Files
n8n-mcp/src/scripts/fetch-templates.ts
czlonkowski d2a250e23d fix: handle null/invalid nodes_used in metadata generation
Fixed TypeError when generating metadata for templates with missing or
invalid nodes_used data. Added safe JSON parsing with fallback to empty
array.

Root cause: Template -1000 (Canonical AI Tool Examples) has null
nodes_used field, causing iteration error in summarizeNodes().

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-07 14:00:15 +02:00

542 lines
17 KiB
JavaScript
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env node
import { createDatabaseAdapter } from '../database/database-adapter';
import { TemplateService } from '../templates/template-service';
import * as fs from 'fs';
import * as path from 'path';
import * as zlib from 'zlib';
import * as dotenv from 'dotenv';
import type { MetadataRequest } from '../templates/metadata-generator';
// Load environment variables
dotenv.config();
/**
* Extract node configurations from a template workflow
*/
function extractNodeConfigs(
templateId: number,
templateName: string,
templateViews: number,
workflowCompressed: string,
metadata: any
): Array<{
node_type: string;
template_id: number;
template_name: string;
template_views: number;
node_name: string;
parameters_json: string;
credentials_json: string | null;
has_credentials: number;
has_expressions: number;
complexity: string;
use_cases: string;
}> {
try {
// Decompress workflow
const decompressed = zlib.gunzipSync(Buffer.from(workflowCompressed, 'base64'));
const workflow = JSON.parse(decompressed.toString('utf-8'));
const configs: any[] = [];
for (const node of workflow.nodes || []) {
// Skip UI-only nodes (sticky notes, etc.)
if (node.type.includes('stickyNote') || !node.parameters) {
continue;
}
configs.push({
node_type: node.type,
template_id: templateId,
template_name: templateName,
template_views: templateViews,
node_name: node.name,
parameters_json: JSON.stringify(node.parameters),
credentials_json: node.credentials ? JSON.stringify(node.credentials) : null,
has_credentials: node.credentials ? 1 : 0,
has_expressions: detectExpressions(node.parameters) ? 1 : 0,
complexity: metadata?.complexity || 'medium',
use_cases: JSON.stringify(metadata?.use_cases || [])
});
}
return configs;
} catch (error) {
console.error(`Error extracting configs from template ${templateId}:`, error);
return [];
}
}
/**
* Detect n8n expressions in parameters
*/
function detectExpressions(params: any): boolean {
if (!params) return false;
const json = JSON.stringify(params);
return json.includes('={{') || json.includes('$json') || json.includes('$node');
}
/**
* Insert extracted configs into database and rank them
*/
function insertAndRankConfigs(db: any, configs: any[]) {
if (configs.length === 0) {
console.log('No configs to insert');
return;
}
// Clear old configs for these templates
const templateIds = [...new Set(configs.map(c => c.template_id))];
const placeholders = templateIds.map(() => '?').join(',');
db.prepare(`DELETE FROM template_node_configs WHERE template_id IN (${placeholders})`).run(...templateIds);
// Insert new configs
const insertStmt = db.prepare(`
INSERT INTO template_node_configs (
node_type, template_id, template_name, template_views,
node_name, parameters_json, credentials_json,
has_credentials, has_expressions, complexity, use_cases
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
`);
for (const config of configs) {
insertStmt.run(
config.node_type,
config.template_id,
config.template_name,
config.template_views,
config.node_name,
config.parameters_json,
config.credentials_json,
config.has_credentials,
config.has_expressions,
config.complexity,
config.use_cases
);
}
// Rank configs per node_type by template popularity
db.exec(`
UPDATE template_node_configs
SET rank = (
SELECT COUNT(*) + 1
FROM template_node_configs AS t2
WHERE t2.node_type = template_node_configs.node_type
AND t2.template_views > template_node_configs.template_views
)
`);
// Keep only top 10 per node_type
db.exec(`
DELETE FROM template_node_configs
