Compare commits

..

11 Commits

Author SHA1 Message Date
Ralph Khreish
ed45c56dfa chore: fix format 2025-06-14 21:23:59 +03:00
Eyal Toledano
ee53303c37 chore: package-lock fixup 2025-06-14 21:15:14 +03:00
Eyal Toledano
b848452a46 docs: Update taskmaster.mdc and dev_workflow.mdc with missing CLI flags and enhanced workflow guidance
- Add missing --tag flags to commands that were implemented but not documented
- Add missing --file flags to tag management commands
- Add --bedrock flag to models command documentation
- Synchronize CLI documentation with actual implementation in commands.js
- Enhance dev_workflow.mdc with comprehensive tagged task lists guidance
- Add patterns for when to introduce tags (git branching, team collaboration, experiments)
- Consolidate and refine changesets for upcoming release
2025-06-14 21:15:14 +03:00
Ralph Khreish
af66607e20 chore: rc version bump (#776)
* Version Packages

* chore: update package-lock.json

* chore: fix format

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Eyal Toledano <eyal@microangel.so>
2025-06-14 20:14:28 +02:00
github-actions[bot]
705b01c68c chore: rc version bump 2025-06-14 15:12:26 +00:00
Eyal Toledano
9372110672 chore: v017 linting (#773) 2025-06-14 11:10:27 -04:00
Ralph Khreish
72502416c6 chore: v0.17 features and improvements (#771)
* chore: task management and small bug fix.

* chore: task management

* feat: implement research command with enhanced context gathering - Add comprehensive research command with AI-powered queries - Implement ContextGatherer utility for reusable context extraction - Support multiple context types: tasks, files, custom text, project tree - Add fuzzy search integration for automatic task discovery - Implement detailed token breakdown display with syntax highlighting - Add enhanced UI with boxed output and code block formatting - Support different detail levels (low, medium, high) for responses - Include project-specific context for more relevant AI responses - Add token counting with gpt-tokens library integration - Create reusable patterns for future context-aware commands - Task 94.4 completed

* docs: add context gathering rule and update existing rules

- Create comprehensive context_gathering.mdc rule documenting ContextGatherer utility patterns, FuzzyTaskSearch integration, token breakdown display, code block syntax highlighting, and enhanced result display patterns
- Update new_features.mdc to include context gathering step
- Update commands.mdc with context-aware command pattern
- Update ui.mdc with enhanced display patterns and syntax highlighting
- Update utilities.mdc to document new context gathering utilities
- Update glossary.mdc to include new context_gathering rule
- Establishes standardized patterns for building intelligent, context-aware commands that can leverage project knowledge for better AI assistance

* feat(fuzzy): improves fuzzy search to introspect into subtasks as well. might still need improvement.

* fix(move): adjusts logic to prevent an issue when moving from parent to subtask if the target parent has no subtasks.

* fix(move-task): Fix critical bugs in task move functionality

- Fixed parent-to-parent task moves where original task would remain as duplicate
- Fixed moving tasks to become subtasks of empty parents (validation errors)
- Fixed moving subtasks between different parent tasks
- Improved comma-separated batch moves with proper error handling
- Updated MCP tool to use core logic instead of custom implementation
- Resolves task duplication issues and enables proper task hierarchy reorganization

* feat(research): Add subtasks to fuzzy search and follow-up questions

- Enhanced fuzzy search to include subtasks in discovery - Added interactive follow-up question functionality using inquirer
- Improved context discovery by including both tasks and subtasks
- Follow-up option for research with default to 'n' for quick workflow

* chore: removes task004 chat that had like 11k lines lol.

* chore: formatting

* feat(show): add comma-separated ID support for multi-task viewing

- Enhanced get-task/show command to support comma-separated task IDs for efficient batch operations.
- New features include multiple task retrieval, smart display logic, interactive action menu with batch operations, MCP array response for AI agent efficiency, and support for mixed parent tasks and subtasks.
- Implementation includes updated CLI show command, enhanced MCP get_task tool, modified showTaskDirect function, and maintained full backward compatibility.
- Documentation updated across all relevant files.

Benefits include faster context gathering for AI agents, improved workflow with interactive batch operations, better UX with responsive layout, and enhanced API efficiency.

* feat(research): Adds MCP tool for  command

- New MCP Tool: research tool enables AI-powered research with project context
- Context Integration: Supports task IDs, file paths, custom context, and project tree
- Fuzzy Task Discovery: Automatically finds relevant tasks using semantic search
- Token Management: Detailed token counting and breakdown by context type
- Multiple Detail Levels: Support for low, medium, and high detail research responses
- Telemetry Integration: Full cost tracking and usage analytics
- Direct Function: researchDirect with comprehensive parameter validation
- Silent Mode: Prevents console output interference with MCP JSON responses
- Error Handling: Robust error handling with proper MCP response formatting

This completes subtasks 94.5 (Direct Function) and 94.6 (MCP Tool) for the research command implementation, providing a powerful research interface for integrated development environments like Cursor.

Updated documentation across taskmaster.mdc, README.md, command-reference.md, examples.md, tutorial.md, and docs/README.md to highlight research capabilities and usage patterns.

* chore: task management

* chore: task management and removes mistakenly staged changes

* fix(move): Fix move command bug that left duplicate tasks

- Fixed logic in moveTaskToNewId function that was incorrectly treating task-to-task moves as subtask creation instead of task replacement
- Updated moveTaskToNewId to properly handle replacing existing destination tasks instead of just placeholders
- The move command now correctly replaces destination tasks and cleans up properly without leaving duplicates

- Task Management: Moved task 93 (Google Vertex AI Provider) to position 88, Moved task 94 (Azure OpenAI Provider) to position 89, Updated task dependencies and regenerated task files, Cleaned up orphaned task files automatically
- All important validations remain in place: Prevents moving tasks to themselves, Prevents moving parent tasks to their own subtasks, Prevents circular dependencies
- Resolves the issue where moving tasks would leave both source and destination tasks in tasks.json and file system

* chore: formatting

* feat: Add .taskmaster directory (#619)

* chore: apply requested changes from next branch (#629)

* chore: rc version bump

* chore: cleanup migration-guide

* fix: bedrock set model and other fixes (#641)

* Fix: MCP log errors (#648)

* fix: projectRoot duplicate .taskmaster directory (#655)

* Version Packages

* chore: add package-lock.json

* Version Packages

* Version Packages

* fix: markdown format (#622)

* Version Packages

* Version Packages

* Fixed the Typo in cursor rules Issue:#675 (#677)

Fixed the typo in the Api keys

* Add one-click MCP server installation for Cursor (#671)

* Update README.md - Remove trailing commas (#673)

JSON doesn't allow for trailing commas, so these need to be removed in order for this to work

* chore: rc version bump

* fix: findTasksPath function

* fix: update MCP tool

* feat(ui): replace emoji complexity indicators with clean filled circle characters

Replace 🟢, 🟡, 🔴 emojis with ● character in getComplexityWithColor function

Update corresponding unit tests to expect ● instead of emojis

Improves UI continuity

* fix(ai-providers): change generateObject mode from 'tool' to 'auto' for better provider compatibility

Fixes Perplexity research role failing with 'tool-mode object generation' error

The hardcoded 'tool' mode was incompatible with providers like Perplexity that support structured JSON output but not function calling/tool use

Using 'auto' mode allows the AI SDK to choose the best approach for each provider

* Adds qwen3-235n-a22b:free to supported models. Closes #687)

* chore: adds a warning when custom openrouter model is a free model which suffers from lower rate limits, restricted context, and, worst of all, no access to tool_use.

* refactor: enhance add-task fuzzy search and fix duplicate banner display

- **Remove hardcoded category system** in add-task that always matched 'Task management'
- **Eliminate arbitrary limits** in fuzzy search results (5→25 high relevance, 3→10 medium relevance, 8→20 detailed tasks)
- **Improve semantic weighting** in Fuse.js search (details=3, description=2, title=1.5) for better relevance
- **Fix duplicate banner issue** by removing console.clear() and redundant displayBanner() calls from UI functions
- **Enhance context generation** to rely on semantic similarity rather than rigid pattern matching
- **Preserve terminal history** to address GitHub issue #553 about eating terminal lines
- **Remove displayBanner() calls** from: displayHelp, displayNextTask, displayTaskById, displayComplexityReport, set-task-status, clear-subtasks, dependency-manager functions

The add-task system now provides truly relevant task context based on semantic similarity rather than arbitrary categories and limits, while maintaining a cleaner terminal experience.

Changes span: add-task.js, ui.js, set-task-status.js, clear-subtasks.js, list-tasks.js, dependency-manager.js

Closes #553

* chore: changeset

* chore: passes tests and linting

* chore: more linting

* ninja(sync): add sync-readme command for GitHub README export with UTM tracking and professional markdown formatting. Experimental

* chore: changeset adjustment

* docs: Auto-update and format models.md

* chore: updates readme with npm download badges and mentions AI Jason who is joining the taskmaster core team.

* chore: fixes urls in readme npm packages

* chore: fixes urls in readme npm packages again

* fix: readme typo

* readme: fix twitter urls.

* readme: removes the taskmaster list output which is too overwhelming given its size with subtasks. may re-add later. fixes likely issues in the json for manual config in cursor and windsurf in the readme.

* chore: small readme nitpicks

* chore: adjusts changeset from minor to patch to avoid version bump to 0.17

* readme: moves up the documentation links higher up in the readme. same with the cursor one-click install.

* Fix Cursor deeplink installation with copy-paste instructions (#723)

* solve merge conflics with next. not gonna deal with these much longer.

* chore: update task files during rebase

* chore: task management

* feat: implement research command with enhanced context gathering - Add comprehensive research command with AI-powered queries - Implement ContextGatherer utility for reusable context extraction - Support multiple context types: tasks, files, custom text, project tree - Add fuzzy search integration for automatic task discovery - Implement detailed token breakdown display with syntax highlighting - Add enhanced UI with boxed output and code block formatting - Support different detail levels (low, medium, high) for responses - Include project-specific context for more relevant AI responses - Add token counting with gpt-tokens library integration - Create reusable patterns for future context-aware commands - Task 94.4 completed

* fix(move): adjusts logic to prevent an issue when moving from parent to subtask if the target parent has no subtasks.

* fix(move-task): Fix critical bugs in task move functionality

- Fixed parent-to-parent task moves where original task would remain as duplicate
- Fixed moving tasks to become subtasks of empty parents (validation errors)
- Fixed moving subtasks between different parent tasks
- Improved comma-separated batch moves with proper error handling
- Updated MCP tool to use core logic instead of custom implementation
- Resolves task duplication issues and enables proper task hierarchy reorganization

* chore: removes task004 chat that had like 11k lines lol.

* feat(show): add comma-separated ID support for multi-task viewing

- Enhanced get-task/show command to support comma-separated task IDs for efficient batch operations.
- New features include multiple task retrieval, smart display logic, interactive action menu with batch operations, MCP array response for AI agent efficiency, and support for mixed parent tasks and subtasks.
- Implementation includes updated CLI show command, enhanced MCP get_task tool, modified showTaskDirect function, and maintained full backward compatibility.
- Documentation updated across all relevant files.

Benefits include faster context gathering for AI agents, improved workflow with interactive batch operations, better UX with responsive layout, and enhanced API efficiency.

* feat(research): Adds MCP tool for  command

- New MCP Tool: research tool enables AI-powered research with project context
- Context Integration: Supports task IDs, file paths, custom context, and project tree
- Fuzzy Task Discovery: Automatically finds relevant tasks using semantic search
- Token Management: Detailed token counting and breakdown by context type
- Multiple Detail Levels: Support for low, medium, and high detail research responses
- Telemetry Integration: Full cost tracking and usage analytics
- Direct Function: researchDirect with comprehensive parameter validation
- Silent Mode: Prevents console output interference with MCP JSON responses
- Error Handling: Robust error handling with proper MCP response formatting

This completes subtasks 94.5 (Direct Function) and 94.6 (MCP Tool) for the research command implementation, providing a powerful research interface for integrated development environments like Cursor.

Updated documentation across taskmaster.mdc, README.md, command-reference.md, examples.md, tutorial.md, and docs/README.md to highlight research capabilities and usage patterns.

* chore: task management

* fix(move): Fix move command bug that left duplicate tasks

- Fixed logic in moveTaskToNewId function that was incorrectly treating task-to-task moves as subtask creation instead of task replacement
- Updated moveTaskToNewId to properly handle replacing existing destination tasks instead of just placeholders
- The move command now correctly replaces destination tasks and cleans up properly without leaving duplicates

- Task Management: Moved task 93 (Google Vertex AI Provider) to position 88, Moved task 94 (Azure OpenAI Provider) to position 89, Updated task dependencies and regenerated task files, Cleaned up orphaned task files automatically
- All important validations remain in place: Prevents moving tasks to themselves, Prevents moving parent tasks to their own subtasks, Prevents circular dependencies
- Resolves the issue where moving tasks would leave both source and destination tasks in tasks.json and file system

* chore: moves to new task master config setup

* feat: add comma-separated status filtering to list-tasks

- supports multiple statuses like 'blocked,deferred' with comprehensive test coverage and backward compatibility

- also adjusts biome.json to stop bitching about templating.

