Files
claude-task-master/tests/e2e/e2e_helpers.sh
Eyal Toledano e34f348eec fix merge conflicts to prep for merge with branch next
- Enhance E2E testing and LLM analysis report and:
  - Add --analyze-log flag to run_e2e.sh to re-run LLM analysis on existing logs.
  - Add test:e2e and analyze-log scripts to package.json for easier execution.

- Correct display errors and dependency validation output:
  - Update chalk usage in add-task.js to use bracket notation (chalk[color]) compatible with v5, resolving 'chalk.keyword is not a function' error.
  - Modify fix-dependencies command output to show red failure box with issue count instead of green success box when validation fails.

- Refactor interactive model setup:
  - Verify inclusion of 'No change' option during interactive model setup flow (task-master models --setup).

- Update model definitions:
  - Add max_tokens field for gpt-4o in supported-models.json.

- Remove unused scripts:
  - Delete prepare-package.js and rule-transformer.test.js.

Release candidate
2025-04-29 01:54:42 -04:00

162 lines
7.6 KiB
Bash

#!/bin/bash
# --- LLM Analysis Helper Function ---
# This function should be sourced by the main E2E script or test scripts.
# It requires curl and jq to be installed.
# It expects the project root path to be passed as the second argument.
analyze_log_with_llm() {
local log_file="$1"
local project_root="$2" # Expect project root as the second argument
if [ -z "$project_root" ]; then
echo "[HELPER_ERROR] Project root argument is missing. Skipping LLM analysis." >&2
return 1
fi
local env_file="${project_root}/.env" # Path to .env in project root
local provider_summary_log="provider_add_task_summary.log" # File summarizing provider test outcomes
local api_key=""
# !!! IMPORTANT: Replace with your actual Claude API endpoint if different !!!
local api_endpoint="https://api.anthropic.com/v1/messages"
# !!! IMPORTANT: Ensure this matches the variable name in your .env file !!!
local api_key_name="ANTHROPIC_API_KEY"
echo "" # Add a newline before analysis starts
# Check for jq and curl
if ! command -v jq &> /dev/null; then
echo "[HELPER_ERROR] LLM Analysis requires 'jq'. Skipping analysis." >&2
return 1
fi
if ! command -v curl &> /dev/null; then
echo "[HELPER_ERROR] LLM Analysis requires 'curl'. Skipping analysis." >&2
return 1
fi
# Check for API Key in the PROJECT ROOT's .env file
if [ -f "$env_file" ]; then
# Original assignment - Reading from project root .env
api_key=$(grep "^${api_key_name}=" "$env_file" | sed -e "s/^${api_key_name}=//" -e 's/^[[:space:]"]*//' -e 's/[[:space:]"]*$//')
fi
if [ -z "$api_key" ]; then
echo "[HELPER_ERROR] ${api_key_name} not found or empty in project root .env file ($env_file). Skipping LLM analysis." >&2 # Updated error message
return 1
fi
# Log file path is passed as argument, need to ensure it exists relative to where the script *calling* this function is, OR use absolute path.
# Assuming absolute path or path relative to the initial PWD for simplicity here.
# The calling script passes the correct path relative to the original PWD.
if [ ! -f "$log_file" ]; then
echo "[HELPER_ERROR] Log file not found: $log_file (PWD: $(pwd)). Check path passed to function. Skipping LLM analysis." >&2 # Updated error
return 1
fi
local log_content
# Read entire file, handle potential errors
log_content=$(cat "$log_file") || {
echo "[HELPER_ERROR] Failed to read log file: $log_file. Skipping LLM analysis." >&2
return 1
}
# Prepare the prompt using a quoted heredoc for literal interpretation
read -r -d '' prompt_template <<'EOF'
Analyze the following E2E test log for the task-master tool. The log contains output from various 'task-master' commands executed sequentially.
Your goal is to:
1. Verify if the key E2E steps completed successfully based on the log messages (e.g., init, parse PRD, list tasks, analyze complexity, expand task, set status, manage models, add/remove dependencies, add/update/remove tasks/subtasks, generate files).
2. **Specifically analyze the Multi-Provider Add-Task Test Sequence:**
a. Identify which providers were tested for `add-task`. Look for log steps like "Testing Add-Task with Provider: ..." and the summary log 'provider_add_task_summary.log'.