WHERE id NOT IN (
SELECT id FROM template_node_configs
WHERE rank <= 10
ORDER BY node_type, rank
)
`);
console.log(`✅ Extracted and ranked ${configs.length} node configurations`);
}
/**
* Extract node configurations from existing templates
*/
async function extractTemplateConfigs(db: any, service: TemplateService) {
console.log('📦 Extracting node configurations from templates...');
const repository = (service as any).repository;
const allTemplates = repository.getAllTemplates();
const allConfigs: any[] = [];
let configsExtracted = 0;
for (const template of allTemplates) {
if (template.workflow_json_compressed) {
const metadata = template.metadata_json ? JSON.parse(template.metadata_json) : null;
const configs = extractNodeConfigs(
template.id,
template.name,
template.views,
template.workflow_json_compressed,
metadata
);
allConfigs.push(...configs);
configsExtracted += configs.length;
}
}
if (allConfigs.length > 0) {
insertAndRankConfigs(db, allConfigs);
// Show stats
const configStats = db.prepare(`
SELECT
COUNT(DISTINCT node_type) as node_types,
COUNT(*) as total_configs,
AVG(rank) as avg_rank
FROM template_node_configs
`).get() as any;
console.log(`📊 Node config stats:`);
console.log(` - Unique node types: ${configStats.node_types}`);
console.log(` - Total configs stored: ${configStats.total_configs}`);
console.log(` - Average rank: ${configStats.avg_rank?.toFixed(1) || 'N/A'}`);
} else {
console.log('⚠️ No node configurations extracted');
}
}
async function fetchTemplates(
mode: 'rebuild' | 'update' = 'rebuild',
generateMetadata: boolean = false,
metadataOnly: boolean = false,
extractOnly: boolean = false
) {
// If extract-only mode, skip template fetching and only extract configs
if (extractOnly) {
console.log('📦 Extract-only mode: Extracting node configurations from existing templates...\n');
const db = await createDatabaseAdapter('./data/nodes.db');
// Ensure template_node_configs table exists
try {
const tableExists = db.prepare(`
SELECT name FROM sqlite_master
WHERE type='table' AND name='template_node_configs'
`).get();
if (!tableExists) {
console.log('📋 Creating template_node_configs table...');
const migrationPath = path.join(__dirname, '../../src/database/migrations/add-template-node-configs.sql');
const migration = fs.readFileSync(migrationPath, 'utf8');
db.exec(migration);
console.log('✅ Table created successfully\n');
}
} catch (error) {
console.error('❌ Error checking/creating template_node_configs table:', error);
if ('close' in db && typeof db.close === 'function') {
db.close();
}
process.exit(1);
}
const service = new TemplateService(db);
await extractTemplateConfigs(db, service);
if ('close' in db && typeof db.close === 'function') {
db.close();
}
return;
}
// If metadata-only mode, skip template fetching entirely
if (metadataOnly) {
console.log('🤖 Metadata-only mode: Generating metadata for existing templates...\n');
if (!process.env.OPENAI_API_KEY) {
console.error('❌ OPENAI_API_KEY not set in environment');
process.exit(1);
}
const db = await createDatabaseAdapter('./data/nodes.db');
const service = new TemplateService(db);
await generateTemplateMetadata(db, service);
if ('close' in db && typeof db.close === 'function') {
db.close();
}
return;
}
const modeEmoji = mode === 'rebuild' ? '🔄' : '⬆️';
const modeText = mode === 'rebuild' ? 'Rebuilding' : 'Updating';
console.log(`${modeEmoji} ${modeText} n8n workflow templates...\n`);
if (generateMetadata) {
console.log('🤖 Metadata generation enabled (using OpenAI)\n');
}
// Ensure data directory exists
const dataDir = './data';
if (!fs.existsSync(dataDir)) {
fs.mkdirSync(dataDir, { recursive: true });
}
// Initialize database
const db = await createDatabaseAdapter('./data/nodes.db');
// Handle database schema based on mode
if (mode === 'rebuild') {
try {
// Drop existing tables in rebuild mode
db.exec('DROP TABLE IF EXISTS templates');
db.exec('DROP TABLE IF EXISTS templates_fts');
console.log('🗑️ Dropped existing templates tables (rebuild mode)\n');
// Apply fresh schema