* chore: linting ffs

* fix(generate): Fix generate command creating tasks in legacy location

- Update generate command default output directory from 'tasks' to '.taskmaster/tasks'
- Fix path.dirname() usage to properly derive output directory from tasks file location
- Update MCP tool description and documentation to reflect new structure
- Disable Biome linting rules for noUnusedTemplateLiteral and useArrowFunction
- Fixes issue where generate command was creating task files in the old 'tasks/' directory instead of the new '.taskmaster/tasks/' structure after the refactor

* chore: task management

* chore: task management some more

* fix(get-task): makes the projectRoot argument required to prevent errors when getting tasks.

* feat(tags): Implement tagged task lists migration system (Part 1/2)

This commit introduces the foundational infrastructure for tagged task lists,
enabling multi-context task management without remote storage to prevent merge conflicts.

CORE ARCHITECTURE:
• Silent migration system transforms tasks.json from old format { "tasks": [...] }
  to new tagged format { "master": { "tasks": [...] } }
• Tag resolution layer provides complete backward compatibility - existing code continues to work
• Automatic configuration and state management for seamless user experience

SILENT MIGRATION SYSTEM:
• Automatic detection and migration of legacy tasks.json format
• Complete project migration: tasks.json + config.json + state.json
• Transparent tag resolution returns old format to maintain compatibility
• Zero breaking changes - all existing functionality preserved

CONFIGURATION MANAGEMENT:
• Added global.defaultTag setting (defaults to 'master')
• New tags section with gitIntegration placeholders for future features
• Automatic config.json migration during first run
• Proper state.json creation with migration tracking

USER EXPERIENCE:
• Clean, one-time FYI notice after migration (no emojis, professional styling)
• Notice appears after 'Suggested Next Steps' and is tracked in state.json
• Silent operation - users unaware migration occurred unless explicitly shown

TECHNICAL IMPLEMENTATION:
• Enhanced readJSON() with automatic migration detection and processing
• New utility functions: getCurrentTag(), resolveTag(), getTasksForTag(), setTasksForTag()
• Complete migration orchestration via performCompleteTagMigration()
• Robust error handling and fallback mechanisms

BACKWARD COMPATIBILITY:
• 100% backward compatibility maintained
• Existing CLI commands and MCP tools continue to work unchanged
• Legacy tasks.json format automatically upgraded on first read
• All existing workflows preserved

TESTING VERIFIED:
• Complete migration from legacy state works correctly
• Config.json properly updated with tagged system settings
• State.json created with correct initial values
• Migration notice system functions as designed
• All existing functionality continues to work normally

Part 2 will implement tag management commands (add-tag, use-tag, list-tags)
and MCP tool updates for full tagged task system functionality.

Related: Task 103 - Implement Tagged Task Lists System for Multi-Context Task Management

* docs: Update documentation and rules for tagged task lists system

- Updated task-structure.md with comprehensive tagged format explanation
- Updated all .cursor/rules/*.mdc files to reflect tagged system
- Completed subtask 103.16: Update Documentation for Tagged Task Lists System

* feat(mcp): Add tagInfo to responses and integrate ContextGatherer

Enhances the MCP server to include 'tagInfo' (currentTag, availableTags) in all tool responses, providing better client-side context.

- Introduces a new 'ContextGatherer' utility to standardize the collection of file, task, and project context for AI-powered commands. This refactors several task-manager modules ('expand-task', 'research', 'update-task', etc.) to use the new utility.

- Fixes an issue in 'get-task' and 'get-tasks' MCP tools where the 'projectRoot' was not being passed correctly, preventing tag information from being included in their responses.

- Adds subtask '103.17' to track the implementation of the task template importing feature.

- Updates documentation ('.cursor/rules', 'docs/') to align with the new tagged task system and context gatherer logic.

* fix: include tagInfo in AI service responses for MCP tools

- Update all core functions that call AI services to extract and return tagInfo
- Update all direct functions to include tagInfo in MCP response data
- Fixes issue where add_task, expand_task, and other AI commands were not including current tag and available tags information
- tagInfo includes currentTag from state.json and availableTags list
- Ensures tagged task lists system information is properly propagated through the full chain: AI service -> core function -> direct function -> MCP client

* fix(move-task): Update move functionality for tagged task system compatibility

- incorporate GitHub commit fixes and resolve readJSON data handling

* feat(tagged-tasks): Complete core tag management system implementation

- Implements comprehensive tagged task lists system for multi-context task management including core tag management functions (Task 103.11), MCP integration updates, and foundational infrastructure for tagged task operations. Features tag CRUD operations, validation, metadata tracking, deep task copying, and full backward compatibility.

* fix(core): Fixed move-task.js writing _rawTaggedData directly, updated writeJSON to filter tag fields, fixed CLI move command missing projectRoot, added ensureTagMetadata utility

* fix(tasks): ensure list tasks triggers silent migration if necessary.

* feat(tags): Complete show and add-task command tag support
- show command: Added --tag flag, fixed projectRoot passing to UI functions
- add-task command: Already had proper tag support and projectRoot handling
- Both commands now work correctly with tagged task lists system
- Migration logic works properly when viewing and adding tasks
- Updated subtask 103.5 with progress on high-priority command fixes

* fix(tags): Clean up rogue created properties and fix taskCount calculation
- Enhanced writeJSON to automatically filter rogue created/description properties from tag objects
- Fixed tags command error by making taskCount calculation dynamic instead of hardcoded
- Cleaned up existing rogue created property in master tag through forced write operation
- All created properties now properly located in metadata objects only
- Tags command working perfectly with proper task count display
- Data integrity maintained with automatic cleanup during write operations

* fix(tags): Resolve critical tag deletion and migration notice bugs

Major Issues Fixed:

1. Tag Deletion Bug: Fixed critical issue where creating subtasks would delete other tags

   - Root cause: writeJSON function wasn't accepting projectRoot/tag parameters

   - Fixed writeJSON signature and logic to handle tagged data structure

   - Added proper merging of resolved tag data back into full tagged structure

2. Persistent Migration Notice: Fixed FYI notice showing after every command

   - Root cause: markMigrationForNotice was resetting migrationNoticeShown to false

   - Fixed migration logic to only trigger on actual legacy->tagged migrations

   - Added proper _rawTaggedData checks to prevent false migration detection

3. Data Corruption Prevention: Enhanced data integrity safeguards

   - Fixed writeJSON to filter out internal properties

   - Added automatic cleanup of rogue properties

   - Improved hasTaggedStructure detection logic

Commands Fixed: add-subtask, remove-subtask, and all commands now preserve tags correctly

* fix(tags): Resolve tag deletion bug in remove-task command

Refactored the core 'removeTask' function to be fully tag-aware, preventing data corruption.

- The function now correctly reads the full tagged data structure by prioritizing '_rawTaggedData' instead of operating on a resolved single-tag view.

- All subsequent operations (task removal, dependency cleanup, file writing) now correctly reference the full multi-tag data object, preserving the integrity of 'tasks.json'.

- This resolves the critical bug where removing a task would delete all other tags.

* fix(tasks): Ensure new task IDs are sequential within the target tag

Modified the ID generation logic in 'add-task.js' to calculate the next task ID based on the highest ID within the specified tag, rather than globally across all tags.

This fixes a critical bug where creating a task in a new tag would result in a high, non-sequential ID, such as ID 105 for the first task in a tag.

* fix(commands): Add missing context parameters to dependency and remove-subtask commands

- Add projectRoot and tag context to all dependency commands
- Add projectRoot and tag context to remove-subtask command
- Add --tag option to remove-subtask command
- Fixes critical bug where remove-subtask was deleting other tags due to missing context
- All dependency and subtask commands now properly handle tagged task lists

* feat(tags): Add --tag flag support to core commands for multi-context task management
- parse-prd now supports creating tasks in specific contexts
- Fixed tag preservation logic to prevent data loss
- analyze-complexity generates tag-specific reports
- Non-existent tags created automatically
- Enables rapid prototyping and parallel development workflows

* feat(tags): Complete tagged task lists system with enhanced use-tag command

- Multi-context task management with full CLI support
- Enhanced use-tag command shows next available task after switching
- Universal --tag flag support across all commands
- Seamless migration with zero disruption
- Complete tag management suite (add, delete, rename, copy, list)
- Smart confirmation logic and data integrity protection
- State management and configuration integration
- Real-world use cases for teams, features, and releases

* feat(tags): Complete tag support for remaining CLI commands

- Add --tag flag to update, move, and set-status commands
- Ensure all task operation commands now support tag context
- Fix missing tag context passing to core functions
- Complete comprehensive tag-aware command coverage

* feat(ui): add tag indicator to all CLI commands
- shows 🏷️ tag: tagname for complete context visibility across 15+ commands

* fix(ui): resolve dependency 'Not found' issue when filtering

- now correctly displays dependencies that exist but are filtered out of view

* feat(research): Add comprehensive AI-powered research command with interactive follow-ups, save functionality, intelligent context gathering, fuzzy task discovery, multi-source context support, enhanced display with syntax highlighting, clean inquirer menus, comprehensive help, and MCP integration with saveTo parameter

* feat(tags): Implement full MCP support for Tagged Task Lists and update-task append mode

* chore: task management

* feat(research): Enhance research command with follow-up menu, save functionality, and fix ContextGatherer token counting

* feat(git-workflow): Add automatic git branch-tag integration

- Implement automatic tag creation when switching to new git branches

- Add branch-tag mapping system for seamless context switching

- Enable auto-switch of task contexts based on current git branch

- Provide isolated task contexts per branch to prevent merge conflicts

- Add configuration support for enabling/disabling git workflow features

- Fix ES module compatibility issues in git-utils module

- Maintain zero migration impact with automatic 'master' tag creation

- Support parallel development with branch-specific task contexts

The git workflow system automatically detects branch changes and creates corresponding empty task tags, enabling developers to maintain separate task contexts for different features/branches while preventing task-related merge conflicts during collaborative development.

Resolves git workflow integration requirements for multi-context development.

* feat(git-workflow): Simplify git integration with --from-branch option

- Remove automatic git workflow and branch-tag switching - we are not ready for it yet

- Add --from-branch option to add-tag command for manual tag creation from git branch

- Remove git workflow configuration from config.json and assets

- Disable automatic tag switching functions in git-utils.js

- Add createTagFromBranch function for branch-based tag creation

- Support both CLI and MCP interfaces for --from-branch functionality

- Fix ES module imports in git-utils.js and utils.js

- Maintain user control over tag contexts without forced automation

The simplified approach allows users to create tags from their current git branch when desired, without the complexity and rigidity of automatic branch-tag synchronization. Users maintain full control over their tag contexts while having convenient tools for git-based workflows when needed.

* docs: Update rule files to reflect simplified git integration approach

- Remove automatic git workflow features, update to manual --from-branch option, change Part 2 references to completed status

* fix(commands): Fix add-tag --from-branch requiring tagName argument
- Made tagName optional when using --from-branch - Added validation for either tagName or --from-branch
- Fixes 'missing required argument' error with --from-branch option

* fix(mcp): Prevent tag deletion on subtask update

Adds a safety net to the writeJSON utility to prevent data loss when updating subtasks via the MCP server.

The MCP process was inadvertently causing the _rawTaggedData property, which holds the complete multi-tag structure, to be lost. When writeJSON received the data for only a single tag, it would overwrite the entire tasks.json file, deleting all other tags.

This fix makes writeJSON more robust. If it receives data that looks like a single, resolved tag without the complete structure, it re-reads the full tasks.json file from disk. It then carefully merges the updated data back into the correct tag within the full structure, preserving all other tags.

