feat: add comprehensive performance benchmark tracking system

- Create benchmark test suites for critical operations:
  - Node loading performance
  - Database query performance
  - Search operations performance
  - Validation performance
  - MCP tool execution performance

- Add GitHub Actions workflow for benchmark tracking:
  - Runs on push to main and PRs
  - Uses github-action-benchmark for historical tracking
  - Comments on PRs with performance results
  - Alerts on >10% performance regressions
  - Stores results in GitHub Pages

- Create benchmark infrastructure:
  - Custom Vitest benchmark configuration
  - JSON reporter for CI results
  - Result formatter for github-action-benchmark
  - Performance threshold documentation

- Add supporting utilities:
  - SQLiteStorageService for benchmark database setup
  - MCPEngine wrapper for testing MCP tools
  - Test factories for generating benchmark data
  - Enhanced NodeRepository with benchmark methods

- Document benchmark system:
  - Comprehensive benchmark guide in docs/BENCHMARKS.md
  - Performance thresholds in .github/BENCHMARK_THRESHOLDS.md
  - README for benchmarks directory
  - Integration with existing test suite

The benchmark system will help monitor performance over time and catch regressions before they reach production.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
czlonkowski
2025-07-28 22:45:09 +02:00
parent 0252788dd6
commit b5210e5963
52 changed files with 6843 additions and 16 deletions

185
docs/BENCHMARKS.md Normal file
View File

@@ -0,0 +1,185 @@
# n8n-mcp Performance Benchmarks
## Overview
The n8n-mcp project includes comprehensive performance benchmarks to ensure optimal performance across all critical operations. These benchmarks help identify performance regressions and guide optimization efforts.
## Running Benchmarks
### Local Development
```bash
# Run all benchmarks
npm run benchmark
# Run in watch mode
npm run benchmark:watch
# Run with UI
npm run benchmark:ui
# Run specific benchmark suite
npm run benchmark tests/benchmarks/node-loading.bench.ts
```
### Continuous Integration
Benchmarks run automatically on:
- Every push to `main` branch
- Every pull request
- Manual workflow dispatch
Results are:
- Tracked over time using GitHub Actions
- Displayed in PR comments
- Available at: https://czlonkowski.github.io/n8n-mcp/benchmarks/
## Benchmark Suites
### 1. Node Loading Performance
Tests the performance of loading n8n node packages and parsing their metadata.
**Key Metrics:**
- Package loading time (< 100ms target)
- Individual node file loading (< 5ms target)
- Package.json parsing (< 1ms target)
### 2. Database Query Performance
Measures database operation performance including queries, inserts, and updates.
**Key Metrics:**
- Node retrieval by type (< 5ms target)
- Search operations (< 50ms target)
- Bulk operations (< 100ms target)
### 3. Search Operations
Tests various search modes and their performance characteristics.
**Key Metrics:**
- Simple word search (< 10ms target)
- Multi-word OR search (< 20ms target)
- Fuzzy search (< 50ms target)
### 4. Validation Performance
Measures configuration and workflow validation speed.
**Key Metrics:**
- Simple config validation (< 1ms target)
- Complex config validation (< 10ms target)
- Workflow validation (< 50ms target)
### 5. MCP Tool Execution
Tests the overhead of MCP tool execution.
**Key Metrics:**
- Tool invocation overhead (< 5ms target)
- Complex tool operations (< 50ms target)
## Performance Targets
| Operation Category | Target | Warning | Critical |
|-------------------|--------|---------|----------|
| Node Loading | < 100ms | > 150ms | > 200ms |
| Database Query | < 5ms | > 10ms | > 20ms |
| Search (simple) | < 10ms | > 20ms | > 50ms |
| Search (complex) | < 50ms | > 100ms | > 200ms |
| Validation | < 10ms | > 20ms | > 50ms |
| MCP Tools | < 50ms | > 100ms | > 200ms |
## Optimization Guidelines
### Current Optimizations
1. **In-memory caching**: Frequently accessed nodes are cached
2. **Indexed database**: Key fields are indexed for fast lookups
3. **Lazy loading**: Large properties are loaded on demand
4. **Batch operations**: Multiple operations are batched when possible
### Future Optimizations
1. **FTS5 Search**: Implement SQLite FTS5 for faster full-text search
2. **Connection pooling**: Reuse database connections
3. **Query optimization**: Analyze and optimize slow queries
4. **Parallel loading**: Load multiple packages concurrently
## Benchmark Implementation
### Writing New Benchmarks
```typescript
import { bench, describe } from 'vitest';
describe('My Performance Suite', () => {
bench('operation name', async () => {
// Code to benchmark
}, {
iterations: 100,
warmupIterations: 10,
warmupTime: 500,
time: 3000
});
});
```
### Best Practices
1. **Isolate operations**: Benchmark specific operations, not entire workflows
2. **Use realistic data**: Load actual n8n nodes for accurate measurements
3. **Include warmup**: Allow JIT compilation to stabilize
4. **Consider memory**: Monitor memory usage for memory-intensive operations
5. **Statistical significance**: Run enough iterations for reliable results
## Interpreting Results
### Key Metrics
- **hz**: Operations per second (higher is better)
- **mean**: Average time per operation (lower is better)
- **p99**: 99th percentile (worst-case performance)
- **rme**: Relative margin of error (lower is more reliable)
### Performance Regression Detection
A performance regression is flagged when:
1. Operation time increases by >10% from baseline
2. Multiple related operations show degradation
3. P99 latency exceeds critical thresholds
### Analyzing Trends
1. **Gradual degradation**: Often indicates growing technical debt
2. **Sudden spikes**: Usually from specific code changes
3. **Seasonal patterns**: May indicate cache effectiveness
4. **Outliers**: Check p99 vs mean for consistency
## Troubleshooting
### Common Issues
1. **Inconsistent results**: Increase warmup iterations
2. **High variance**: Check for background processes
3. **Memory issues**: Reduce iteration count
4. **CI failures**: Verify runner resources
### Performance Debugging
1. Use `--reporter=verbose` for detailed output
2. Profile with `node --inspect` for bottlenecks
3. Check database query plans
4. Monitor memory allocation patterns
## Contributing
When submitting performance improvements:
1. Run benchmarks before and after changes
2. Include benchmark results in PR description
3. Explain optimization approach
4. Consider trade-offs (memory vs speed)
5. Add new benchmarks for new features
## References
- [Vitest Benchmark Documentation](https://vitest.dev/guide/features.html#benchmarking)
- [GitHub Action Benchmark](https://github.com/benchmark-action/github-action-benchmark)
- [SQLite Performance Tuning](https://www.sqlite.org/optoverview.html)