const schema = fs.readFileSync(path.join(__dirname, '../../src/database/schema.sql'), 'utf8');
db.exec(schema);
console.log('📋 Applied database schema\n');
} catch (error) {
console.error('❌ Error setting up database schema:', error);
throw error;
}
} else {
console.log('📊 Update mode: Keeping existing templates and schema\n');
// In update mode, only ensure new columns exist (for migration)
try {
// Check if metadata columns exist, add them if not (migration support)
const columns = db.prepare("PRAGMA table_info(templates)").all() as any[];
const hasMetadataColumn = columns.some((col: any) => col.name === 'metadata_json');
if (!hasMetadataColumn) {
console.log('📋 Adding metadata columns to existing schema...');
db.exec(`
ALTER TABLE templates ADD COLUMN metadata_json TEXT;
ALTER TABLE templates ADD COLUMN metadata_generated_at DATETIME;
`);
console.log('✅ Metadata columns added\n');
}
} catch (error) {
// Columns might already exist, that's fine
console.log('📋 Schema is up to date\n');
}
}
// FTS5 initialization is handled by TemplateRepository
// No need to duplicate the logic here
// Create service
const service = new TemplateService(db);
// Progress tracking
let lastMessage = '';
const startTime = Date.now();
try {
await service.fetchAndUpdateTemplates((message, current, total) => {
// Clear previous line
if (lastMessage) {
process.stdout.write('\r' + ' '.repeat(lastMessage.length) + '\r');
}
const progress = total > 0 ? Math.round((current / total) * 100) : 0;
lastMessage = `📊 ${message}: ${current}/${total} (${progress}%)`;
process.stdout.write(lastMessage);
}, mode); // Pass the mode parameter!
console.log('\n'); // New line after progress
// Get stats
const stats = await service.getTemplateStats();
const elapsed = Math.round((Date.now() - startTime) / 1000);
console.log('✅ Template fetch complete!\n');
console.log('📈 Statistics:');
console.log(` - Total templates: ${stats.totalTemplates}`);
console.log(` - Average views: ${stats.averageViews}`);
console.log(` - Time elapsed: ${elapsed} seconds`);
console.log('\n🔝 Top used nodes:');
stats.topUsedNodes.forEach((node: any, index: number) => {
console.log(` ${index + 1}. ${node.node} (${node.count} templates)`);
});
// Extract node configurations from templates
console.log('');
await extractTemplateConfigs(db, service);
// Generate metadata if requested
if (generateMetadata && process.env.OPENAI_API_KEY) {
console.log('\n🤖 Generating metadata for templates...');
await generateTemplateMetadata(db, service);
} else if (generateMetadata && !process.env.OPENAI_API_KEY) {
console.log('\n⚠ Metadata generation requested but OPENAI_API_KEY not set');
}
} catch (error) {
console.error('\n❌ Error fetching templates:', error);
process.exit(1);
}
// Close database
if ('close' in db && typeof db.close === 'function') {
db.close();
}
}
// Generate metadata for templates using OpenAI
async function generateTemplateMetadata(db: any, service: TemplateService) {
try {
const { BatchProcessor } = await import('../templates/batch-processor');
const repository = (service as any).repository;
// Get templates without metadata (0 = no limit)
const limit = parseInt(process.env.METADATA_LIMIT || '0');
const templatesWithoutMetadata = limit > 0
? repository.getTemplatesWithoutMetadata(limit)
: repository.getTemplatesWithoutMetadata(999999); // Get all
if (templatesWithoutMetadata.length === 0) {
console.log('✅ All templates already have metadata');
return;
}
console.log(`Found ${templatesWithoutMetadata.length} templates without metadata`);
// Create batch processor
const batchSize = parseInt(process.env.OPENAI_BATCH_SIZE || '50');
console.log(`Processing in batches of ${batchSize} templates each`);
// Warn if batch size is very large
if (batchSize > 100) {
console.log(`⚠️ Large batch size (${batchSize}) may take longer to process`);
console.log(` Consider using OPENAI_BATCH_SIZE=50 for faster results`);
}
const processor = new BatchProcessor({
apiKey: process.env.OPENAI_API_KEY!,
model: process.env.OPENAI_MODEL || 'gpt-4o-mini',
batchSize: batchSize,
