This PR was automatically generated to update documentation based on recent changes. Original commit: Merge pull request #1212 from eyaltoledano/ralph/main/rebase\n\n\n Co-authored-by: Claude <claude-assistant@anthropic.com>
351 lines
14 KiB
Plaintext
351 lines
14 KiB
Plaintext
---
|
|
title: Advanced Configuration
|
|
sidebarTitle: "Advanced Configuration"
|
|
---
|
|
|
|
|
|
Taskmaster uses two primary methods for configuration:
|
|
|
|
1. **`.taskmaster/config.json` File (Recommended - New Structure)**
|
|
|
|
- This JSON file stores most configuration settings, including AI model selections, parameters, logging levels, and project defaults.
|
|
- **Location:** This file is created in the `.taskmaster/` directory when you run the `task-master models --setup` interactive setup or initialize a new project with `task-master init`.
|
|
- **Migration:** Existing projects with `.taskmasterconfig` in the root will continue to work, but should be migrated to the new structure using `task-master migrate`.
|
|
- **Management:** Use the `task-master models --setup` command (or `models` MCP tool) to interactively create and manage this file. You can also set specific models directly using `task-master models --set-<role>=<model_id>`, adding `--ollama` or `--openrouter` flags for custom models. Manual editing is possible but not recommended unless you understand the structure.
|
|
- **Example Structure:**
|
|
```json
|
|
{
|
|
"models": {
|
|
"main": {
|
|
"provider": "anthropic",
|
|
"modelId": "claude-3-7-sonnet-20250219",
|
|
"maxTokens": 64000,
|
|
"temperature": 0.2,
|
|
"baseURL": "https://api.anthropic.com/v1"
|
|
},
|
|
"research": {
|
|
"provider": "perplexity",
|
|
"modelId": "sonar-pro",
|
|
"maxTokens": 8700,
|
|
"temperature": 0.1,
|
|
"baseURL": "https://api.perplexity.ai/v1"
|
|
},
|
|
"fallback": {
|
|
"provider": "anthropic",
|
|
"modelId": "claude-3-5-sonnet",
|
|
"maxTokens": 64000,
|
|
"temperature": 0.2
|
|
}
|
|
},
|
|
"global": {
|
|
"logLevel": "info",
|
|
"debug": false,
|
|
"defaultSubtasks": 5,
|
|
"defaultPriority": "medium",
|
|
"defaultTag": "master",
|
|
"projectName": "Your Project Name",
|
|
"ollamaBaseURL": "http://localhost:11434/api",
|
|
"azureBaseURL": "https://your-endpoint.azure.com/openai/deployments",
|
|
"vertexProjectId": "your-gcp-project-id",
|
|
"vertexLocation": "us-central1"
|
|
}
|
|
}
|
|
```
|
|
|
|
|
|
2. **Legacy `.taskmasterconfig` File (Backward Compatibility)**
|
|
|
|
- For projects that haven't migrated to the new structure yet.
|
|
- **Location:** Project root directory.
|
|
- **Migration:** Use `task-master migrate` to move this to `.taskmaster/config.json`.
|
|
- **Deprecation:** While still supported, you'll see warnings encouraging migration to the new structure.
|
|
|
|
## Environment Variables (`.env` file or MCP `env` block - For API Keys Only)
|
|
|
|
- Used **exclusively** for sensitive API keys and specific endpoint URLs.
|
|
- **Location:**
|
|
- For CLI usage: Create a `.env` file in your project root.
|
|
- For MCP/Cursor usage: Configure keys in the `env` section of your `.cursor/mcp.json` file.
|
|
- **Required API Keys (Depending on configured providers):**
|
|
- `ANTHROPIC_API_KEY`: Your Anthropic API key.
|
|
- `PERPLEXITY_API_KEY`: Your Perplexity API key.
|
|
- `OPENAI_API_KEY`: Your OpenAI API key.
|
|
- `GOOGLE_API_KEY`: Your Google API key (also used for Vertex AI provider).
|
|
- `MISTRAL_API_KEY`: Your Mistral API key.
|
|
- `AZURE_OPENAI_API_KEY`: Your Azure OpenAI API key (also requires `AZURE_OPENAI_ENDPOINT`).
|
|
- `OPENROUTER_API_KEY`: Your OpenRouter API key.
|
|
- `XAI_API_KEY`: Your X-AI API key.
