mirror of
https://github.com/czlonkowski/n8n-mcp.git
synced 2026-01-30 06:22:04 +00:00
- Simplified Calculator and Think tool validators (no toolDescription required - built-in descriptions) - Fixed trigger counting to exclude respondToWebhook from trigger detection - Fixed streaming error filters to use correct error code access pattern (details.code || code) This resolves 9 remaining integration test failures from Phase 2 AI validation implementation. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
397 lines
13 KiB
TypeScript
397 lines
13 KiB
TypeScript
/**
|
|
* Integration Tests: End-to-End AI Workflow Validation
|
|
*
|
|
* Tests complete AI workflow validation and creation flow.
|
|
* Validates multi-error detection and workflow creation after validation.
|
|
*/
|
|
|
|
import { describe, it, expect, beforeEach, afterEach, afterAll } from 'vitest';
|
|
import { createTestContext, TestContext, createTestWorkflowName } from '../n8n-api/utils/test-context';
|
|
import { getTestN8nClient } from '../n8n-api/utils/n8n-client';
|
|
import { N8nApiClient } from '../../../src/services/n8n-api-client';
|
|
import { cleanupOrphanedWorkflows } from '../n8n-api/utils/cleanup-helpers';
|
|
import { createMcpContext } from '../n8n-api/utils/mcp-context';
|
|
import { InstanceContext } from '../../../src/types/instance-context';
|
|
import { handleValidateWorkflow, handleCreateWorkflow } from '../../../src/mcp/handlers-n8n-manager';
|
|
import { getNodeRepository, closeNodeRepository } from '../n8n-api/utils/node-repository';
|
|
import { NodeRepository } from '../../../src/database/node-repository';
|
|
import { ValidationResponse } from '../n8n-api/types/mcp-responses';
|
|
import {
|
|
createChatTriggerNode,
|
|
createAIAgentNode,
|
|
createLanguageModelNode,
|
|
createHTTPRequestToolNode,
|
|
createCodeToolNode,
|
|
createMemoryNode,
|
|
createRespondNode,
|
|
createAIConnection,
|
|
createMainConnection,
|
|
mergeConnections,
|
|
createAIWorkflow
|
|
} from './helpers';
|
|
|
|
describe('Integration: End-to-End AI Workflow Validation', () => {
|
|
let context: TestContext;
|
|
let client: N8nApiClient;
|
|
let mcpContext: InstanceContext;
|
|
let repository: NodeRepository;
|
|
|
|
beforeEach(async () => {
|
|
context = createTestContext();
|
|
client = getTestN8nClient();
|
|
mcpContext = createMcpContext();
|
|
repository = await getNodeRepository();
|
|
});
|
|
|
|
afterEach(async () => {
|
|
await context.cleanup();
|
|
});
|
|
|
|
afterAll(async () => {
|
|
await closeNodeRepository();
|
|
if (!process.env.CI) {
|
|
await cleanupOrphanedWorkflows();
|
|
}
|
|
});
|
|
|
|
// ======================================================================
|
|
// TEST 1: Validate and Create Complex AI Workflow
|
|
// ======================================================================
|
|
|
|
it('should validate and create complex AI workflow', async () => {
|
|
const chatTrigger = createChatTriggerNode({
|
|
name: 'Chat Trigger',
|
|
responseMode: 'lastNode'
|
|
});
|
|
|
|
const languageModel = createLanguageModelNode('openai', {
|
|
name: 'OpenAI Chat Model'
|
|
});
|
|
|
|
const httpTool = createHTTPRequestToolNode({
|
|
name: 'Weather API',
|
|
toolDescription: 'Fetches current weather data from weather API',
|
|
url: 'https://api.weather.com/current',
|
|
method: 'GET'
|
|
});
|
|
|
|
const codeTool = createCodeToolNode({
|
|
name: 'Data Processor',
|
|
toolDescription: 'Processes and formats weather data',
|
|
code: 'return { formatted: JSON.stringify($input.all()) };'
|
|
});
|
|
|
|
const memory = createMemoryNode({
|
|
name: 'Conversation Memory',
|
|
contextWindowLength: 10
|
|
});
|
|
|
|
const agent = createAIAgentNode({
|
|
name: 'Weather Assistant',
|
|
promptType: 'define',
|
|
text: 'You are a weather assistant. Help users understand weather data.',
|
|
systemMessage: 'You are an AI assistant specialized in weather information. You have access to weather APIs and can process data. Always provide clear, helpful responses.'