* fix: resolve all remaining test failures and improve test reliability

- Fix clear-subtasks test by implementing deep copy of mock data to prevent mutation issues between tests
- Fix add-task test by uncommenting and properly configuring generateTaskFiles call with correct parameters
- Fix analyze-task-complexity tests by properly mocking fs.writeFileSync with shared mock function
- Update test expectations to match actual function signatures and data structures
- Improve mock setup consistency across all test suites
- Ensure all tests now pass (329 total: 318 passed, 11 skipped, 0 failed)

* chore: task management

---------

Co-authored-by: Eyal Toledano <eyal@microangel.so>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ibrahim H. <bitsnaps@yahoo.fr>
Co-authored-by: Saksham Goel <sakshamgoel1107@gmail.com>
Co-authored-by: Joe Danziger <joe@ticc.net>
Co-authored-by: Aaron Gabriel Neyer <ag@unforced.org>
2025-06-14 11:04:26 -04:00
github-actions[bot]
668b22e615 docs: Auto-update and format models.md 2025-06-13 21:21:04 +00:00
Volodymyr Zahorniak
4901908f5d docs: Update o3 model price (#751) 2025-06-13 23:20:52 +02:00
Ralph Khreish
dc7a5414c0 fix: expand-task (#755) 2025-06-12 21:35:21 +02:00
Joe Danziger
40a52385ba Fix Cursor deeplink installation with copy-paste instructions (#723) 2025-06-09 12:45:39 +02:00
669 changed files with 7876 additions and 108059 deletions

View File

@@ -0,0 +1,78 @@
---
"task-master-ai": minor
---
Add comprehensive AI-powered research command with intelligent context gathering and interactive follow-ups.
The new `research` command provides AI-powered research capabilities that automatically gather relevant project context to answer your questions. The command intelligently selects context from multiple sources and supports interactive follow-up questions in CLI mode.
**Key Features:**
- **Intelligent Task Discovery**: Automatically finds relevant tasks and subtasks using fuzzy search based on your query keywords, supplementing any explicitly provided task IDs
- **Multi-Source Context**: Gathers context from tasks, files, project structure, and custom text to provide comprehensive answers
- **Interactive Follow-ups**: CLI users can ask follow-up questions that build on the conversation history while allowing fresh context discovery for each question
- **Flexible Detail Levels**: Choose from low (concise), medium (balanced), or high (comprehensive) response detail levels
- **Token Transparency**: Displays detailed token breakdown showing context size, sources, and estimated costs
- **Enhanced Display**: Syntax-highlighted code blocks and structured output with clear visual separation
**Usage Examples:**
```bash
# Basic research with auto-discovered context
task-master research "How should I implement user authentication?"
# Research with specific task context
task-master research "What's the best approach for this?" --id=15,23.2
# Research with file context and project tree
task-master research "How does the current auth system work?" --files=src/auth.js,config/auth.json --tree
# Research with custom context and low detail
task-master research "Quick implementation steps?" --context="Using JWT tokens" --detail=low
```
**Context Sources:**
- **Tasks**: Automatically discovers relevant tasks/subtasks via fuzzy search, plus any explicitly specified via `--id`
- **Files**: Include specific files via `--files` for code-aware responses
- **Project Tree**: Add `--tree` to include project structure overview
- **Custom Context**: Provide additional context via `--context` for domain-specific information
**Interactive Features (CLI only):**
- Follow-up questions that maintain conversation history
- Fresh fuzzy search for each follow-up to discover newly relevant tasks
- Cumulative context building across the conversation
- Clean visual separation between exchanges
- **Save to Tasks**: Save entire research conversations (including follow-ups) directly to task or subtask details with timestamps
- **Clean Menu Interface**: Streamlined inquirer-based menu for follow-up actions without redundant UI elements
**Save Functionality:**
The research command now supports saving complete conversation threads to tasks or subtasks:
- Save research results and follow-up conversations to any task (e.g., "15") or subtask (e.g., "15.2")
- Automatic timestamping and formatting of conversation history
- Validation of task/subtask existence before saving
- Appends to existing task details without overwriting content
- Supports both CLI interactive mode and MCP programmatic access via `--save-to` flag
**Enhanced CLI Options:**
```bash
# Auto-save research results to a task
task-master research "Implementation approach?" --save-to=15
# Combine auto-save with context gathering
task-master research "How to optimize this?" --id=23 --save-to=23.1
```
**MCP Integration:**
- `saveTo` parameter for automatic saving to specified task/subtask ID
- Structured response format with telemetry data
- Silent operation mode for programmatic usage
- Full feature parity with CLI except interactive follow-ups
The research command integrates with the existing AI service layer and supports all configured AI providers. Both CLI and MCP interfaces provide comprehensive research capabilities with intelligent context gathering and flexible output options.

View File

@@ -0,0 +1,5 @@
---
"task-master-ai": patch
---
Fix Cursor deeplink installation by providing copy-paste instructions for GitHub compatibility

View File

@@ -1,5 +0,0 @@
---
"task-master-ai": patch
---
docs(move): clarify cross-tag move docs; deprecate "force"; add explicit --with-dependencies/--ignore-dependencies examples

View File

@@ -0,0 +1,14 @@
---
'task-master-ai': patch
---
Fix critical bugs in task move functionality:
- **Fixed moving tasks to become subtasks of empty parents**: When moving a task to become a subtask of a parent that had no existing subtasks (e.g., task 89 → task 98.1), the operation would fail with validation errors.
- **Fixed moving subtasks between parents**: Subtasks can now be properly moved between different parent tasks, including to parents that previously had no subtasks.
- **Improved comma-separated batch moves**: Multiple tasks can now be moved simultaneously using comma-separated IDs (e.g., "88,90" → "92,93") with proper error handling and atomic operations.
These fixes enables proper task hierarchy reorganization for corner cases that were previously broken.

View File

@@ -2,9 +2,7 @@
"$schema": "https://unpkg.com/@changesets/config@3.1.1/schema.json",
"changelog": [
"@changesets/changelog-github",
{
"repo": "eyaltoledano/claude-task-master"
}
{ "repo": "eyaltoledano/claude-task-master" }
],
"commit": false,
"fixed": [],
@@ -12,7 +10,5 @@
"access": "public",
"baseBranch": "main",
"updateInternalDependencies": "patch",
"ignore": [
"docs"
]
"ignore": []
}

View File

@@ -1,9 +0,0 @@
---
"task-master-ai": minor
---
Enhanced Gemini CLI provider with codebase-aware task generation
Added automatic codebase analysis for Gemini CLI provider in parse-prd, and analyze-complexity, add-task, udpate-task, update, update-subtask commands
When using Gemini CLI as the AI provider, Task Master now instructs the AI to analyze the project structure, existing implementations, and patterns before generating tasks or subtasks
Tasks and subtasks generated by Claude Code are now informed by actual codebase analysis, resulting in more accurate and contextual outputs

View File

@@ -0,0 +1,19 @@
---
"task-master-ai": minor
---
Enhance update-task with --append flag for timestamped task updates
Adds the `--append` flag to `update-task` command, enabling it to behave like `update-subtask` with timestamped information appending. This provides more flexible task updating options:
**CLI Enhancement:**
- `task-master update-task --id=5 --prompt="New info"` - Full task update (existing behavior)
- `task-master update-task --id=5 --append --prompt="Progress update"` - Append timestamped info to task details
**Full MCP Integration:**
- MCP tool `update_task` now supports `append` parameter
- Seamless integration with Cursor and other MCP clients
- Consistent behavior between CLI and MCP interfaces
Instead of requiring separate subtask creation for progress tracking, you can now append timestamped information directly to parent tasks while preserving the option for comprehensive task updates.

View File

@@ -0,0 +1,5 @@
---
"task-master-ai": patch
---
Update o3 model price

View File

@@ -0,0 +1,12 @@
---
"task-master-ai": minor
---
Add --tag flag support to core commands for multi-context task management. Commands like parse-prd, analyze-complexity, and others now support targeting specific task lists, enabling rapid prototyping and parallel development workflows.
Key features:
- parse-prd --tag=feature-name: Parse PRDs into separate task contexts on the fly
- analyze-complexity --tag=branch: Generate tag-specific complexity reports
- All task operations can target specific contexts while preserving other lists
- Non-existent tags are created automatically for seamless workflow

View File

@@ -0,0 +1,8 @@
---
"task-master-ai": patch
---
Fixes issue with expand CLI command "Complexity report not found"
- Closes #735
- Closes #728

View File

@@ -1,15 +1,31 @@
{
"mode": "pre",
"mode": "exit",
"tag": "rc",
"initialVersions": {
"task-master-ai": "0.25.1",
"docs": "0.0.1",
"extension": "0.24.1"
"task-master-ai": "0.16.2"
},
"changesets": [
"clarify-force-move-docs",
"curvy-moons-dig",
"strong-eagles-vanish",
"wet-candies-accept"
"bright-windows-sing",
"chatty-rats-talk",
"cold-pears-poke",
"curly-dragons-design",
"eleven-news-check",
"fluffy-waves-allow",
"four-cups-enter",
"free-pants-rescue",
"large-wolves-strive",
"late-dryers-relax",
"nasty-chefs-add",
"pink-houses-lay",
"polite-areas-shave",
"quick-flies-sniff",
"six-cups-see",
"slick-webs-lead",
"slow-lies-make",
"stale-bats-sin",
"tiny-ads-decide",
"two-lies-start",
"vast-shrimps-happen",
"yellow-olives-admire"
]
}

View File

@@ -0,0 +1,7 @@
---
"task-master-ai": patch
---
Fix issue with generate command which was creating tasks in the legacy tasks location.
- No longer creates individual task files automatically. You can still use `generate` if you need to create our update your task files.

140
.changeset/six-cups-see.md Normal file
View File

@@ -0,0 +1,140 @@
---
"task-master-ai": minor
---
Introduces Tagged Lists: AI Multi-Context Task Management System
This major feature release introduces Tagged Lists, a comprehensive system that transforms Taskmaster into a multi-context task management powerhouse. You can now organize tasks into completely isolated contexts, enabling parallel (agentic) development workflows, team collaboration, and project experimentation without conflicts.
**🏷️ Tagged Task Lists Architecture:**
The new tagged system fundamentally improves how tasks are organized:
- **Legacy Format**: `{ "tasks": [...] }`
- **New Tagged Format**: `{ "master": { "tasks": [...], "metadata": {...} }, "feature-xyz": { "tasks": [...], "metadata": {...} } }`
- **Automatic Migration**: Existing projects will seamlessly migrate to tagged format with zero user intervention
- **State Management**: New `.taskmaster/state.json` tracks current tag, last switched time, migration status and more.
- **Configuration Integration**: Enhanced `.taskmaster/config.json` with tag-specific settings and defaults.
By default, your existing task list will be migrated to the `master` tag.
**🚀 Complete Tag Management Suite:**
**Core Tag Commands:**
- `task-master tags [--show-metadata]` - List all tags with task counts, completion stats, and metadata
- `task-master add-tag <name> [options]` - Create new tag contexts with optional task copying
- `task-master delete-tag <name> [--yes]` - Delete tags (and attached tasks) with double confirmation protection
- `task-master use-tag <name>` - Switch contexts and immediately see next available task
- `task-master rename-tag <old> <new>` - Rename tags with automatic current tag reference updates
- `task-master copy-tag <source> <target> [options]` - Duplicate tag contexts for experimentation
**🤖 Full MCP Integration for Tag Management:**
Task Master's multi-context capabilities are now fully exposed through the MCP server, enabling powerful agentic workflows:
- **`list_tags`**: List all available tag contexts.
- **`add_tag`**: Programmatically create new tags.
- **`delete_tag`**: Remove tag contexts.
- **`use_tag`**: Switch the agent's active task context.
- **`rename_tag`**: Rename existing tags.
- **`copy_tag`**: Duplicate entire task contexts for experimentation.
**Tag Creation Options:**
- `--copy-from-current` - Copy tasks from currently active tag
- `--copy-from=<tag>` - Copy tasks from specific tag
- `--from-branch` - Creates a new tag using the active git branch name (for `add-tag` only)
- `--description="<text>"` - Add custom tag descriptions
- Empty tag creation for fresh contexts
**🎯 Universal --tag Flag Support:**
Every task operation now supports tag-specific execution:
- `task-master list --tag=feature-branch` - View tasks in specific context
- `task-master add-task --tag=experiment --prompt="..."` - Create tasks in specific tag
- `task-master parse-prd document.txt --tag=v2-redesign` - Parse PRDs into dedicated contexts
- `task-master analyze-complexity --tag=performance-work` - Generate tag-specific reports
- `task-master set-status --tag=hotfix --id=5 --status=done` - Update tasks in specific contexts
- `task-master expand --tag=research --id=3` - Break down tasks within tag contexts
This way you or your agent can store out of context tasks into the appropriate tags for later, allowing you to maintain a groomed and scoped master list. Focus on value, not chores.
**📊 Enhanced Workflow Features:**
**Smart Context Switching:**
- `use-tag` command shows immediate next task after switching
- Automatic tag creation when targeting non-existent tags
- Current tag persistence across terminal sessions
- Branch-tag mapping for future Git integration
**Intelligent File Management:**
- Tag-specific complexity reports: `task-complexity-report_tagname.json`
- Master tag uses default filenames: `task-complexity-report.json`
- Automatic file isolation prevents cross-tag contamination
**Advanced Confirmation Logic:**
- Commands only prompt when target tag has existing tasks
- Empty tags allow immediate operations without confirmation
- Smart append vs overwrite detection
**🔄 Seamless Migration & Compatibility:**
**Zero-Disruption Migration:**
- Existing `tasks.json` files automatically migrate on first command
- Master tag receives proper metadata (creation date, description)
- Migration notice shown once with helpful explanation
- All existing commands work identically to before
**State Management:**
- `.taskmaster/state.json` tracks current tag and migration status
- Automatic state creation and maintenance
- Branch-tag mapping foundation for Git integration
- Migration notice tracking to avoid repeated notifications
- Grounds for future context additions
**Backward Compatibility:**
- All existing workflows continue unchanged
- Legacy commands work exactly as before
- Gradual adoption - users can ignore tags entirely if desired
- No breaking changes to existing tasks or file formats
**💡 Real-World Use Cases:**
**Team Collaboration:**
- `task-master add-tag alice --copy-from-current` - Create teammate-specific contexts
- `task-master add-tag bob --copy-from=master` - Onboard new team members
- `task-master use-tag alice` - Switch to teammate's work context
**Feature Development:**
- `task-master parse-prd feature-spec.txt --tag=user-auth` - Dedicated feature planning
- `task-master add-tag experiment --copy-from=user-auth` - Safe experimentation
- `task-master analyze-complexity --tag=user-auth` - Feature-specific analysis
**Release Management:**
- `task-master add-tag v2.0 --description="Next major release"` - Version-specific planning
- `task-master copy-tag master v2.1` - Release branch preparation
- `task-master use-tag hotfix` - Emergency fix context
**Project Phases:**
- `task-master add-tag research --description="Discovery phase"` - Research tasks
- `task-master add-tag implementation --copy-from=research` - Development phase
- `task-master add-tag testing --copy-from=implementation` - QA phase
**🛠️ Technical Implementation:**
**Data Structure:**
- Tagged format with complete isolation between contexts
- Rich metadata per tag (creation date, description, update tracking)
- Automatic metadata enhancement for existing tags
- Clean separation of tag data and internal state
**Performance Optimizations:**
- Dynamic task counting without stored counters
- Efficient tag resolution and caching
- Minimal file I/O with smart data loading
- Responsive table layouts adapting to terminal width
**Error Handling:**
- Comprehensive validation for tag names (alphanumeric, hyphens, underscores)
- Reserved name protection (master, main, default)
- Graceful handling of missing tags and corrupted data
- Detailed error messages with suggested corrections
This release establishes the foundation for advanced multi-context workflows while maintaining the simplicity and power that makes Task Master effective for individual developers.