|
|
- **Optional Endpoint Overrides:**
|
|
- **Per-role `baseURL` in `.taskmasterconfig`:** You can add a `baseURL` property to any model role (`main`, `research`, `fallback`) to override the default API endpoint for that provider. If omitted, the provider's standard endpoint is used.
|
|
- **Environment Variable Overrides (`<PROVIDER>_BASE_URL`):** For greater flexibility, especially with third-party services, you can set an environment variable like `OPENAI_BASE_URL` or `MISTRAL_BASE_URL`. This will override any `baseURL` set in the configuration file for that provider. This is the recommended way to connect to OpenAI-compatible APIs.
|
|
- `AZURE_OPENAI_ENDPOINT`: Required if using Azure OpenAI key (can also be set as `baseURL` for the Azure model role).
|
|
- `OLLAMA_BASE_URL`: Override the default Ollama API URL (Default: `http://localhost:11434/api`).
|
|
- `VERTEX_PROJECT_ID`: Your Google Cloud project ID for Vertex AI. Required when using the 'vertex' provider.
|
|
- `VERTEX_LOCATION`: Google Cloud region for Vertex AI (e.g., 'us-central1'). Default is 'us-central1'.
|
|
- `GOOGLE_APPLICATION_CREDENTIALS`: Path to service account credentials JSON file for Google Cloud auth (alternative to API key for Vertex AI).
|
|
- `TASKMASTER_ENABLE_CODEBASE_ANALYSIS`: Control codebase analysis features (Claude Code and Gemini CLI integration). Set to 'false' to disable. Default: enabled.
|
|
|
|
**Important:** Settings like model ID selections (`main`, `research`, `fallback`), `maxTokens`, `temperature`, `logLevel`, `defaultSubtasks`, `defaultPriority`, and `projectName` are **managed in `.taskmaster/config.json`** (or `.taskmasterconfig` for unmigrated projects), not environment variables.
|
|
|
|
## Codebase Analysis Configuration
|
|
|
|
Task Master includes advanced codebase analysis features that enhance task generation by analyzing your project structure, existing implementations, and patterns. This is particularly useful when integrated with Claude Code or using Gemini CLI provider.
|
|
|
|
### Configuration Options
|
|
|
|
**Environment Variable Control (Priority Order: `.env` > MCP session env > `.taskmaster/config.json`)**
|
|
|
|
```bash
|
|
# In .env file
|
|
TASKMASTER_ENABLE_CODEBASE_ANALYSIS=false # Disable codebase analysis features
|
|
```
|
|
|
|
When enabled, the following commands benefit from codebase analysis:
|
|
|
|
- `parse-prd`: Generates tasks informed by project structure
|
|
- `analyze-complexity`: Considers existing codebase complexity
|
|
- `add-task`: Creates tasks aligned with project patterns
|
|
- `update-task`: Updates tasks with relevant codebase context
|
|
- `update-subtask`: Enhances subtasks based on implementation details
|
|
- `expand`: Generates subtasks informed by existing code patterns
|
|
|
|
### Integration with Claude Code
|
|
|
|
When Task Master detects it's running within Claude Code, it automatically provides codebase context to generate more accurate and relevant task details. This feature can be disabled using the environment variable above.
|
|
|
|
### Gemini CLI Provider Enhancement
|
|
|
|
The Gemini CLI provider includes automatic codebase analysis when generating or updating tasks, resulting in more contextually accurate outputs aligned with your project's architecture.
|
|
|
|
## Tagged Task Lists Configuration (v0.17+)
|
|
|
|
Taskmaster includes a tagged task lists system for multi-context task management.
|
|
|
|
### Global Tag Settings
|
|
|
|
```json
|
|
"global": {
|
|
"defaultTag": "master"
|
|
}
|
|
```
|
|
|
|
- **`defaultTag`** (string): Default tag context for new operations (default: "master")
|
|
|
|
### Git Integration
|
|
|
|
Task Master provides manual git integration through the `--from-branch` option:
|
|
|
|
- **Manual Tag Creation**: Use `task-master add-tag --from-branch` to create a tag based on your current git branch name
|
|
- **User Control**: No automatic tag switching - you control when and how tags are created
|
|
- **Flexible Workflow**: Supports any git workflow without imposing rigid branch-tag mappings
|
|
|
|
## State Management File
|
|
|
|
Taskmaster uses `.taskmaster/state.json` to track tagged system runtime information:
|
|
|
|
```json
|
|
{
|
|
"currentTag": "master",
|
|
"lastSwitched": "2025-06-11T20:26:12.598Z",
|
|
"migrationNoticeShown": true
|
|
}
|
|
```
|
|
|
|
- **`currentTag`**: Currently active tag context
|
|
- **`lastSwitched`**: Timestamp of last tag switch
|
|
- **`migrationNoticeShown`**: Whether migration notice has been displayed
|
|
|
|
This file is automatically created during tagged system migration and should not be manually edited.
