# MCP Implementation Action Plan ## Key Insights from Analysis ### ✅ What You Already Have (Working Well) 1. **Excellent property extraction** - All properties with complete schemas 2. **Proper data structure** - Properties include types, options, displayOptions 3. **Efficient storage** - JSON in SQLite is perfect for this use case 4. **Complete metadata** - Operations, credentials, documentation all captured ### ❌ The Real Problem - **Information overload**: Returning 200+ properties when AI needs 10-20 - **No filtering**: All properties returned regardless of relevance - **Poor organization**: Essential mixed with advanced properties - **No examples**: AI agents need concrete examples to work from ### 💡 The Solution **Don't restructure - add intelligent filtering layers on top** ## Immediate Action Plan (This Week) ### Day 1-2: Implement get_node_essentials 1. **Create services**: ```bash touch src/services/property-filter.ts touch src/services/example-generator.ts ``` 2. **Copy code from implementation guide**: - PropertyFilter class with essential lists - ExampleGenerator with concrete examples - Tool implementation in server.ts 3. **Test with top 5 nodes**: - nodes-base.httpRequest - nodes-base.webhook - nodes-base.code - nodes-base.set - nodes-base.postgres 4. **Measure improvement**: ```bash npm run build node scripts/test-essentials.js ``` ### Day 3: Expand Coverage 1. **Add 15 more nodes** to ESSENTIAL_PROPERTIES: - nodes-base.if - nodes-base.merge - nodes-base.splitInBatches - nodes-base.function - nodes-base.email - nodes-base.slack - nodes-base.github - nodes-base.googleSheets - nodes-base.openAi - nodes-base.redis - nodes-base.mongodb - nodes-base.mysql - nodes-base.ftp - nodes-base.ssh - nodes-base.executeCommand 2. **Create examples** for each node 3. **Test with AI agents** ### Day 4-5: Implement search_node_properties 1. **Create property flattener**: ```typescript // Converts nested properties to flat list with paths class PropertyFlattener { static flatten(properties: any[], path = ''): FlatProperty[] } ``` 2. **Add search functionality**: - Search by name - Search by description - Search by type 3. **Test search accuracy** ### Week 2: Validation & Task Templates 1. **Implement validate_node_config**: - Check required properties - Validate against displayOptions - Provide helpful error messages 2. **Create task templates**: - Common API patterns - Database operations - File handling - Webhook patterns ## Essential Property Lists (Starting Point) ```typescript // Top 20 nodes to optimize first (80% of usage) const PRIORITY_NODES = { 'nodes-base.httpRequest': { required: ['url'], common: ['method', 'authentication', 'sendBody', 'contentType', 'sendHeaders'] }, 'nodes-base.webhook': { required: [], common: ['httpMethod', 'path', 'responseMode', 'responseData'] }, 'nodes-base.code': { required: [], common: ['language', 'jsCode', 'pythonCode'] }, 'nodes-base.set': { required: [], common: ['mode', 'assignments', 'options'] }, 'nodes-base.if': { required: [], common: ['conditions', 'combineOperation'] }, 'nodes-base.postgres': { required: [], common: ['operation', 'table', 'query', 'additionalFields'] }, 'nodes-base.openAi': { required: [], common: ['resource', 'operation', 'modelId', 'prompt', 'messages'] }, 'nodes-base.googleSheets': { required: [], common: ['operation', 'sheetId', 'range', 'dataStartRow'] }, 'nodes-base.slack': { required: [], common: ['resource', 'operation', 'channel', 'text', 'attachments'] }, 'nodes-base.email': { required: [], common: ['fromEmail', 'toEmail', 'subject', 'text', 'html'] } }; ``` ## Success Criteria ### Week 1 - [ ] get_node_essentials working for 20 nodes - [ ] 90%+ size reduction achieved - [ ] Examples provided for common use cases - [ ] Property search implemented ### Week 2 - [ ] Configuration validation working - [ ] 10+ task templates created - [ ] Error messages are helpful - [ ] AI agents successfully creating workflows ### Month 1 - [ ] 50+ nodes optimized - [ ] Advanced features implemented - [ ] Documentation updated - [ ] Migration guide created ## Quick Test Commands ```bash # Test essentials tool echo '{"jsonrpc":"2.0","method":"tools/call","params":{"name":"get_node_essentials","arguments":{"nodeType":"nodes-base.httpRequest"}},"id":1}' | npm start # Compare with original echo '{"jsonrpc":"2.0","method":"tools/call","params":{"name":"get_node_info","arguments":{"nodeType":"nodes-base.httpRequest"}},"id":1}' | npm start # Test property search echo '{"jsonrpc":"2.0","method":"tools/call","params":{"name":"search_node_properties","arguments":{"nodeType":"nodes-base.httpRequest","query":"auth"}},"id":1}' | npm start ``` ## Remember 1. **Start small** - Get one tool working perfectly before moving on 2. **Test with real AI** - Use Claude/GPT to validate improvements 3. **Iterate quickly** - Refine based on what works 4. **Keep compatibility** - Don't break existing tools 5. **Measure everything** - Track size reduction and success rates ## Next Steps 1. Review this plan with your team 2. Start with Day 1 implementation 3. Test with HTTP Request node 4. Get feedback from AI agents 5. Iterate and improve The key is to **deliver value incrementally** while building toward the complete solution.