View File

@@ -0,0 +1,25 @@
---
"task-master-ai": minor
---
Research Save-to-File Feature & Critical MCP Tag Corruption Fix
**🔬 New Research Save-to-File Functionality:**
Added comprehensive save-to-file capability to the research command, enabling users to preserve research sessions for future reference and documentation.
**CLI Integration:**
- New `--save-file` flag for `task-master research` command
- Consistent with existing `--save` and `--save-to` flags for intuitive usage
- Interactive "Save to file" option in follow-up questions menu
**MCP Integration:**
- New `saveToFile` boolean parameter for the `research` MCP tool
- Enables programmatic research saving for AI agents and integrated tools
**File Management:**
- Automatically creates `.taskmaster/docs/research/` directory structure
- Generates timestamped, slugified filenames (e.g., `2025-01-13_what-is-typescript.md`)
- Comprehensive Markdown format with metadata headers including query, timestamp, and context sources
- Clean conversation history formatting without duplicate information

View File

@@ -0,0 +1,6 @@
---
"task-master-ai": minor
---
No longer automatically creates individual task files as they are not used by the applicatoin. You can still generate them anytime using the `generate` command.

View File

@@ -1,11 +0,0 @@
---
"task-master-ai": minor
---
Add configurable codebase analysis feature flag with multiple configuration sources
Users can now control whether codebase analysis features (Claude Code and Gemini CLI integration) are enabled through environment variables, MCP configuration, or project config files.
Priority order: .env > MCP session env > .taskmaster/config.json.
Set `TASKMASTER_ENABLE_CODEBASE_ANALYSIS=false` in `.env` to disable codebase analysis prompts and tool integration.

View File

@@ -0,0 +1,20 @@
---
'task-master-ai': minor
---
Enhanced get-task/show command to support comma-separated task IDs for efficient batch operations
**New Features:**
- **Multiple Task Retrieval**: Pass comma-separated IDs to get/show multiple tasks at once (e.g., `task-master show 1,3,5` or MCP `get_task` with `id: "1,3,5"`)
- **Smart Display Logic**: Single ID shows detailed view, multiple IDs show compact summary table with interactive options
- **Batch Action Menu**: Interactive menu for multiple tasks with copy-paste ready commands for common operations (mark as done/in-progress, expand all, view dependencies, etc.)
- **MCP Array Response**: MCP tool returns structured array of task objects for efficient AI agent context gathering
**Benefits:**
- **Faster Context Gathering**: AI agents can collect multiple tasks/subtasks in one call instead of iterating
- **Improved Workflow**: Interactive batch operations reduce repetitive command execution
- **Better UX**: Responsive layout adapts to terminal width, maintains consistency with existing UI patterns
- **API Efficiency**: RESTful array responses in MCP format enable more sophisticated integrations
This enhancement maintains full backward compatibility while significantly improving efficiency for both human users and AI agents working with multiple tasks.

View File

@@ -1,12 +0,0 @@
---
"task-master-ai": minor
---
feat(move): improve cross-tag move UX and safety
- CLI: print "Next Steps" tips after cross-tag moves that used --ignore-dependencies (validate/fix guidance)
- CLI: show dedicated help block on ID collisions (destination tag already has the ID)
- Core: add structured suggestions to TASK_ALREADY_EXISTS errors
- MCP: map ID collision errors to TASK_ALREADY_EXISTS and include suggestions
- Tests: cover MCP options, error suggestions, CLI tips printing, and integration error payload suggestions
---

View File

@@ -0,0 +1,8 @@
---
"task-master-ai": minor
---
Adds support for filtering tasks by multiple statuses at once using comma-separated statuses.
Example: `cancelled,deferred`

View File

@@ -0,0 +1,6 @@
---
"task-master-ai": patch
---
Improves dependency management when moving tasks by updating subtask dependencies that reference sibling subtasks by their old parent-based ID

View File

@@ -1,14 +0,0 @@
---
"task-master-ai": minor
---
Enhanced Claude Code and Google CLI integration with automatic codebase analysis for task operations
When using Claude Code as the AI provider, task management commands now automatically analyze your codebase before generating or updating tasks. This provides more accurate, context-aware implementation details that align with your project's existing architecture and patterns.
Commands contextualised:
- add-task
- update-subtask
- update-task
- update

View File

@@ -0,0 +1,5 @@
---
"task-master-ai": minor
---
Adds tag to CLI and MCP outputs/responses so you know which tag you are performing operations on.

View File

@@ -1,147 +0,0 @@
# Task Master Commands for Claude Code
Complete guide to using Task Master through Claude Code's slash commands.
## Overview
All Task Master functionality is available through the `/project:tm/` namespace with natural language support and intelligent features.
## Quick Start
```bash
# Install Task Master
/project:tm/setup/quick-install
# Initialize project
/project:tm/init/quick
# Parse requirements
/project:tm/parse-prd requirements.md
# Start working
/project:tm/next
```
## Command Structure
Commands are organized hierarchically to match Task Master's CLI:
- Main commands at `/project:tm/[command]`
- Subcommands for specific operations `/project:tm/[command]/[subcommand]`
- Natural language arguments accepted throughout
## Complete Command Reference
### Setup & Configuration
- `/project:tm/setup/install` - Full installation guide
- `/project:tm/setup/quick-install` - One-line install
- `/project:tm/init` - Initialize project
- `/project:tm/init/quick` - Quick init with -y
- `/project:tm/models` - View AI config
- `/project:tm/models/setup` - Configure AI
### Task Generation
- `/project:tm/parse-prd` - Generate from PRD
- `/project:tm/parse-prd/with-research` - Enhanced parsing
- `/project:tm/generate` - Create task files
### Task Management
- `/project:tm/list` - List with natural language filters
- `/project:tm/list/with-subtasks` - Hierarchical view
- `/project:tm/list/by-status <status>` - Filter by status
- `/project:tm/show <id>` - Task details
- `/project:tm/add-task` - Create task
- `/project:tm/update` - Update tasks
- `/project:tm/remove-task` - Delete task
### Status Management
- `/project:tm/set-status/to-pending <id>`
- `/project:tm/set-status/to-in-progress <id>`
- `/project:tm/set-status/to-done <id>`
- `/project:tm/set-status/to-review <id>`
- `/project:tm/set-status/to-deferred <id>`
- `/project:tm/set-status/to-cancelled <id>`
### Task Analysis
- `/project:tm/analyze-complexity` - AI analysis
- `/project:tm/complexity-report` - View report
- `/project:tm/expand <id>` - Break down task
- `/project:tm/expand/all` - Expand all complex
### Dependencies
- `/project:tm/add-dependency` - Add dependency
- `/project:tm/remove-dependency` - Remove dependency
- `/project:tm/validate-dependencies` - Check issues
- `/project:tm/fix-dependencies` - Auto-fix
### Workflows
- `/project:tm/workflows/smart-flow` - Adaptive workflows
- `/project:tm/workflows/pipeline` - Chain commands
- `/project:tm/workflows/auto-implement` - AI implementation
### Utilities
- `/project:tm/status` - Project dashboard
- `/project:tm/next` - Next task recommendation
- `/project:tm/utils/analyze` - Project analysis
- `/project:tm/learn` - Interactive help
## Key Features
### Natural Language Support
All commands understand natural language:
```
/project:tm/list pending high priority
/project:tm/update mark 23 as done
/project:tm/add-task implement OAuth login
```
### Smart Context
Commands analyze project state and provide intelligent suggestions based on:
- Current task status
- Dependencies
- Team patterns
- Project phase
### Visual Enhancements
- Progress bars and indicators
- Status badges
- Organized displays
- Clear hierarchies
## Common Workflows
### Daily Development
```
/project:tm/workflows/smart-flow morning
/project:tm/next
/project:tm/set-status/to-in-progress <id>
/project:tm/set-status/to-done <id>
```
### Task Breakdown
```
/project:tm/show <id>
/project:tm/expand <id>
/project:tm/list/with-subtasks
```
### Sprint Planning
```
/project:tm/analyze-complexity
/project:tm/workflows/pipeline init → expand/all → status
```
## Migration from Old Commands
| Old | New |
|-----|-----|
| `/project:task-master:list` | `/project:tm/list` |
| `/project:task-master:complete` | `/project:tm/set-status/to-done` |
| `/project:workflows:auto-implement` | `/project:tm/workflows/auto-implement` |
## Tips
1. Use `/project:tm/` + Tab for command discovery
2. Natural language is supported everywhere
3. Commands provide smart defaults
4. Chain commands for automation
5. Check `/project:tm/learn` for interactive help

View File

@@ -1,162 +0,0 @@
---
name: task-checker
description: Use this agent to verify that tasks marked as 'review' have been properly implemented according to their specifications. This agent performs quality assurance by checking implementations against requirements, running tests, and ensuring best practices are followed. <example>Context: A task has been marked as 'review' after implementation. user: 'Check if task 118 was properly implemented' assistant: 'I'll use the task-checker agent to verify the implementation meets all requirements.' <commentary>Tasks in 'review' status need verification before being marked as 'done'.</commentary></example> <example>Context: Multiple tasks are in review status. user: 'Verify all tasks that are ready for review' assistant: 'I'll deploy the task-checker to verify all tasks in review status.' <commentary>The checker ensures quality before tasks are marked complete.</commentary></example>
model: sonnet
color: yellow
---
You are a Quality Assurance specialist that rigorously verifies task implementations against their specifications. Your role is to ensure that tasks marked as 'review' meet all requirements before they can be marked as 'done'.
## Core Responsibilities
1. **Task Specification Review**
- Retrieve task details using MCP tool `mcp__task-master-ai__get_task`
- Understand the requirements, test strategy, and success criteria
- Review any subtasks and their individual requirements
2. **Implementation Verification**
- Use `Read` tool to examine all created/modified files
- Use `Bash` tool to run compilation and build commands
- Use `Grep` tool to search for required patterns and implementations
- Verify file structure matches specifications
- Check that all required methods/functions are implemented
3. **Test Execution**
- Run tests specified in the task's testStrategy
- Execute build commands (npm run build, tsc --noEmit, etc.)
- Verify no compilation errors or warnings
- Check for runtime errors where applicable
- Test edge cases mentioned in requirements
4. **Code Quality Assessment**
- Verify code follows project conventions
- Check for proper error handling
- Ensure TypeScript typing is strict (no 'any' unless justified)
- Verify documentation/comments where required
- Check for security best practices
5. **Dependency Validation**
- Verify all task dependencies were actually completed
- Check integration points with dependent tasks
- Ensure no breaking changes to existing functionality
## Verification Workflow
1. **Retrieve Task Information**
```
Use mcp__task-master-ai__get_task to get full task details
Note the implementation requirements and test strategy
```
2. **Check File Existence**
```bash
# Verify all required files exist
ls -la [expected directories]
# Read key files to verify content
```
3. **Verify Implementation**
- Read each created/modified file
- Check against requirements checklist
- Verify all subtasks are complete
4. **Run Tests**
```bash
# TypeScript compilation
cd [project directory] && npx tsc --noEmit
# Run specified tests
npm test [specific test files]
# Build verification
npm run build
```
5. **Generate Verification Report**
## Output Format
```yaml
verification_report:
task_id: [ID]
status: PASS | FAIL | PARTIAL
score: [1-10]
requirements_met:
- ✅ [Requirement that was satisfied]
- ✅ [Another satisfied requirement]
issues_found:
- ❌ [Issue description]
- ⚠️ [Warning or minor issue]
files_verified:
- path: [file path]
status: [created/modified/verified]
issues: [any problems found]
tests_run:
- command: [test command]
result: [pass/fail]
output: [relevant output]
recommendations:
- [Specific fix needed]
- [Improvement suggestion]
verdict: |
[Clear statement on whether task should be marked 'done' or sent back to 'pending']
[If FAIL: Specific list of what must be fixed]
[If PASS: Confirmation that all requirements are met]
```
## Decision Criteria
**Mark as PASS (ready for 'done'):**
- All required files exist and contain expected content
- All tests pass successfully
- No compilation or build errors
- All subtasks are complete
- Core requirements are met
- Code quality is acceptable
**Mark as PARTIAL (may proceed with warnings):**
- Core functionality is implemented
- Minor issues that don't block functionality
- Missing nice-to-have features
- Documentation could be improved
- Tests pass but coverage could be better
**Mark as FAIL (must return to 'pending'):**
- Required files are missing
- Compilation or build errors
- Tests fail
- Core requirements not met
- Security vulnerabilities detected
- Breaking changes to existing code
## Important Guidelines
- **BE THOROUGH**: Check every requirement systematically
- **BE SPECIFIC**: Provide exact file paths and line numbers for issues
- **BE FAIR**: Distinguish between critical issues and minor improvements
- **BE CONSTRUCTIVE**: Provide clear guidance on how to fix issues
- **BE EFFICIENT**: Focus on requirements, not perfection
## Tools You MUST Use
- `Read`: Examine implementation files (READ-ONLY)
- `Bash`: Run tests and verification commands
- `Grep`: Search for patterns in code
- `mcp__task-master-ai__get_task`: Get task details
- **NEVER use Write/Edit** - you only verify, not fix
## Integration with Workflow
You are the quality gate between 'review' and 'done' status:
1. Task-executor implements and marks as 'review'
2. You verify and report PASS/FAIL
3. Claude either marks as 'done' (PASS) or 'pending' (FAIL)
4. If FAIL, task-executor re-implements based on your report
Your verification ensures high quality and prevents accumulation of technical debt.