outputDir: './temp/batch'
});
// Prepare metadata requests
const requests: MetadataRequest[] = templatesWithoutMetadata.map((t: any) => {
let workflow = undefined;
try {
if (t.workflow_json_compressed) {
const decompressed = zlib.gunzipSync(Buffer.from(t.workflow_json_compressed, 'base64'));
workflow = JSON.parse(decompressed.toString());
} else if (t.workflow_json) {
workflow = JSON.parse(t.workflow_json);
}
} catch (error) {
console.warn(`Failed to parse workflow for template ${t.id}:`, error);
}
// Parse nodes_used safely
let nodes: string[] = [];
try {
if (t.nodes_used) {
nodes = JSON.parse(t.nodes_used);
// Ensure it's an array
if (!Array.isArray(nodes)) {
console.warn(`Template ${t.id} has invalid nodes_used (not an array), using empty array`);
nodes = [];
}
}
} catch (error) {
console.warn(`Failed to parse nodes_used for template ${t.id}:`, error);
nodes = [];
}
return {
templateId: t.id,
name: t.name,
description: t.description,
nodes: nodes,
workflow
};
});
// Process in batches
const results = await processor.processTemplates(requests, (message, current, total) => {
process.stdout.write(`\r📊 ${message}: ${current}/${total}`);
});
console.log('\n');
// Update database with metadata
const metadataMap = new Map();
for (const [templateId, result] of results) {
if (!result.error) {
metadataMap.set(templateId, result.metadata);
}
}
if (metadataMap.size > 0) {
repository.batchUpdateMetadata(metadataMap);
console.log(`✅ Updated metadata for ${metadataMap.size} templates`);
}
// Show stats
const stats = repository.getMetadataStats();
console.log('\n📈 Metadata Statistics:');
console.log(` - Total templates: ${stats.total}`);
console.log(` - With metadata: ${stats.withMetadata}`);
console.log(` - Without metadata: ${stats.withoutMetadata}`);
console.log(` - Outdated (>30 days): ${stats.outdated}`);
} catch (error) {
console.error('\n❌ Error generating metadata:', error);
}
}
// Parse command line arguments
function parseArgs(): { mode: 'rebuild' | 'update', generateMetadata: boolean, metadataOnly: boolean, extractOnly: boolean } {
const args = process.argv.slice(2);
let mode: 'rebuild' | 'update' = 'rebuild';
let generateMetadata = false;
let metadataOnly = false;
let extractOnly = false;
// Check for --mode flag
const modeIndex = args.findIndex(arg => arg.startsWith('--mode'));
if (modeIndex !== -1) {
const modeArg = args[modeIndex];
const modeValue = modeArg.includes('=') ? modeArg.split('=')[1] : args[modeIndex + 1];
if (modeValue === 'update') {
mode = 'update';
}
}
// Check for --update flag as shorthand
if (args.includes('--update')) {
mode = 'update';
}
// Check for --generate-metadata flag
if (args.includes('--generate-metadata') || args.includes('--metadata')) {
generateMetadata = true;
}
// Check for --metadata-only flag
if (args.includes('--metadata-only')) {
metadataOnly = true;
}
// Check for --extract-only flag
if (args.includes('--extract-only') || args.includes('--extract')) {
extractOnly = true;
}
// Show help if requested
if (args.includes('--help') || args.includes('-h')) {
console.log('Usage: npm run fetch:templates [options]\n');
console.log('Options:');
console.log(' --mode=rebuild|update Rebuild from scratch or update existing (default: rebuild)');
console.log(' --update Shorthand for --mode=update');
console.log(' --generate-metadata Generate AI metadata after fetching templates');
console.log(' --metadata Shorthand for --generate-metadata');
console.log(' --metadata-only Only generate metadata, skip template fetching');
console.log(' --extract-only Only extract node configs, skip template fetching');
console.log(' --extract Shorthand for --extract-only');
console.log(' --help, -h Show this help message');
process.exit(0);
}
return { mode, generateMetadata, metadataOnly, extractOnly };
}
// Run if called directly
if (require.main === module) {
const { mode, generateMetadata, metadataOnly, extractOnly } = parseArgs();
fetchTemplates(mode, generateMetadata, metadataOnly, extractOnly).catch(console.error);
}
export { fetchTemplates };