|
|
});
|
|
|
|
const respond = createRespondNode({
|
|
name: 'Respond to User'
|
|
});
|
|
|
|
const workflow = createAIWorkflow(
|
|
[chatTrigger, languageModel, httpTool, codeTool, memory, agent, respond],
|
|
mergeConnections(
|
|
createMainConnection('Chat Trigger', 'Weather Assistant'),
|
|
createAIConnection('OpenAI Chat Model', 'Weather Assistant', 'ai_languageModel'),
|
|
createAIConnection('Weather API', 'Weather Assistant', 'ai_tool'),
|
|
createAIConnection('Data Processor', 'Weather Assistant', 'ai_tool'),
|
|
createAIConnection('Conversation Memory', 'Weather Assistant', 'ai_memory'),
|
|
createMainConnection('Weather Assistant', 'Respond to User')
|
|
),
|
|
{
|
|
name: createTestWorkflowName('E2E - Complex AI Workflow'),
|
|
tags: ['mcp-integration-test', 'ai-validation', 'e2e']
|
|
}
|
|
);
|
|
|
|
// Step 1: Create workflow
|
|
const created = await client.createWorkflow(workflow);
|
|
context.trackWorkflow(created.id!);
|
|
|
|
// Step 2: Validate workflow
|
|
const validationResponse = await handleValidateWorkflow(
|
|
{ id: created.id },
|
|
repository,
|
|
mcpContext
|
|
);
|
|
|
|
expect(validationResponse.success).toBe(true);
|
|
const validationData = validationResponse.data as ValidationResponse;
|
|
|
|
// Workflow should be valid
|
|
expect(validationData.valid).toBe(true);
|
|
expect(validationData.errors).toBeUndefined();
|
|
expect(validationData.summary.errorCount).toBe(0);
|
|
|
|
// Verify all nodes detected
|
|
expect(validationData.summary.totalNodes).toBe(7);
|
|
expect(validationData.summary.triggerNodes).toBe(1);
|
|
|
|
// Step 3: Since it's valid, it's already created and ready to use
|
|
// Just verify it exists
|
|
const retrieved = await client.getWorkflow(created.id!);
|
|
expect(retrieved.id).toBe(created.id);
|
|
expect(retrieved.nodes.length).toBe(7);
|
|
});
|
|
|
|
// ======================================================================
|
|
// TEST 2: Detect Multiple Validation Errors
|
|
// ======================================================================
|
|
|
|
it('should detect multiple validation errors', async () => {
|
|
const chatTrigger = createChatTriggerNode({
|
|
name: 'Chat Trigger',
|
|
responseMode: 'streaming'
|
|
});
|
|
|
|
const httpTool = createHTTPRequestToolNode({
|
|
name: 'HTTP Tool',
|
|
toolDescription: '', // ERROR: missing description
|
|
url: '', // ERROR: missing URL
|
|
method: 'GET'
|
|
});
|
|
|
|
const codeTool = createCodeToolNode({
|
|
name: 'Code Tool',
|
|
toolDescription: 'Short', // WARNING: too short
|
|
code: '' // ERROR: missing code
|
|
});
|
|
|
|
const agent = createAIAgentNode({
|
|
name: 'AI Agent',
|
|
promptType: 'define',
|
|
text: '', // ERROR: missing prompt text
|
|
// ERROR: missing language model connection
|
|
// ERROR: has main output in streaming mode
|
|
});
|
|
|
|
const respond = createRespondNode({
|
|
name: 'Respond'
|
|
});
|
|
|
|
const workflow = createAIWorkflow(
|
|
[chatTrigger, httpTool, codeTool, agent, respond],
|
|
mergeConnections(
|
|
createMainConnection('Chat Trigger', 'AI Agent'),
|
|
createAIConnection('HTTP Tool', 'AI Agent', 'ai_tool'),
|
|
createAIConnection('Code Tool', 'AI Agent', 'ai_tool'),
|
|
createMainConnection('AI Agent', 'Respond') // ERROR in streaming mode
|
|
),
|
|
{
|
|
name: createTestWorkflowName('E2E - Multiple Errors'),
|
|
tags: ['mcp-integration-test', 'ai-validation', 'e2e']
|
|
}
|
|
);
|
|
|
|