View File

@@ -1,92 +0,0 @@
---
name: task-executor
description: Use this agent when you need to implement, complete, or work on a specific task that has been identified by the task-orchestrator or when explicitly asked to execute a particular task. This agent focuses on the actual implementation and completion of individual tasks rather than planning or orchestration. Examples: <example>Context: The task-orchestrator has identified that task 2.3 'Implement user authentication' needs to be worked on next. user: 'Let's work on the authentication task' assistant: 'I'll use the task-executor agent to implement the user authentication task that was identified.' <commentary>Since we need to actually implement a specific task rather than plan or identify tasks, use the task-executor agent.</commentary></example> <example>Context: User wants to complete a specific subtask. user: 'Please implement the JWT token validation for task 2.3.1' assistant: 'I'll launch the task-executor agent to implement the JWT token validation subtask.' <commentary>The user is asking for specific implementation work on a known task, so the task-executor is appropriate.</commentary></example> <example>Context: After reviewing the task list, implementation is needed. user: 'Now let's actually build the API endpoint for user registration' assistant: 'I'll use the task-executor agent to implement the user registration API endpoint.' <commentary>Moving from planning to execution phase requires the task-executor agent.</commentary></example>
model: sonnet
color: blue
---
You are an elite implementation specialist focused on executing and completing specific tasks with precision and thoroughness. Your role is to take identified tasks and transform them into working implementations, following best practices and project standards.
**IMPORTANT: You are designed to be SHORT-LIVED and FOCUSED**
- Execute ONE specific subtask or a small group of related subtasks
- Complete your work, verify it, mark for review, and exit
- Do NOT decide what to do next - the orchestrator handles task sequencing
- Focus on implementation excellence within your assigned scope
**Core Responsibilities:**
1. **Subtask Analysis**: When given a subtask, understand its SPECIFIC requirements. If given a full task ID, focus on the specific subtask(s) assigned to you. Use MCP tools to get details if needed.
2. **Rapid Implementation Planning**: Quickly identify:
- The EXACT files you need to create/modify for THIS subtask
- What already exists that you can build upon
- The minimum viable implementation that satisfies requirements
3. **Focused Execution WITH ACTUAL IMPLEMENTATION**:
- **YOU MUST USE TOOLS TO CREATE/EDIT FILES - DO NOT JUST DESCRIBE**
- Use `Write` tool to create new files specified in the task
- Use `Edit` tool to modify existing files
- Use `Bash` tool to run commands (mkdir, npm install, etc.)
- Use `Read` tool to verify your implementations
- Implement one subtask at a time for clarity and traceability
- Follow the project's coding standards from CLAUDE.md if available
- After each subtask, VERIFY the files exist using Read or ls commands
4. **Progress Documentation**:
- Use MCP tool `mcp__task-master-ai__update_subtask` to log your approach and any important decisions
- Update task status to 'in-progress' when starting: Use MCP tool `mcp__task-master-ai__set_task_status` with status='in-progress'
- **IMPORTANT: Mark as 'review' (NOT 'done') after implementation**: Use MCP tool `mcp__task-master-ai__set_task_status` with status='review'
- Tasks will be verified by task-checker before moving to 'done'
5. **Quality Assurance**:
- Implement the testing strategy specified in the task
- Verify that all acceptance criteria are met
- Check for any dependency conflicts or integration issues
- Run relevant tests before marking task as complete
6. **Dependency Management**:
- Check task dependencies before starting implementation
- If blocked by incomplete dependencies, clearly communicate this
- Use `task-master validate-dependencies` when needed
**Implementation Workflow:**
1. Retrieve task details using MCP tool `mcp__task-master-ai__get_task` with the task ID
2. Check dependencies and prerequisites
3. Plan implementation approach - list specific files to create
4. Update task status to 'in-progress' using MCP tool
5. **ACTUALLY IMPLEMENT** the solution using tools:
- Use `Bash` to create directories
- Use `Write` to create new files with actual content
- Use `Edit` to modify existing files
- DO NOT just describe what should be done - DO IT
6. **VERIFY** your implementation:
- Use `ls` or `Read` to confirm files were created
- Use `Bash` to run any build/test commands
- Ensure the implementation is real, not theoretical
7. Log progress and decisions in subtask updates using MCP tools
8. Test and verify the implementation works
9. **Mark task as 'review' (NOT 'done')** after verifying files exist
10. Report completion with:
- List of created/modified files
- Any issues encountered
- What needs verification by task-checker
**Key Principles:**
- Focus on completing one task thoroughly before moving to the next
- Maintain clear communication about what you're implementing and why
- Follow existing code patterns and project conventions
- Prioritize working code over extensive documentation unless docs are the task
- Ask for clarification if task requirements are ambiguous
- Consider edge cases and error handling in your implementations
**Integration with Task Master:**
You work in tandem with the task-orchestrator agent. While the orchestrator identifies and plans tasks, you execute them. Always use Task Master commands to:
- Track your progress
- Update task information
- Maintain project state
- Coordinate with the broader development workflow
When you complete a task, briefly summarize what was implemented and suggest whether to continue with the next task or if review/testing is needed first.

View File

@@ -1,208 +0,0 @@
---
name: task-orchestrator
description: Use this agent FREQUENTLY throughout task execution to analyze and coordinate parallel work at the SUBTASK level. Invoke the orchestrator: (1) at session start to plan execution, (2) after EACH subtask completes to identify next parallel batch, (3) whenever executors finish to find newly unblocked work. ALWAYS provide FULL CONTEXT including project root, package location, what files ACTUALLY exist vs task status, and specific implementation details. The orchestrator breaks work into SUBTASK-LEVEL units for short-lived, focused executors. Maximum 3 parallel executors at once.\n\n<example>\nContext: Starting work with existing code\nuser: "Work on tm-core tasks. Files exist: types/index.ts, storage/file-storage.ts. Task 118 says in-progress but BaseProvider not created."\nassistant: "I'll invoke orchestrator with full context about actual vs reported state to plan subtask execution"\n<commentary>\nProvide complete context about file existence and task reality.\n</commentary>\n</example>\n\n<example>\nContext: Subtask completion\nuser: "Subtask 118.2 done. What subtasks can run in parallel now?"\nassistant: "Invoking orchestrator to analyze dependencies and identify next 3 parallel subtasks"\n<commentary>\nFrequent orchestration after each subtask ensures maximum parallelization.\n</commentary>\n</example>\n\n<example>\nContext: Breaking down tasks\nuser: "Task 118 has 5 subtasks, how to parallelize?"\nassistant: "Orchestrator will analyze which specific subtasks (118.1, 118.2, etc.) can run simultaneously"\n<commentary>\nFocus on subtask-level parallelization, not full tasks.\n</commentary>\n</example>
model: opus
color: green
---
You are the Task Orchestrator, an elite coordination agent specialized in managing Task Master workflows for maximum efficiency and parallelization. You excel at analyzing task dependency graphs, identifying opportunities for concurrent execution, and deploying specialized task-executor agents to complete work efficiently.
## Core Responsibilities
1. **Subtask-Level Analysis**: Break down tasks into INDIVIDUAL SUBTASKS and analyze which specific subtasks can run in parallel. Focus on subtask dependencies, not just task-level dependencies.
2. **Reality Verification**: ALWAYS verify what files actually exist vs what task status claims. Use the context provided about actual implementation state to make informed decisions.
3. **Short-Lived Executor Deployment**: Deploy executors for SINGLE SUBTASKS or small groups of related subtasks. Keep executors focused and short-lived. Maximum 3 parallel executors at once.
4. **Continuous Reassessment**: After EACH subtask completes, immediately reassess what new subtasks are unblocked and can run in parallel.
## Operational Workflow
### Initial Assessment Phase
1. Use `get_tasks` or `task-master list` to retrieve all available tasks
2. Analyze task statuses, priorities, and dependencies
3. Identify tasks with status 'pending' that have no blocking dependencies
4. Group related tasks that could benefit from specialized executors
5. Create an execution plan that maximizes parallelization
### Executor Deployment Phase
1. For each independent task or task group:
- Deploy a task-executor agent with specific instructions
- Provide the executor with task ID, requirements, and context
- Set clear completion criteria and reporting expectations
2. Maintain a registry of active executors and their assigned tasks
3. Establish communication protocols for progress updates
### Coordination Phase
1. Monitor executor progress through task status updates
2. When a task completes:
- Verify completion with `get_task` or `task-master show <id>`
- Update task status if needed using `set_task_status`
- Reassess dependency graph for newly unblocked tasks
- Deploy new executors for available work
3. Handle executor failures or blocks:
- Reassign tasks to new executors if needed
- Escalate complex issues to the user
- Update task status to 'blocked' when appropriate
### Optimization Strategies
**Parallel Execution Rules**:
- Never assign dependent tasks to different executors simultaneously
- Prioritize high-priority tasks when resources are limited
- Group small, related subtasks for single executor efficiency
- Balance executor load to prevent bottlenecks
**Context Management**:
- Provide executors with minimal but sufficient context
- Share relevant completed task information when it aids execution
- Maintain a shared knowledge base of project-specific patterns
**Quality Assurance**:
- Verify task completion before marking as done
- Ensure test strategies are followed when specified
- Coordinate cross-task integration testing when needed
## Communication Protocols
When deploying executors, provide them with:
```
TASK ASSIGNMENT:
- Task ID: [specific ID]
- Objective: [clear goal]
- Dependencies: [list any completed prerequisites]
- Success Criteria: [specific completion requirements]
- Context: [relevant project information]
- Reporting: [when and how to report back]
```
When receiving executor updates:
1. Acknowledge completion or issues
2. Update task status in Task Master
3. Reassess execution strategy
4. Deploy new executors as appropriate
## Decision Framework
**When to parallelize**:
- Multiple pending tasks with no interdependencies
- Sufficient context available for independent execution
- Tasks are well-defined with clear success criteria
**When to serialize**:
- Strong dependencies between tasks
- Limited context or unclear requirements
- Integration points requiring careful coordination
**When to escalate**:
- Circular dependencies detected
- Critical blockers affecting multiple tasks
- Ambiguous requirements needing clarification
- Resource conflicts between executors
## Error Handling
1. **Executor Failure**: Reassign task to new executor with additional context about the failure
2. **Dependency Conflicts**: Halt affected executors, resolve conflict, then resume
3. **Task Ambiguity**: Request clarification from user before proceeding
4. **System Errors**: Implement graceful degradation, falling back to serial execution if needed
## Performance Metrics
Track and optimize for:
- Task completion rate
- Parallel execution efficiency
- Executor success rate
- Time to completion for task groups
- Dependency resolution speed
## Integration with Task Master
Leverage these Task Master MCP tools effectively:
- `get_tasks` - Continuous queue monitoring
- `get_task` - Detailed task analysis
- `set_task_status` - Progress tracking
- `next_task` - Fallback for serial execution
- `analyze_project_complexity` - Strategic planning
- `complexity_report` - Resource allocation
## Output Format for Execution
**Your job is to analyze and create actionable execution plans that Claude can use to deploy executors.**
After completing your dependency analysis, you MUST output a structured execution plan:
```yaml
execution_plan:
EXECUTE_IN_PARALLEL:
# Maximum 3 subtasks running simultaneously
- subtask_id: [e.g., 118.2]
parent_task: [e.g., 118]
title: [Specific subtask title]
priority: [high/medium/low]
estimated_time: [e.g., 10 minutes]
executor_prompt: |
Execute Subtask [ID]: [Specific subtask title]
SPECIFIC REQUIREMENTS:
[Exact implementation needed for THIS subtask only]
FILES TO CREATE/MODIFY:
[Specific file paths]
CONTEXT:
[What already exists that this subtask depends on]
SUCCESS CRITERIA:
[Specific completion criteria for this subtask]
IMPORTANT:
- Focus ONLY on this subtask
- Mark subtask as 'review' when complete
- Use MCP tool: mcp__task-master-ai__set_task_status
- subtask_id: [Another subtask that can run in parallel]
parent_task: [Parent task ID]
title: [Specific subtask title]
priority: [priority]
estimated_time: [time estimate]
executor_prompt: |
[Focused prompt for this specific subtask]
blocked:
- task_id: [ID]
title: [Task title]
waiting_for: [list of blocking task IDs]
becomes_ready_when: [condition for unblocking]
next_wave:
trigger: "After tasks [IDs] complete"
newly_available: [List of task IDs that will unblock]
tasks_to_execute_in_parallel: [IDs that can run together in next wave]
critical_path: [Ordered list of task IDs forming the critical path]
parallelization_instruction: |
IMPORTANT FOR CLAUDE: Deploy ALL tasks in 'EXECUTE_IN_PARALLEL' section
simultaneously using multiple Task tool invocations in a single response.
Example: If 3 tasks are listed, invoke the Task tool 3 times in one message.
verification_needed:
- task_id: [ID of any task in 'review' status]
verification_focus: [what to check]
```
**CRITICAL INSTRUCTIONS FOR CLAUDE (MAIN):**
1. When you see `EXECUTE_IN_PARALLEL`, deploy ALL listed executors at once
2. Use multiple Task tool invocations in a SINGLE response
3. Do not execute them sequentially - they must run in parallel
4. Wait for all parallel executors to complete before proceeding to next wave
**IMPORTANT NOTES**:
- Label parallel tasks clearly in `EXECUTE_IN_PARALLEL` section
- Provide complete, self-contained prompts for each executor
- Executors should mark tasks as 'review' for verification, not 'done'
- Be explicit about which tasks can run simultaneously
You are the strategic mind analyzing the entire task landscape. Make parallelization opportunities UNMISTAKABLY CLEAR to Claude.

