe42f96c01413dd0f4ed5a5240513874f", size = 93003, upload-time = "2025-06-10T00:45:27.752Z" }, { url = "https://files.pythonhosted.org/packages/b4/2d/2345fce04cfd4bee161bf1e7d9cdc702e3e16109021035dbb24db654a622/yarl-1.20.1-py3-none-any.whl", hash = "sha256:83b8eb083fe4683c6115795d9fc1cfaf2cbbefb19b3a1cb68f6527460f483a77", size = 46542, upload-time = "2025-06-10T00:46:07.521Z" }, ] +