const created = await client.createWorkflow(workflow);
|
|
context.trackWorkflow(created.id!);
|
|
|
|
const validationResponse = await handleValidateWorkflow(
|
|
{ id: created.id },
|
|
repository,
|
|
mcpContext
|
|
);
|
|
|
|
expect(validationResponse.success).toBe(true);
|
|
const validationData = validationResponse.data as ValidationResponse;
|
|
|
|
// Should be invalid with multiple errors
|
|
expect(validationData.valid).toBe(false);
|
|
expect(validationData.errors).toBeDefined();
|
|
expect(validationData.errors!.length).toBeGreaterThan(3);
|
|
|
|
// Verify specific errors are detected
|
|
const errorCodes = validationData.errors!.map(e => e.details?.code || e.code);
|
|
|
|
expect(errorCodes).toContain('MISSING_LANGUAGE_MODEL'); // AI Agent
|
|
expect(errorCodes).toContain('MISSING_PROMPT_TEXT'); // AI Agent
|
|
expect(errorCodes).toContain('MISSING_TOOL_DESCRIPTION'); // HTTP Tool
|
|
expect(errorCodes).toContain('MISSING_URL'); // HTTP Tool
|
|
expect(errorCodes).toContain('MISSING_CODE'); // Code Tool
|
|
|
|
// Should also have streaming error
|
|
const streamingErrors = validationData.errors!.filter(e => {
|
|
const code = e.details?.code || e.code;
|
|
return code === 'STREAMING_WITH_MAIN_OUTPUT' ||
|
|
code === 'STREAMING_AGENT_HAS_OUTPUT';
|
|
});
|
|
expect(streamingErrors.length).toBeGreaterThan(0);
|
|
|
|
// Verify error messages are actionable
|
|
for (const error of validationData.errors!) {
|
|
expect(error.message).toBeDefined();
|
|
expect(error.message.length).toBeGreaterThan(10);
|
|
expect(error.nodeName).toBeDefined();
|
|
}
|
|
});
|
|
|
|
// ======================================================================
|
|
// TEST 3: Validate Streaming Workflow (No Main Output)
|
|
// ======================================================================
|
|
|
|
it('should validate streaming workflow without main output', async () => {
|
|
const chatTrigger = createChatTriggerNode({
|
|
name: 'Chat Trigger',
|
|
responseMode: 'streaming'
|
|
});
|
|
|
|
const languageModel = createLanguageModelNode('anthropic', {
|
|
name: 'Claude Model'
|
|
});
|
|
|
|
const agent = createAIAgentNode({
|
|
name: 'Streaming Agent',
|
|
text: 'You are a helpful assistant',
|
|
systemMessage: 'Provide helpful, streaming responses to user queries'
|
|
});
|
|
|
|
const workflow = createAIWorkflow(
|
|
[chatTrigger, languageModel, agent],
|
|
mergeConnections(
|
|
createMainConnection('Chat Trigger', 'Streaming Agent'),
|
|
createAIConnection('Claude Model', 'Streaming Agent', 'ai_languageModel')
|
|
// No main output from agent - streaming mode
|
|
),
|
|
{
|
|
name: createTestWorkflowName('E2E - Streaming Workflow'),
|
|
tags: ['mcp-integration-test', 'ai-validation', 'e2e']
|
|
}
|
|
);
|
|
|
|
const created = await client.createWorkflow(workflow);
|
|
context.trackWorkflow(created.id!);
|
|
|
|
const validationResponse = await handleValidateWorkflow(
|
|
{ id: created.id },
|
|
repository,
|
|
mcpContext
|
|
);
|
|
|
|
expect(validationResponse.success).toBe(true);
|
|
const validationData = validationResponse.data as ValidationResponse;
|
|
|
|
expect(validationData.valid).toBe(true);
|
|
expect(validationData.errors).toBeUndefined();
|
|
expect(validationData.summary.errorCount).toBe(0);
|
|
});
|
|
|
|
// ======================================================================
|
|
// TEST 4: Validate Non-Streaming Workflow (With Main Output)