|
|
|
|
## Example `.env` File (for API Keys)
|
|
|
|
```
|
|
# Required API keys for providers configured in .taskmaster/config.json
|
|
ANTHROPIC_API_KEY=sk-ant-api03-your-key-here
|
|
PERPLEXITY_API_KEY=pplx-your-key-here
|
|
# OPENAI_API_KEY=sk-your-key-here
|
|
# GOOGLE_API_KEY=AIzaSy...
|
|
# AZURE_OPENAI_API_KEY=your-azure-openai-api-key-here
|
|
# etc.
|
|
|
|
# Optional Endpoint Overrides
|
|
# Use a specific provider's base URL, e.g., for an OpenAI-compatible API
|
|
# OPENAI_BASE_URL=https://api.third-party.com/v1
|
|
#
|
|
# Azure OpenAI Configuration
|
|
# AZURE_OPENAI_ENDPOINT=https://your-resource-name.openai.azure.com/ or https://your-endpoint-name.cognitiveservices.azure.com/openai/deployments
|
|
# OLLAMA_BASE_URL=http://custom-ollama-host:11434/api
|
|
|
|
# Google Vertex AI Configuration (Required if using 'vertex' provider)
|
|
# VERTEX_PROJECT_ID=your-gcp-project-id
|
|
|
|
# Feature Control
|
|
# TASKMASTER_ENABLE_CODEBASE_ANALYSIS=false # Disable codebase analysis features
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
### Configuration Errors
|
|
|
|
- If Task Master reports errors about missing configuration or cannot find the config file, run `task-master models --setup` in your project root to create or repair the file.
|
|
- For new projects, config will be created at `.taskmaster/config.json`. For legacy projects, you may want to use `task-master migrate` to move to the new structure.
|
|
- Ensure API keys are correctly placed in your `.env` file (for CLI) or `.cursor/mcp.json` (for MCP) and are valid for the providers selected in your config file.
|
|
|
|
### If `task-master init` doesn't respond:
|
|
|
|
Try running it with Node directly:
|
|
|
|
```bash
|
|
node node_modules/claude-task-master/scripts/init.js
|
|
```
|
|
|
|
Or clone the repository and run:
|
|
|
|
```bash
|
|
git clone https://github.com/eyaltoledano/claude-task-master.git
|
|
cd claude-task-master
|
|
node scripts/init.js
|
|
```
|
|
|
|
## Provider-Specific Configuration
|
|
|
|
### Google Vertex AI Configuration
|
|
|
|
Google Vertex AI is Google Cloud's enterprise AI platform and requires specific configuration:
|
|
|
|
1. **Prerequisites**:
|
|
- A Google Cloud account with Vertex AI API enabled
|
|
- Either a Google API key with Vertex AI permissions OR a service account with appropriate roles
|
|
- A Google Cloud project ID
|
|
2. **Authentication Options**:
|
|
- **API Key**: Set the `GOOGLE_API_KEY` environment variable
|
|
- **Service Account**: Set `GOOGLE_APPLICATION_CREDENTIALS` to point to your service account JSON file
|
|
3. **Required Configuration**:
|
|
- Set `VERTEX_PROJECT_ID` to your Google Cloud project ID
|
|
- Set `VERTEX_LOCATION` to your preferred Google Cloud region (default: us-central1)
|
|
4. **Example Setup**:
|
|
|
|
```bash
|
|
# In .env file
|
|
GOOGLE_API_KEY=AIzaSyXXXXXXXXXXXXXXXXXXXXXXXXX
|
|
VERTEX_PROJECT_ID=my-gcp-project-123
|
|
VERTEX_LOCATION=us-central1
|
|
```
|
|
|
|
Or using service account:
|
|
|
|
```bash
|
|
# In .env file
|
|
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json
|
|
VERTEX_PROJECT_ID=my-gcp-project-123
|
|
VERTEX_LOCATION=us-central1
|
|
```
|
|
|
|
5. **In .taskmaster/config.json**:
|
|
```json
|
|
"global": {
|
|
"vertexProjectId": "my-gcp-project-123",
|
|
"vertexLocation": "us-central1"
|
|
}
|
|
```
|
|
|
|
### Azure OpenAI Configuration
|
|
|
|
Azure OpenAI provides enterprise-grade OpenAI models through Microsoft's Azure cloud platform and requires specific configuration:
|
|
|
|
1. **Prerequisites**:
|
|
- An Azure account with an active subscription
|
|
- Azure OpenAI service resource created in the Azure portal
|
|
- Azure OpenAI API key and endpoint URL
|
|
- Deployed models (e.g., gpt-4o, gpt-4o-mini, gpt-4.1, etc) in your Azure OpenAI resource
|
|
|
|
2. **Authentication**:
|
|
- Set the `AZURE_OPENAI_API_KEY` environment variable with your Azure OpenAI API key
|
|
- Configure the endpoint URL using one of the methods below
|
|
|
|
3. **Configuration Options**:
|
|
|
|
**Option 1: Using Global Azure Base URL (affects all Azure models)**
|
|
```json
|
|
// In .taskmaster/config.json
|
|
{
|
|
"models": {
|
|
"main": {
|
|
"provider": "azure",
|
|
"modelId": "gpt-4o",
|
|
"maxTokens": 16000,
|
|
"temperature": 0.7
|
|
},
|
|
"fallback": {
|
|
"provider": "azure",
|
|
"modelId": "gpt-4o-mini",
|
|
"maxTokens": 10000,
|
|
"temperature": 0.7
|
|
}
|
|
},
|
|
"global": {
|
|
"azureBaseURL": "https://your-resource-name.azure.com/openai/deployments"
|
|
}
|
|
}
|
|
```
|
|
|
|
**Option 2: Using Per-Model Base URLs (recommended for flexibility)**
|
|
```json
|
|
// In .taskmaster/config.json
|
|
{
|
|
"models": {
|
|
"main": {
|
|
"provider": "azure",
|
|
"modelId": "gpt-4o",
|
|
"maxTokens": 16000,
|
|
"temperature": 0.7,
|
|
"baseURL": "https://your-resource-name.azure.com/openai/deployments"
|
|
},
|
|
"research": {
|
|
"provider": "perplexity",
|
|
"modelId": "sonar-pro",
|
|
"maxTokens": 8700,
|
|
"temperature": 0.1
|
|
},
|
|
"fallback": {
|
|
"provider": "azure",
|
|
"modelId": "gpt-4o-mini",
|
|
"maxTokens": 10000,
|
|
"temperature": 0.7,
|
|
"baseURL": "https://your-resource-name.azure.com/openai/deployments"
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
4. **Environment Variables**:
|
|
```bash
|
|
# In .env file
|
|
AZURE_OPENAI_API_KEY=your-azure-openai-api-key-here
|
|
|
|
# Optional: Override endpoint for all Azure models
|
|
AZURE_OPENAI_ENDPOINT=https://your-resource-name.azure.com/openai/deployments
|
|
```
|
|
|
|
5. **Important Notes**:
|
|
- **Model Deployment Names**: The `modelId` in your configuration should match the **deployment name** you created in Azure OpenAI Studio, not the underlying model name
|
|
- **Base URL Priority**: Per-model `baseURL` settings override the global `azureBaseURL` setting
|
|
- **Endpoint Format**: When using per-model `baseURL`, use the full path including `/openai/deployments`
|
|
|
|
6. **Troubleshooting**:
|
|
|
|
**"Resource not found" errors:**
|
|
- Ensure your `baseURL` includes the full path: `https://your-resource-name.openai.azure.com/openai/deployments`
|
|
- Verify that your deployment name in `modelId` exactly matches what's configured in Azure OpenAI Studio
|
|
- Check that your Azure OpenAI resource is in the correct region and properly deployed
|
|
|
|
**Authentication errors:**
|
|
- Verify your `AZURE_OPENAI_API_KEY` is correct and has not expired
|
|
- Ensure your Azure OpenAI resource has the necessary permissions
|
|
- Check that your subscription has not been suspended or reached quota limits
|
|
|
|
**Model availability errors:**
|
|
- Confirm the model is deployed in your Azure OpenAI resource
|
|
- Verify the deployment name matches your configuration exactly (case-sensitive)
|
|
- Ensure the model deployment is in a "Succeeded" state in Azure OpenAI Studio
|
|
- Ensure youre not getting rate limited by `maxTokens` maintain appropriate Tokens per Minute Rate Limit (TPM) in your deployment. |