113
docs/CODECOV_SETUP.md Normal file
View File

@@ -0,0 +1,113 @@
# Codecov Setup Guide
This guide explains how to set up and configure Codecov for the n8n-MCP project.
## Prerequisites
1. A Codecov account (sign up at https://codecov.io)
2. Repository admin access to add the CODECOV_TOKEN secret
## Setup Steps
### 1. Get Your Codecov Token
1. Sign in to [Codecov](https://codecov.io)
2. Add your repository: `czlonkowski/n8n-mcp`
3. Copy the upload token from the repository settings
### 2. Add Token to GitHub Secrets
1. Go to your GitHub repository settings
2. Navigate to `Settings``Secrets and variables``Actions`
3. Click "New repository secret"
4. Name: `CODECOV_TOKEN`
5. Value: Paste your Codecov token
6. Click "Add secret"
### 3. Update the Badge Token
Edit the README.md file and replace `YOUR_TOKEN` in the Codecov badge with your actual token:
```markdown
[![codecov](https://codecov.io/gh/czlonkowski/n8n-mcp/graph/badge.svg?token=YOUR_ACTUAL_TOKEN)](https://codecov.io/gh/czlonkowski/n8n-mcp)
```
Note: The token in the badge URL is a read-only token and safe to commit.
## Configuration Details
### codecov.yml
The configuration file sets:
- **Target coverage**: 80% for both project and patch
- **Coverage precision**: 2 decimal places
- **Comment behavior**: Comments on all PRs with coverage changes
- **Ignored files**: Test files, scripts, node_modules, and build outputs
### GitHub Actions
The workflow:
1. Runs tests with coverage using `npm run test:coverage`
2. Generates LCOV format coverage report
3. Uploads to Codecov using the official action
4. Fails the build if upload fails
### Vitest Configuration
Coverage settings in `vitest.config.ts`:
- **Provider**: V8 (fast and accurate)
- **Reporters**: text, json, html, and lcov
- **Thresholds**: 80% lines, 80% functions, 75% branches, 80% statements
## Viewing Coverage
### Local Coverage
```bash
# Generate coverage report
npm run test:coverage
# View HTML report
open coverage/index.html
```
### Online Coverage
1. Visit https://codecov.io/gh/czlonkowski/n8n-mcp
2. View detailed reports, graphs, and file-by-file coverage
3. Check PR comments for coverage changes
## Troubleshooting
### Coverage Not Uploading
1. Verify CODECOV_TOKEN is set in GitHub secrets
2. Check GitHub Actions logs for errors
3. Ensure coverage/lcov.info is generated
### Badge Not Showing
1. Wait a few minutes after first upload
2. Verify the token in the badge URL is correct
3. Check if the repository is public/private settings match
### Low Coverage Areas
Current areas with lower coverage that could be improved:
- HTTP server implementations
- MCP index files
- Some edge cases in validators
## Best Practices
1. **Write tests first**: Aim for TDD when adding features
2. **Focus on critical paths**: Prioritize testing core functionality
3. **Mock external dependencies**: Use MSW for HTTP, mock for databases
4. **Keep coverage realistic**: 80% is good, 100% isn't always practical
5. **Monitor trends**: Watch coverage over time, not just absolute numbers
## Resources
- [Codecov Documentation](https://docs.codecov.io/)
- [Vitest Coverage](https://vitest.dev/guide/coverage.html)
- [GitHub Actions + Codecov](https://github.com/codecov/codecov-action)