|
|
// ======================================================================
|
|
|
|
it('should validate non-streaming workflow with main output', async () => {
|
|
const chatTrigger = createChatTriggerNode({
|
|
name: 'Chat Trigger',
|
|
responseMode: 'lastNode'
|
|
});
|
|
|
|
const languageModel = createLanguageModelNode('openai', {
|
|
name: 'GPT Model'
|
|
});
|
|
|
|
const agent = createAIAgentNode({
|
|
name: 'Non-Streaming Agent',
|
|
text: 'You are a helpful assistant'
|
|
});
|
|
|
|
const respond = createRespondNode({
|
|
name: 'Final Response'
|
|
});
|
|
|
|
const workflow = createAIWorkflow(
|
|
[chatTrigger, languageModel, agent, respond],
|
|
mergeConnections(
|
|
createMainConnection('Chat Trigger', 'Non-Streaming Agent'),
|
|
createAIConnection('GPT Model', 'Non-Streaming Agent', 'ai_languageModel'),
|
|
createMainConnection('Non-Streaming Agent', 'Final Response')
|
|
),
|
|
{
|
|
name: createTestWorkflowName('E2E - Non-Streaming Workflow'),
|
|
tags: ['mcp-integration-test', 'ai-validation', 'e2e']
|
|
}
|
|
);
|
|
|
|
const created = await client.createWorkflow(workflow);
|
|
context.trackWorkflow(created.id!);
|
|
|
|
const validationResponse = await handleValidateWorkflow(
|
|
{ id: created.id },
|
|
repository,
|
|
mcpContext
|
|
);
|
|
|
|
expect(validationResponse.success).toBe(true);
|
|
const validationData = validationResponse.data as ValidationResponse;
|
|
|
|
expect(validationData.valid).toBe(true);
|
|
expect(validationData.errors).toBeUndefined();
|
|
});
|
|
|
|
// ======================================================================
|
|
// TEST 5: Test Node Type Normalization (Bug Fix Validation)
|
|
// ======================================================================
|
|
|
|
it('should correctly normalize node types during validation', async () => {
|
|
// This test validates the v2.17.0 fix for node type normalization
|
|
const languageModel = createLanguageModelNode('openai', {
|
|
name: 'OpenAI Model'
|
|
});
|
|
|
|
const agent = createAIAgentNode({
|
|
name: 'AI Agent',
|
|
text: 'Test agent'
|
|
});
|
|
|
|
const httpTool = createHTTPRequestToolNode({
|
|
name: 'API Tool',
|
|
toolDescription: 'Calls external API',
|
|
url: 'https://api.example.com/test'
|
|
});
|
|
|
|
const workflow = createAIWorkflow(
|
|
[languageModel, agent, httpTool],
|
|
mergeConnections(
|
|
createAIConnection('OpenAI Model', 'AI Agent', 'ai_languageModel'),
|
|
createAIConnection('API Tool', 'AI Agent', 'ai_tool')
|
|
),
|
|
{
|
|
name: createTestWorkflowName('E2E - Type Normalization'),
|
|
tags: ['mcp-integration-test', 'ai-validation', 'e2e']
|
|
}
|
|
);
|
|
|
|
const created = await client.createWorkflow(workflow);
|
|
context.trackWorkflow(created.id!);
|
|
|
|
const validationResponse = await handleValidateWorkflow(
|
|
{ id: created.id },
|
|
repository,
|
|
mcpContext
|
|
);
|
|
|
|
expect(validationResponse.success).toBe(true);
|
|
const validationData = validationResponse.data as ValidationResponse;
|
|
|
|
// Should be valid - no false "no tools connected" warning
|
|
expect(validationData.valid).toBe(true);
|
|
|
|
// Should NOT have false warnings about tools
|
|
if (validationData.warnings) {
|
|
const falseToolWarnings = validationData.warnings.filter(w =>
|
|
w.message.toLowerCase().includes('no ai_tool') &&
|
|
w.nodeName === 'AI Agent'
|
|
);
|
|
expect(falseToolWarnings.length).toBe(0);
|
|
}
|
|
});
|
|
});
|