Files
claude-task-master/src/ai-providers/anthropic.js
Eyal Toledano 90c6c1e587 fix(ai, config): Correct Anthropic API calls and improve model config UI
Resolves persistent 404 'Not Found' errors when calling Anthropic models via the Vercel AI SDK. The primary issue was likely related to incorrect or missing API headers.

- Refactors Anthropic provider (src/ai-providers/anthropic.js) to use the standard 'anthropic-version' header instead of potentially outdated/incorrect beta headers when creating the client instance.

- Updates the default fallback model ID in .taskmasterconfig to 'claude-3-5-sonnet-20241022'.

- Fixes the interactive model setup (task-master models --setup) in scripts/modules/commands.js to correctly filter and default the main model selection.

- Improves the cost display in the 'task-master models' command output to explicitly show 'Free' for models with zero cost.

- Updates description for the 'id' parameter in the 'set_task_status' MCP tool definition for clarity.

- Updates list of models and costs
2025-04-24 00:29:36 -04:00

220 lines
6.8 KiB
JavaScript

/**
* src/ai-providers/anthropic.js
*
* Implementation for interacting with Anthropic models (e.g., Claude)
* using the Vercel AI SDK.
*/
import { createAnthropic } from '@ai-sdk/anthropic';
import { generateText, streamText, generateObject, streamObject } from 'ai';
import { log } from '../../scripts/modules/utils.js'; // Assuming utils is accessible
// TODO: Implement standardized functions for generateText, streamText, generateObject
// --- Client Instantiation ---
// Note: API key resolution should ideally happen closer to the call site
// using the config manager/resolver which checks process.env and session.env.
// This is a placeholder for basic functionality.
// Remove the global variable and caching logic
// let anthropicClient;
function getClient(apiKey) {
if (!apiKey) {
// In a real scenario, this would use the config resolver.
// Throwing error here if key isn't passed for simplicity.
// Keep the error check for the passed key
throw new Error('Anthropic API key is required.');
}
// Remove the check for anthropicClient
// if (!anthropicClient) {
// TODO: Explore passing options like default headers if needed
// Create and return a new instance directly with standard version header
return createAnthropic({
apiKey: apiKey,
baseURL: 'https://api.anthropic.com/v1',
// Use standard version header instead of beta
headers: {
'anthropic-beta': 'output-128k-2025-02-19'
}
});
// }
// return anthropicClient;
}
// --- Standardized Service Function Implementations ---
/**
* Generates text using an Anthropic model.
*
* @param {object} params - Parameters for the text generation.
* @param {string} params.apiKey - The Anthropic API key.
* @param {string} params.modelId - The specific Anthropic model ID.
* @param {Array<object>} params.messages - The messages array (e.g., [{ role: 'user', content: '...' }]).
* @param {number} [params.maxTokens] - Maximum tokens for the response.
* @param {number} [params.temperature] - Temperature for generation.
* @returns {Promise<string>} The generated text content.
* @throws {Error} If the API call fails.
*/
export async function generateAnthropicText({
apiKey,
modelId,
messages,
maxTokens,
temperature
}) {
log('debug', `Generating Anthropic text with model: ${modelId}`);
try {
const client = getClient(apiKey);
const result = await generateText({
model: client(modelId),
messages: messages,
maxTokens: maxTokens,
temperature: temperature
// Beta header moved to client initialization
// TODO: Add other relevant parameters like topP, topK if needed
});
log(
'debug',
`Anthropic generateText result received. Tokens: ${result.usage.completionTokens}/${result.usage.promptTokens}`
);
return result.text;
} catch (error) {
log('error', `Anthropic generateText failed: ${error.message}`);
// Consider more specific error handling or re-throwing a standardized error
throw error;
}
}
/**
* Streams text using an Anthropic model.
*
* @param {object} params - Parameters for the text streaming.
* @param {string} params.apiKey - The Anthropic API key.
* @param {string} params.modelId - The specific Anthropic model ID.
* @param {Array<object>} params.messages - The messages array.
* @param {number} [params.maxTokens] - Maximum tokens for the response.
* @param {number} [params.temperature] - Temperature for generation.
* @returns {Promise<object>} The full stream result object from the Vercel AI SDK.
* @throws {Error} If the API call fails to initiate the stream.
*/
export async function streamAnthropicText({
apiKey,
modelId,
messages,
maxTokens,
temperature
}) {
log('debug', `Streaming Anthropic text with model: ${modelId}`);
try {
const client = getClient(apiKey);
// --- DEBUG LOGGING --- >>
log(
'debug',
'[streamAnthropicText] Parameters received by streamText:',
JSON.stringify(
{
modelId: modelId, // Log modelId being used
messages: messages, // Log the messages array
maxTokens: maxTokens,
temperature: temperature
},
null,
2
)
);
// --- << DEBUG LOGGING ---
const stream = await streamText({
model: client(modelId),
messages: messages,
maxTokens: maxTokens,
temperature: temperature
// Beta header moved to client initialization
// TODO: Add other relevant parameters
});
// *** RETURN THE FULL STREAM OBJECT, NOT JUST stream.textStream ***
return stream;
} catch (error) {
log(
'error',
`Anthropic streamText failed: ${error.message}`,
error.stack // Log stack trace for more details
);
throw error;
}
}
/**
* Generates a structured object using an Anthropic model.
* NOTE: Anthropic's tool/function calling support might have limitations
* compared to OpenAI, especially regarding complex schemas or enforcement.
* The Vercel AI SDK attempts to abstract this.
*
* @param {object} params - Parameters for object generation.
* @param {string} params.apiKey - The Anthropic API key.
* @param {string} params.modelId - The specific Anthropic model ID.
* @param {Array<object>} params.messages - The messages array.
* @param {import('zod').ZodSchema} params.schema - The Zod schema for the object.
* @param {string} params.objectName - A name for the object/tool.
* @param {number} [params.maxTokens] - Maximum tokens for the response.
* @param {number} [params.temperature] - Temperature for generation.
* @param {number} [params.maxRetries] - Max retries for validation/generation.
* @returns {Promise<object>} The generated object matching the schema.
* @throws {Error} If generation or validation fails.
*/
export async function generateAnthropicObject({
apiKey,
modelId,
messages,
schema,
objectName = 'generated_object',
maxTokens,
temperature,
maxRetries = 3
}) {
log(
'debug',
`Generating Anthropic object ('${objectName}') with model: ${modelId}`
);
try {
const client = getClient(apiKey);
// Log basic debug info
log(
'debug',
`Using maxTokens: ${maxTokens}, temperature: ${temperature}, model: ${modelId}`
);
const result = await generateObject({
model: client(modelId),
mode: 'tool', // Anthropic generally uses 'tool' mode for structured output
schema: schema,
messages: messages,
tool: {
name: objectName,
description: `Generate a ${objectName} based on the prompt.`
},
maxTokens: maxTokens,
temperature: temperature,
maxRetries: maxRetries
});
log(
'debug',
`Anthropic generateObject result received. Tokens: ${result.usage.completionTokens}/${result.usage.promptTokens}`
);
return result.object;
} catch (error) {
// Simple error logging
log(
'error',
`Anthropic generateObject ('${objectName}') failed: ${error.message}`
);
throw error;
}
}
// TODO: Implement streamAnthropicObject if needed and supported well by the SDK for Anthropic.
// The basic structure would be similar to generateAnthropicObject but using streamObject.