b. For each tested provider, determine if `add-task` succeeded or failed. Note the created task ID if successful.
c. Review the corresponding `add_task_show_output_<provider>_id_<id>.log` file (if created) for each successful `add-task` execution.
d. **Compare the quality and completeness** of the task generated by each successful provider based on their `show` output. Assign a score (e.g., 1-10, 10 being best) based on relevance to the prompt, detail level, and correctness.
e. Note any providers where `add-task` failed or where the task ID could not be extracted.
3. Identify any general explicit "[ERROR]" messages or stack traces throughout the *entire* log.
4. Identify any potential warnings or unusual output that might indicate a problem even if not marked as an explicit error.
5. Provide an overall assessment of the test run's health based *only* on the log content.
Return your analysis **strictly** in the following JSON format. Do not include any text outside of the JSON structure:
{
"overall_status": "Success|Failure|Warning",
"verified_steps": [ "Initialization", "PRD Parsing", /* ...other general steps observed... */ ],
"provider_add_task_comparison": {
"prompt_used": "... (extract from log if possible or state 'standard auth prompt') ...",
"provider_results": {
"anthropic": { "status": "Success|Failure|ID_Extraction_Failed|Set_Model_Failed", "task_id": "...", "score": "X/10 | N/A", "notes": "..." },
"openai": { "status": "Success|Failure|...", "task_id": "...", "score": "X/10 | N/A", "notes": "..." },
/* ... include all tested providers ... */
},
"comparison_summary": "Brief overall comparison of generated tasks..."
},
"detected_issues": [ { "severity": "Error|Warning|Anomaly", "description": "...", "log_context": "[Optional, short snippet from log near the issue]" } ],
"llm_summary_points": [ "Overall summary point 1", "Provider comparison highlight", "Any major issues noted" ]
}
Here is the main log content:
%s
EOF
# Note: The final %s is a placeholder for printf later
local full_prompt
# Use printf to substitute the log content into the %s placeholder
if ! printf -v full_prompt "$prompt_template" "$log_content"; then
echo "[HELPER_ERROR] Failed to format prompt using printf." >&2
# It's unlikely printf itself fails, but good practice
return 1
fi
# Construct the JSON payload for Claude Messages API
local payload
payload=$(jq -n --arg prompt "$full_prompt" '{
"model": "claude-3-haiku-20240307", # Using Haiku for faster/cheaper testing
"max_tokens": 3072, # Increased slightly
"messages": [
{"role": "user", "content": $prompt}
]
# "temperature": 0.0 # Optional: Lower temperature for more deterministic JSON output
}') || {
echo "[HELPER_ERROR] Failed to create JSON payload using jq." >&2
return 1
}
local response_raw response_http_code response_body
# Capture body and HTTP status code separately
response_raw=$(curl -s -w "\nHTTP_STATUS_CODE:%{http_code}" -X POST "$api_endpoint" \
-H "Content-Type: application/json" \
-H "x-api-key: $api_key" \
-H "anthropic-version: 2023-06-01" \
--data "$payload")
# Extract status code and body
response_http_code=$(echo "$response_raw" | grep '^HTTP_STATUS_CODE:' | sed 's/HTTP_STATUS_CODE://')
response_body=$(echo "$response_raw" | sed '$d') # Remove last line (status code)
if [ "$response_http_code" != "200" ]; then
echo "[HELPER_ERROR] LLM API call failed with HTTP status $response_http_code." >&2
echo "[HELPER_ERROR] Response Body: $response_body" >&2
return 1
fi
if [ -z "$response_body" ]; then
echo "[HELPER_ERROR] LLM API call returned empty response body." >&2
return 1
fi
# Pipe the raw response body directly to the Node.js parser script
if echo "$response_body" | node "${project_root}/tests/e2e/parse_llm_output.cjs" "$log_file"; then
echo "[HELPER_SUCCESS] LLM analysis parsed and printed successfully by Node.js script."
return 0 # Success
else
local node_exit_code=$?
echo "[HELPER_ERROR] Node.js parsing script failed with exit code ${node_exit_code}."
echo "[HELPER_ERROR] Raw API response body (first 500 chars): $(echo "$response_body" | head -c 500)"
return 1 # Failure
fi
}
# Export the function so it might be available to subshells if sourced
export -f analyze_log_with_llm