dont evaluate the sampling evals during SFT they are too slow. keep the multiple choice evals. delete unused imports

This commit is contained in:
Andrej Karpathy
2025-10-15 16:42:23 +00:00
parent b8076dd367
commit 190d9515d0

View File

@@ -11,7 +11,6 @@ torchrun --standalone --nproc_per_node=8 -m scripts.chat_sft
import os
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
import copy
import wandb
import torch
@@ -23,11 +22,9 @@ from nanochat.checkpoint_manager import save_checkpoint
from nanochat.engine import Engine
from scripts.chat_eval import run_chat_eval
from tasks.common import TaskMixture, TaskSequence
from tasks.mmlu import MMLU
from tasks.common import TaskMixture
from tasks.arc import ARC
from tasks.gsm8k import GSM8K
from tasks.humaneval import HumanEval
from tasks.smoltalk import SmolTalk
# -----------------------------------------------------------------------------
@@ -186,7 +183,7 @@ for step in range(num_iterations):
})
model.train()
# evlauate MMLU accuracy
# evlauate accuracy of the multiple choice tasks (which are quick to run)
if last_step or (step > 0 and step % eval_metrics_every == 0):
model.eval()
metrics = {}
@@ -194,8 +191,6 @@ for step in range(num_iterations):
# note that because these are inside no_grad, we can usually afford to at least ~2X the batch size
metrics["mmlu_acc"] = run_chat_eval("MMLU", model, tokenizer, engine, batch_size=device_batch_size*2, max_problems=1024)
metrics["arc_easy_acc"] = run_chat_eval("ARC-Easy", model, tokenizer, engine, batch_size=device_batch_size*2, max_problems=1024)
metrics["gsm8k_acc"] = run_chat_eval("GSM8K", model, tokenizer, engine, max_problems=64)
metrics["humaneval_acc"] = run_chat_eval("HumanEval", model, tokenizer, engine, max_problems=64)
metrics_str = ', '.join(f'{k}: {v:.6f}' for k, v in metrics.items())
print0(f"Step {step:05d} | {metrics_str}")
wandb_run.log({