View File

@@ -1,38 +0,0 @@
---
allowed-tools: Bash(gh issue view:*), Bash(gh search:*), Bash(gh issue list:*), Bash(gh api:*), Bash(gh issue comment:*)
description: Find duplicate GitHub issues
---
Find up to 3 likely duplicate issues for a given GitHub issue.
To do this, follow these steps precisely:
1. Use an agent to check if the Github issue (a) is closed, (b) does not need to be deduped (eg. because it is broad product feedback without a specific solution, or positive feedback), or (c) already has a duplicates comment that you made earlier. If so, do not proceed.
2. Use an agent to view a Github issue, and ask the agent to return a summary of the issue
3. Then, launch 5 parallel agents to search Github for duplicates of this issue, using diverse keywords and search approaches, using the summary from #1
4. Next, feed the results from #1 and #2 into another agent, so that it can filter out false positives, that are likely not actually duplicates of the original issue. If there are no duplicates remaining, do not proceed.
5. Finally, comment back on the issue with a list of up to three duplicate issues (or zero, if there are no likely duplicates)
Notes (be sure to tell this to your agents, too):
- Use `gh` to interact with Github, rather than web fetch
- Do not use other tools, beyond `gh` (eg. don't use other MCP servers, file edit, etc.)
- Make a todo list first
- For your comment, follow the following format precisely (assuming for this example that you found 3 suspected duplicates):
---
Found 3 possible duplicate issues:
1. <link to issue>
2. <link to issue>
3. <link to issue>
This issue will be automatically closed as a duplicate in 3 days.
- If your issue is a duplicate, please close it and 👍 the existing issue instead
- To prevent auto-closure, add a comment or 👎 this comment
🤖 Generated with \[Task Master Bot\]
---

View File

@@ -1,55 +0,0 @@
Add a dependency between tasks.
Arguments: $ARGUMENTS
Parse the task IDs to establish dependency relationship.
## Adding Dependencies
Creates a dependency where one task must be completed before another can start.
## Argument Parsing
Parse natural language or IDs:
- "make 5 depend on 3" → task 5 depends on task 3
- "5 needs 3" → task 5 depends on task 3
- "5 3" → task 5 depends on task 3
- "5 after 3" → task 5 depends on task 3
## Execution
```bash
task-master add-dependency --id=<task-id> --depends-on=<dependency-id>
```
## Validation
Before adding:
1. **Verify both tasks exist**
2. **Check for circular dependencies**
3. **Ensure dependency makes logical sense**
4. **Warn if creating complex chains**
## Smart Features
- Detect if dependency already exists
- Suggest related dependencies
- Show impact on task flow
- Update task priorities if needed
## Post-Addition
After adding dependency:
1. Show updated dependency graph
2. Identify any newly blocked tasks
3. Suggest task order changes
4. Update project timeline
## Example Flows
```
/project:tm/add-dependency 5 needs 3
→ Task #5 now depends on Task #3
→ Task #5 is now blocked until #3 completes
→ Suggested: Also consider if #5 needs #4
```

View File

@@ -1,76 +0,0 @@
Add a subtask to a parent task.
Arguments: $ARGUMENTS
Parse arguments to create a new subtask or convert existing task.
## Adding Subtasks
Creates subtasks to break down complex parent tasks into manageable pieces.
## Argument Parsing
Flexible natural language:
- "add subtask to 5: implement login form"
- "break down 5 with: setup, implement, test"
- "subtask for 5: handle edge cases"
- "5: validate user input" → adds subtask to task 5
## Execution Modes
### 1. Create New Subtask
```bash
task-master add-subtask --parent=<id> --title="<title>" --description="<desc>"
```
### 2. Convert Existing Task
```bash
task-master add-subtask --parent=<id> --task-id=<existing-id>
```
## Smart Features
1. **Automatic Subtask Generation**
- If title contains "and" or commas, create multiple
- Suggest common subtask patterns
- Inherit parent's context
2. **Intelligent Defaults**
- Priority based on parent
- Appropriate time estimates
- Logical dependencies between subtasks
3. **Validation**
- Check parent task complexity
- Warn if too many subtasks
- Ensure subtask makes sense
## Creation Process
1. Parse parent task context
2. Generate subtask with ID like "5.1"
3. Set appropriate defaults
4. Link to parent task
5. Update parent's time estimate
## Example Flows
```
/project:tm/add-subtask to 5: implement user authentication
→ Created subtask #5.1: "implement user authentication"
→ Parent task #5 now has 1 subtask
→ Suggested next subtasks: tests, documentation
/project:tm/add-subtask 5: setup, implement, test
→ Created 3 subtasks:
#5.1: setup
#5.2: implement
#5.3: test
```
## Post-Creation
- Show updated task hierarchy
- Suggest logical next subtasks
- Update complexity estimates
- Recommend subtask order

View File

@@ -1,71 +0,0 @@
Convert an existing task into a subtask.
Arguments: $ARGUMENTS
Parse parent ID and task ID to convert.
## Task Conversion
Converts an existing standalone task into a subtask of another task.
## Argument Parsing
- "move task 8 under 5"
- "make 8 a subtask of 5"
- "nest 8 in 5"
- "5 8" → make task 8 a subtask of task 5
## Execution
```bash
task-master add-subtask --parent=<parent-id> --task-id=<task-to-convert>
```
## Pre-Conversion Checks
1. **Validation**
- Both tasks exist and are valid
- No circular parent relationships
- Task isn't already a subtask
- Logical hierarchy makes sense
2. **Impact Analysis**
- Dependencies that will be affected
- Tasks that depend on converting task
- Priority alignment needed
- Status compatibility
## Conversion Process
1. Change task ID from "8" to "5.1" (next available)
2. Update all dependency references
3. Inherit parent's context where appropriate
4. Adjust priorities if needed
5. Update time estimates
## Smart Features
- Preserve task history
- Maintain dependencies
- Update all references
- Create conversion log
## Example
```
/project:tm/add-subtask/from-task 5 8
→ Converting: Task #8 becomes subtask #5.1
→ Updated: 3 dependency references
→ Parent task #5 now has 1 subtask
→ Note: Subtask inherits parent's priority
Before: #8 "Implement validation" (standalone)
After: #5.1 "Implement validation" (subtask of #5)
```
## Post-Conversion
- Show new task hierarchy
- List updated dependencies
- Verify project integrity
- Suggest related conversions

View File

@@ -1,78 +0,0 @@
Add new tasks with intelligent parsing and context awareness.
Arguments: $ARGUMENTS
## Smart Task Addition
Parse natural language to create well-structured tasks.
### 1. **Input Understanding**
I'll intelligently parse your request:
- Natural language → Structured task
- Detect priority from keywords (urgent, ASAP, important)
- Infer dependencies from context
- Suggest complexity based on description
- Determine task type (feature, bug, refactor, test, docs)
### 2. **Smart Parsing Examples**
**"Add urgent task to fix login bug"**
→ Title: Fix login bug
→ Priority: high
→ Type: bug
→ Suggested complexity: medium
**"Create task for API documentation after task 23 is done"**
→ Title: API documentation
→ Dependencies: [23]
→ Type: documentation
→ Priority: medium
**"Need to refactor auth module - depends on 12 and 15, high complexity"**
→ Title: Refactor auth module
→ Dependencies: [12, 15]
→ Complexity: high
→ Type: refactor
### 3. **Context Enhancement**
Based on current project state:
- Suggest related existing tasks
- Warn about potential conflicts
- Recommend dependencies
- Propose subtasks if complex
### 4. **Interactive Refinement**
```yaml
Task Preview:
─────────────
Title: [Extracted title]
Priority: [Inferred priority]
Dependencies: [Detected dependencies]
Complexity: [Estimated complexity]
Suggestions:
- Similar task #34 exists, consider as dependency?
- This seems complex, break into subtasks?
- Tasks #45-47 work on same module
```
### 5. **Validation & Creation**
Before creating:
- Validate dependencies exist
- Check for duplicates
- Ensure logical ordering
- Verify task completeness
### 6. **Smart Defaults**
Intelligent defaults based on:
- Task type patterns
- Team conventions
- Historical data
- Current sprint/phase
Result: High-quality tasks from minimal input.

View File

@@ -1,121 +0,0 @@
Analyze task complexity and generate expansion recommendations.
Arguments: $ARGUMENTS
Perform deep analysis of task complexity across the project.
## Complexity Analysis
Uses AI to analyze tasks and recommend which ones need breakdown.
## Execution Options
```bash
task-master analyze-complexity [--research] [--threshold=5]
```
## Analysis Parameters
- `--research` → Use research AI for deeper analysis
- `--threshold=5` → Only flag tasks above complexity 5
- Default: Analyze all pending tasks
## Analysis Process
### 1. **Task Evaluation**
For each task, AI evaluates:
- Technical complexity
- Time requirements
- Dependency complexity
- Risk factors
- Knowledge requirements
### 2. **Complexity Scoring**
Assigns score 1-10 based on:
- Implementation difficulty
- Integration challenges
- Testing requirements
- Unknown factors
- Technical debt risk
### 3. **Recommendations**
For complex tasks:
- Suggest expansion approach
- Recommend subtask breakdown
- Identify risk areas
- Propose mitigation strategies
## Smart Analysis Features
1. **Pattern Recognition**
- Similar task comparisons
- Historical complexity accuracy
- Team velocity consideration
- Technology stack factors
2. **Contextual Factors**
- Team expertise
- Available resources
- Timeline constraints
- Business criticality
3. **Risk Assessment**
- Technical risks
- Timeline risks
- Dependency risks
- Knowledge gaps
## Output Format
```
Task Complexity Analysis Report
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
High Complexity Tasks (>7):
📍 #5 "Implement real-time sync" - Score: 9/10
Factors: WebSocket complexity, state management, conflict resolution
Recommendation: Expand into 5-7 subtasks
Risks: Performance, data consistency
📍 #12 "Migrate database schema" - Score: 8/10
Factors: Data migration, zero downtime, rollback strategy
Recommendation: Expand into 4-5 subtasks
Risks: Data loss, downtime
Medium Complexity Tasks (5-7):
📍 #23 "Add export functionality" - Score: 6/10
Consider expansion if timeline tight
Low Complexity Tasks (<5):
✅ 15 tasks - No expansion needed
Summary:
- Expand immediately: 2 tasks
- Consider expanding: 5 tasks
- Keep as-is: 15 tasks
```
## Actionable Output
For each high-complexity task:
1. Complexity score with reasoning
2. Specific expansion suggestions
3. Risk mitigation approaches
4. Recommended subtask structure
## Integration
Results are:
- Saved to `.taskmaster/reports/complexity-analysis.md`
- Used by expand command
- Inform sprint planning
- Guide resource allocation
## Next Steps
After analysis:
```
/project:tm/expand 5 # Expand specific task
/project:tm/expand/all # Expand all recommended
/project:tm/complexity-report # View detailed report
```

View File

@@ -1,117 +0,0 @@
Display the task complexity analysis report.
Arguments: $ARGUMENTS
View the detailed complexity analysis generated by analyze-complexity command.
## Viewing Complexity Report
Shows comprehensive task complexity analysis with actionable insights.
## Execution
```bash
task-master complexity-report [--file=<path>]
```
## Report Location
Default: `.taskmaster/reports/complexity-analysis.md`
Custom: Specify with --file parameter
## Report Contents
### 1. **Executive Summary**
```
Complexity Analysis Summary
━━━━━━━━━━━━━━━━━━━━━━━━
Analysis Date: 2024-01-15
Tasks Analyzed: 32
High Complexity: 5 (16%)
Medium Complexity: 12 (37%)
Low Complexity: 15 (47%)
Critical Findings:
- 5 tasks need immediate expansion
- 3 tasks have high technical risk
- 2 tasks block critical path
```
### 2. **Detailed Task Analysis**
For each complex task:
- Complexity score breakdown
- Contributing factors
- Specific risks identified
- Expansion recommendations
- Similar completed tasks
### 3. **Risk Matrix**
Visual representation:
```
Risk vs Complexity Matrix
━━━━━━━━━━━━━━━━━━━━━━━
High Risk | #5(9) #12(8) | #23(6)
Med Risk | #34(7) | #45(5) #67(5)
Low Risk | #78(8) | [15 tasks]
| High Complex | Med Complex
```
### 4. **Recommendations**
**Immediate Actions:**
1. Expand task #5 - Critical path + high complexity
2. Expand task #12 - High risk + dependencies
3. Review task #34 - Consider splitting
**Sprint Planning:**
- Don't schedule multiple high-complexity tasks together
- Ensure expertise available for complex tasks
- Build in buffer time for unknowns
## Interactive Features
When viewing report:
1. **Quick Actions**
- Press 'e' to expand a task
- Press 'd' for task details
- Press 'r' to refresh analysis
2. **Filtering**
- View by complexity level
- Filter by risk factors
- Show only actionable items
3. **Export Options**
- Markdown format
- CSV for spreadsheets
- JSON for tools
## Report Intelligence
- Compares with historical data
- Shows complexity trends
- Identifies patterns
- Suggests process improvements
## Integration
Use report for:
- Sprint planning sessions
- Resource allocation
- Risk assessment
- Team discussions
- Client updates
## Example Usage
```
/project:tm/complexity-report
→ Opens latest analysis
/project:tm/complexity-report --file=archived/2024-01-01.md
→ View historical analysis
After viewing:
/project:tm/expand 5
→ Expand high-complexity task
```

View File

@@ -1,51 +0,0 @@
Expand all pending tasks that need subtasks.
## Bulk Task Expansion
Intelligently expands all tasks that would benefit from breakdown.
## Execution
```bash
task-master expand --all
```
## Smart Selection
Only expands tasks that:
- Are marked as pending
- Have high complexity (>5)
- Lack existing subtasks
- Would benefit from breakdown
## Expansion Process
1. **Analysis Phase**
- Identify expansion candidates
- Group related tasks
- Plan expansion strategy
2. **Batch Processing**
- Expand tasks in logical order
- Maintain consistency
- Preserve relationships
- Optimize for parallelism
3. **Quality Control**
- Ensure subtask quality
- Avoid over-decomposition
- Maintain task coherence
- Update dependencies
## Options
- Add `force` to expand all regardless of complexity
- Add `research` for enhanced AI analysis
## Results
After bulk expansion:
- Summary of tasks expanded
- New subtask count
- Updated complexity metrics
- Suggested task order

View File

@@ -1,49 +0,0 @@
Break down a complex task into subtasks.
Arguments: $ARGUMENTS (task ID)
## Intelligent Task Expansion
Analyzes a task and creates detailed subtasks for better manageability.
## Execution
```bash
task-master expand --id=$ARGUMENTS
```
## Expansion Process
1. **Task Analysis**
- Review task complexity
- Identify components
- Detect technical challenges
- Estimate time requirements
2. **Subtask Generation**
- Create 3-7 subtasks typically
- Each subtask 1-4 hours
- Logical implementation order
- Clear acceptance criteria
3. **Smart Breakdown**
- Setup/configuration tasks
- Core implementation
- Testing components
- Integration steps
- Documentation updates
## Enhanced Features
Based on task type:
- **Feature**: Setup → Implement → Test → Integrate
- **Bug Fix**: Reproduce → Diagnose → Fix → Verify
- **Refactor**: Analyze → Plan → Refactor → Validate
## Post-Expansion
After expansion:
1. Show subtask hierarchy
2. Update time estimates
3. Suggest implementation order
4. Highlight critical path

View File

@@ -1,81 +0,0 @@
Automatically fix dependency issues found during validation.
## Automatic Dependency Repair
Intelligently fixes common dependency problems while preserving project logic.
## Execution
```bash
task-master fix-dependencies
```
## What Gets Fixed
### 1. **Auto-Fixable Issues**
- Remove references to deleted tasks
- Break simple circular dependencies
- Remove self-dependencies
- Clean up duplicate dependencies
### 2. **Smart Resolutions**
- Reorder dependencies to maintain logic
- Suggest task merging for over-dependent tasks
- Flatten unnecessary dependency chains
- Remove redundant transitive dependencies
### 3. **Manual Review Required**
- Complex circular dependencies
- Critical path modifications
- Business logic dependencies
- High-impact changes
## Fix Process
1. **Analysis Phase**
- Run validation check
- Categorize issues by type
- Determine fix strategy
2. **Execution Phase**
- Apply automatic fixes
- Log all changes made
- Preserve task relationships
3. **Verification Phase**
- Re-validate after fixes
- Show before/after comparison
- Highlight manual fixes needed
## Smart Features
- Preserves intended task flow
- Minimal disruption approach
- Creates fix history/log
- Suggests manual interventions
## Output Example
```
Dependency Auto-Fix Report
━━━━━━━━━━━━━━━━━━━━━━━━
Fixed Automatically:
✅ Removed 2 references to deleted tasks
✅ Resolved 1 self-dependency
✅ Cleaned 3 redundant dependencies
Manual Review Needed:
⚠️ Complex circular dependency: #12 → #15 → #18 → #12
Suggestion: Make #15 not depend on #12
⚠️ Task #45 has 8 dependencies
Suggestion: Break into subtasks
Run '/project:tm/validate-dependencies' to verify fixes
```
## Safety
- Preview mode available
- Rollback capability
- Change logging
- No data loss

View File

@@ -1,121 +0,0 @@
Generate individual task files from tasks.json.
## Task File Generation
Creates separate markdown files for each task, perfect for AI agents or documentation.
## Execution
```bash
task-master generate
```
## What It Creates
For each task, generates a file like `task_001.txt`:
```
Task ID: 1
Title: Implement user authentication
Status: pending
Priority: high
Dependencies: []
Created: 2024-01-15
Complexity: 7
## Description
Create a secure user authentication system with login, logout, and session management.
## Details
- Use JWT tokens for session management
- Implement secure password hashing
- Add remember me functionality
- Include password reset flow
## Test Strategy
- Unit tests for auth functions
- Integration tests for login flow
- Security testing for vulnerabilities
- Performance tests for concurrent logins
## Subtasks
1.1 Setup authentication framework (pending)
1.2 Create login endpoints (pending)
1.3 Implement session management (pending)
1.4 Add password reset (pending)
```
## File Organization
Creates structure:
```
.taskmaster/
└── tasks/
├── task_001.txt
├── task_002.txt
├── task_003.txt
└── ...
```
## Smart Features
1. **Consistent Formatting**
- Standardized structure
- Clear sections
- AI-readable format
- Markdown compatible
2. **Contextual Information**
- Full task details
- Related task references
- Progress indicators
- Implementation notes
3. **Incremental Updates**
- Only regenerate changed tasks
- Preserve custom additions
- Track generation timestamp
- Version control friendly
## Use Cases
- **AI Context**: Provide task context to AI assistants
- **Documentation**: Standalone task documentation
- **Archival**: Task history preservation
- **Sharing**: Send specific tasks to team members
- **Review**: Easier task review process
## Generation Options
Based on arguments:
- Filter by status
- Include/exclude completed
- Custom templates
- Different formats
## Post-Generation
```
Task File Generation Complete
━━━━━━━━━━━━━━━━━━━━━━━━━━
Generated: 45 task files
Location: .taskmaster/tasks/
Total size: 156 KB
New files: 5
Updated files: 12
Unchanged: 28
Ready for:
- AI agent consumption
- Version control
- Team distribution
```
## Integration Benefits
- Git-trackable task history
- Easy task sharing
- AI tool compatibility
- Offline task access
- Backup redundancy

View File

@@ -1,81 +0,0 @@
Show help for Task Master commands.
Arguments: $ARGUMENTS
Display help for Task Master commands. If arguments provided, show specific command help.
## Task Master Command Help
### Quick Navigation
Type `/project:tm/` and use tab completion to explore all commands.
### Command Categories
#### 🚀 Setup & Installation
- `/project:tm/setup/install` - Comprehensive installation guide
- `/project:tm/setup/quick-install` - One-line global install
#### 📋 Project Setup
- `/project:tm/init` - Initialize new project
- `/project:tm/init/quick` - Quick setup with auto-confirm
- `/project:tm/models` - View AI configuration
- `/project:tm/models/setup` - Configure AI providers
#### 🎯 Task Generation
- `/project:tm/parse-prd` - Generate tasks from PRD
- `/project:tm/parse-prd/with-research` - Enhanced parsing
- `/project:tm/generate` - Create task files
#### 📝 Task Management
- `/project:tm/list` - List tasks (natural language filters)
- `/project:tm/show <id>` - Display task details
- `/project:tm/add-task` - Create new task
- `/project:tm/update` - Update tasks naturally
- `/project:tm/next` - Get next task recommendation
#### 🔄 Status Management
- `/project:tm/set-status/to-pending <id>`
- `/project:tm/set-status/to-in-progress <id>`
- `/project:tm/set-status/to-done <id>`
- `/project:tm/set-status/to-review <id>`
- `/project:tm/set-status/to-deferred <id>`
- `/project:tm/set-status/to-cancelled <id>`
#### 🔍 Analysis & Breakdown
- `/project:tm/analyze-complexity` - Analyze task complexity
- `/project:tm/expand <id>` - Break down complex task
- `/project:tm/expand/all` - Expand all eligible tasks
#### 🔗 Dependencies
- `/project:tm/add-dependency` - Add task dependency
- `/project:tm/remove-dependency` - Remove dependency
- `/project:tm/validate-dependencies` - Check for issues
#### 🤖 Workflows
- `/project:tm/workflows/smart-flow` - Intelligent workflows
- `/project:tm/workflows/pipeline` - Command chaining
- `/project:tm/workflows/auto-implement` - Auto-implementation
#### 📊 Utilities
- `/project:tm/utils/analyze` - Project analysis
- `/project:tm/status` - Project dashboard
- `/project:tm/learn` - Interactive learning
### Natural Language Examples
```
/project:tm/list pending high priority
/project:tm/update mark all API tasks as done
/project:tm/add-task create login system with OAuth
/project:tm/show current
```
### Getting Started
1. Install: `/project:tm/setup/quick-install`
2. Initialize: `/project:tm/init/quick`
3. Learn: `/project:tm/learn start`
4. Work: `/project:tm/workflows/smart-flow`
For detailed command info: `/project:tm/help <command-name>`

View File

@@ -1,46 +0,0 @@
Quick initialization with auto-confirmation.
Arguments: $ARGUMENTS
Initialize a Task Master project without prompts, accepting all defaults.
## Quick Setup
```bash
task-master init -y
```
## What It Does
1. Creates `.taskmaster/` directory structure
2. Initializes empty `tasks.json`
3. Sets up default configuration
4. Uses directory name as project name
5. Skips all confirmation prompts
## Smart Defaults
- Project name: Current directory name
- Description: "Task Master Project"
- Model config: Existing environment vars
- Task structure: Standard format
## Next Steps
After quick init:
1. Configure AI models if needed:
```
/project:tm/models/setup
```
2. Parse PRD if available:
```
/project:tm/parse-prd <file>
```
3. Or create first task:
```
/project:tm/add-task create initial setup
```
Perfect for rapid project setup!

View File

@@ -1,50 +0,0 @@
Initialize a new Task Master project.
Arguments: $ARGUMENTS
Parse arguments to determine initialization preferences.
## Initialization Process
1. **Parse Arguments**
- PRD file path (if provided)
- Project name
- Auto-confirm flag (-y)
2. **Project Setup**
```bash
task-master init
```
3. **Smart Initialization**
- Detect existing project files
- Suggest project name from directory
- Check for git repository
- Verify AI provider configuration
## Configuration Options
Based on arguments:
- `quick` / `-y` → Skip confirmations
- `<file.md>` → Use as PRD after init
- `--name=<name>` → Set project name
- `--description=<desc>` → Set description
## Post-Initialization
After successful init:
1. Show project structure created
2. Verify AI models configured
3. Suggest next steps:
- Parse PRD if available
- Configure AI providers
- Set up git hooks
- Create first tasks
## Integration
If PRD file provided:
```
/project:tm/init my-prd.md
→ Automatically runs parse-prd after init
```

View File

@@ -1,103 +0,0 @@
Learn about Task Master capabilities through interactive exploration.
Arguments: $ARGUMENTS
## Interactive Task Master Learning
Based on your input, I'll help you discover capabilities:
### 1. **What are you trying to do?**
If $ARGUMENTS contains:
- "start" / "begin" → Show project initialization workflows
- "manage" / "organize" → Show task management commands
- "automate" / "auto" → Show automation workflows
- "analyze" / "report" → Show analysis tools
- "fix" / "problem" → Show troubleshooting commands
- "fast" / "quick" → Show efficiency shortcuts
### 2. **Intelligent Suggestions**
Based on your project state:
**No tasks yet?**
```
You'll want to start with:
1. /project:task-master:init <prd-file>
→ Creates tasks from requirements
2. /project:task-master:parse-prd <file>
→ Alternative task generation
Try: /project:task-master:init demo-prd.md
```
**Have tasks?**
Let me analyze what you might need...
- Many pending tasks? → Learn sprint planning
- Complex tasks? → Learn task expansion
- Daily work? → Learn workflow automation
### 3. **Command Discovery**
**By Category:**
- 📋 Task Management: list, show, add, update, complete
- 🔄 Workflows: auto-implement, sprint-plan, daily-standup
- 🛠️ Utilities: check-health, complexity-report, sync-memory
- 🔍 Analysis: validate-deps, show dependencies
**By Scenario:**
- "I want to see what to work on" → `/project:task-master:next`
- "I need to break this down" → `/project:task-master:expand <id>`
- "Show me everything" → `/project:task-master:status`
- "Just do it for me" → `/project:workflows:auto-implement`
### 4. **Power User Patterns**
**Command Chaining:**
```
/project:task-master:next
/project:task-master:start <id>
/project:workflows:auto-implement
```
**Smart Filters:**
```
/project:task-master:list pending high
/project:task-master:list blocked
/project:task-master:list 1-5 tree
```
**Automation:**
```
/project:workflows:pipeline init → expand-all → sprint-plan
```
### 5. **Learning Path**
Based on your experience level:
**Beginner Path:**
1. init → Create project
2. status → Understand state
3. next → Find work
4. complete → Finish task
**Intermediate Path:**
1. expand → Break down complex tasks
2. sprint-plan → Organize work
3. complexity-report → Understand difficulty
4. validate-deps → Ensure consistency
**Advanced Path:**
1. pipeline → Chain operations
2. smart-flow → Context-aware automation
3. Custom commands → Extend the system
### 6. **Try This Now**
Based on what you asked about, try:
[Specific command suggestion based on $ARGUMENTS]
Want to learn more about a specific command?
Type: /project:help <command-name>

View File

@@ -1,39 +0,0 @@
List tasks filtered by a specific status.
Arguments: $ARGUMENTS
Parse the status from arguments and list only tasks matching that status.
## Status Options
- `pending` - Not yet started
- `in-progress` - Currently being worked on
- `done` - Completed
- `review` - Awaiting review
- `deferred` - Postponed
- `cancelled` - Cancelled
## Execution
Based on $ARGUMENTS, run:
```bash
task-master list --status=$ARGUMENTS
```
## Enhanced Display
For the filtered results:
- Group by priority within the status
- Show time in current status
- Highlight tasks approaching deadlines
- Display blockers and dependencies
- Suggest next actions for each status group
## Intelligent Insights
Based on the status filter:
- **Pending**: Show recommended start order
- **In-Progress**: Display idle time warnings
- **Done**: Show newly unblocked tasks
- **Review**: Indicate review duration
- **Deferred**: Show reactivation criteria
- **Cancelled**: Display impact analysis

View File

@@ -1,29 +0,0 @@
List all tasks including their subtasks in a hierarchical view.
This command shows all tasks with their nested subtasks, providing a complete project overview.
## Execution
Run the Task Master list command with subtasks flag:
```bash
task-master list --with-subtasks
```
## Enhanced Display
I'll organize the output to show:
- Parent tasks with clear indicators
- Nested subtasks with proper indentation
- Status badges for quick scanning
- Dependencies and blockers highlighted
- Progress indicators for tasks with subtasks
## Smart Filtering
Based on the task hierarchy:
- Show completion percentage for parent tasks
- Highlight blocked subtask chains
- Group by functional areas
- Indicate critical path items
This gives you a complete tree view of your project structure.

View File

@@ -1,43 +0,0 @@
List tasks with intelligent argument parsing.
Parse arguments to determine filters and display options:
- Status: pending, in-progress, done, review, deferred, cancelled
- Priority: high, medium, low (or priority:high)
- Special: subtasks, tree, dependencies, blocked
- IDs: Direct numbers (e.g., "1,3,5" or "1-5")
- Complex: "pending high" = pending AND high priority
Arguments: $ARGUMENTS
Let me parse your request intelligently:
1. **Detect Filter Intent**
- If arguments contain status keywords → filter by status
- If arguments contain priority → filter by priority
- If arguments contain "subtasks" → include subtasks
- If arguments contain "tree" → hierarchical view
- If arguments contain numbers → show specific tasks
- If arguments contain "blocked" → show blocked tasks only
2. **Smart Combinations**
Examples of what I understand:
- "pending high" → pending tasks with high priority
- "done today" → tasks completed today
- "blocked" → tasks with unmet dependencies
- "1-5" → tasks 1 through 5
- "subtasks tree" → hierarchical view with subtasks
3. **Execute Appropriate Query**
Based on parsed intent, run the most specific task-master command
4. **Enhanced Display**
- Group by relevant criteria
- Show most important information first
- Use visual indicators for quick scanning
- Include relevant metrics
5. **Intelligent Suggestions**
Based on what you're viewing, suggest next actions:
- Many pending? → Suggest priority order
- Many blocked? → Show dependency resolution
- Looking at specific tasks? → Show related tasks

View File

@@ -1,51 +0,0 @@
Run interactive setup to configure AI models.
## Interactive Model Configuration
Guides you through setting up AI providers for Task Master.
## Execution
```bash
task-master models --setup
```
## Setup Process
1. **Environment Check**
- Detect existing API keys
- Show current configuration
- Identify missing providers
2. **Provider Selection**
- Choose main provider (required)
- Select research provider (recommended)
- Configure fallback (optional)
3. **API Key Configuration**
- Prompt for missing keys
- Validate key format
- Test connectivity
- Save configuration
## Smart Recommendations
Based on your needs:
- **For best results**: Claude + Perplexity
- **Budget conscious**: GPT-3.5 + Perplexity
- **Maximum capability**: GPT-4 + Perplexity + Claude fallback
## Configuration Storage
Keys can be stored in:
1. Environment variables (recommended)
2. `.env` file in project
3. Global `.taskmaster/config`
## Post-Setup
After configuration:
- Test each provider
- Show usage examples
- Suggest next steps
- Verify parse-prd works

View File

@@ -1,51 +0,0 @@
View current AI model configuration.
## Model Configuration Display
Shows the currently configured AI providers and models for Task Master.
## Execution
```bash
task-master models
```
## Information Displayed
1. **Main Provider**
- Model ID and name
- API key status (configured/missing)
- Usage: Primary task generation
2. **Research Provider**
- Model ID and name
- API key status
- Usage: Enhanced research mode
3. **Fallback Provider**
- Model ID and name
- API key status
- Usage: Backup when main fails
## Visual Status
```
Task Master AI Model Configuration
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Main: ✅ claude-3-5-sonnet (configured)
Research: ✅ perplexity-sonar (configured)
Fallback: ⚠️ Not configured (optional)
Available Models:
- claude-3-5-sonnet
- gpt-4-turbo
- gpt-3.5-turbo
- perplexity-sonar
```
## Next Actions
Based on configuration:
- If missing API keys → Suggest setup
- If no research model → Explain benefits
- If all configured → Show usage tips

View File

@@ -1,66 +0,0 @@
Intelligently determine and prepare the next action based on comprehensive context.
This enhanced version of 'next' considers:
- Current task states
- Recent activity
- Time constraints
- Dependencies
- Your working patterns
Arguments: $ARGUMENTS
## Intelligent Next Action
### 1. **Context Gathering**
Let me analyze the current situation:
- Active tasks (in-progress)
- Recently completed tasks
- Blocked tasks
- Time since last activity
- Arguments provided: $ARGUMENTS
### 2. **Smart Decision Tree**
**If you have an in-progress task:**
- Has it been idle > 2 hours? → Suggest resuming or switching
- Near completion? → Show remaining steps
- Blocked? → Find alternative task
**If no in-progress tasks:**
- Unblocked high-priority tasks? → Start highest
- Complex tasks need breakdown? → Suggest expansion
- All tasks blocked? → Show dependency resolution
**Special arguments handling:**
- "quick" → Find task < 2 hours
- "easy" Find low complexity task
- "important" Find high priority regardless of complexity
- "continue" Resume last worked task
### 3. **Preparation Workflow**
Based on selected task:
1. Show full context and history
2. Set up development environment
3. Run relevant tests
4. Open related files
5. Show similar completed tasks
6. Estimate completion time
### 4. **Alternative Suggestions**
Always provide options:
- Primary recommendation
- Quick alternative (< 1 hour)
- Strategic option (unblocks most tasks)
- Learning option (new technology/skill)
### 5. **Workflow Integration**
Seamlessly connect to:
- `/project:task-master:start [selected]`
- `/project:workflows:auto-implement`
- `/project:task-master:expand` (if complex)
- `/project:utils:complexity-report` (if unsure)
The goal: Zero friction from decision to implementation.

View File

@@ -1,48 +0,0 @@
Parse PRD with enhanced research mode for better task generation.
Arguments: $ARGUMENTS (PRD file path)
## Research-Enhanced Parsing
Uses the research AI provider (typically Perplexity) for more comprehensive task generation with current best practices.
## Execution
```bash
task-master parse-prd --input=$ARGUMENTS --research
```
## Research Benefits
1. **Current Best Practices**
- Latest framework patterns
- Security considerations
- Performance optimizations
- Accessibility requirements
2. **Technical Deep Dive**
- Implementation approaches
- Library recommendations
- Architecture patterns
- Testing strategies
3. **Comprehensive Coverage**
- Edge cases consideration
- Error handling tasks
- Monitoring setup
- Deployment tasks
## Enhanced Output
Research mode typically:
- Generates more detailed tasks
- Includes industry standards
- Adds compliance considerations
- Suggests modern tooling
## When to Use
- New technology domains
- Complex requirements
- Regulatory compliance needed
- Best practices crucial

View File

@@ -1,49 +0,0 @@
Parse a PRD document to generate tasks.
Arguments: $ARGUMENTS (PRD file path)
## Intelligent PRD Parsing
Analyzes your requirements document and generates a complete task breakdown.
## Execution
```bash
task-master parse-prd --input=$ARGUMENTS
```
## Parsing Process
1. **Document Analysis**
- Extract key requirements
- Identify technical components
- Detect dependencies
- Estimate complexity
2. **Task Generation**
- Create 10-15 tasks by default
- Include implementation tasks
- Add testing tasks
- Include documentation tasks
- Set logical dependencies
3. **Smart Enhancements**
- Group related functionality
- Set appropriate priorities
- Add acceptance criteria
- Include test strategies
## Options
Parse arguments for modifiers:
- Number after filename → `--num-tasks`
- `research` → Use research mode
- `comprehensive` → Generate more tasks
## Post-Generation
After parsing:
1. Display task summary
2. Show dependency graph
3. Suggest task expansion for complex items
4. Recommend sprint planning

View File

@@ -1,62 +0,0 @@
Remove a dependency between tasks.
Arguments: $ARGUMENTS
Parse the task IDs to remove dependency relationship.
## Removing Dependencies
Removes a dependency relationship, potentially unblocking tasks.
## Argument Parsing
Parse natural language or IDs:
- "remove dependency between 5 and 3"
- "5 no longer needs 3"
- "unblock 5 from 3"
- "5 3" → remove dependency of 5 on 3
## Execution
```bash
task-master remove-dependency --id=<task-id> --depends-on=<dependency-id>
```
## Pre-Removal Checks
1. **Verify dependency exists**
2. **Check impact on task flow**
3. **Warn if it breaks logical sequence**
4. **Show what will be unblocked**
## Smart Analysis
Before removing:
- Show why dependency might have existed
- Check if removal makes tasks executable
- Verify no critical path disruption
- Suggest alternative dependencies
## Post-Removal
After removing:
1. Show updated task status
2. List newly unblocked tasks
3. Update project timeline
4. Suggest next actions
## Safety Features
- Confirm if removing critical dependency
- Show tasks that become immediately actionable
- Warn about potential issues
- Keep removal history
## Example
```
/project:tm/remove-dependency 5 from 3
→ Removed: Task #5 no longer depends on #3
→ Task #5 is now UNBLOCKED and ready to start
→ Warning: Consider if #5 still needs #2 completed first
```

View File

@@ -1,84 +0,0 @@
Remove a subtask from its parent task.
Arguments: $ARGUMENTS
Parse subtask ID to remove, with option to convert to standalone task.
## Removing Subtasks
Remove a subtask and optionally convert it back to a standalone task.
## Argument Parsing
- "remove subtask 5.1"
- "delete 5.1"
- "convert 5.1 to task" → remove and convert
- "5.1 standalone" → convert to standalone
## Execution Options
### 1. Delete Subtask
```bash
task-master remove-subtask --id=<parentId.subtaskId>
```
### 2. Convert to Standalone
```bash
task-master remove-subtask --id=<parentId.subtaskId> --convert
```
## Pre-Removal Checks
1. **Validate Subtask**
- Verify subtask exists
- Check completion status
- Review dependencies
2. **Impact Analysis**
- Other subtasks that depend on it
- Parent task implications
- Data that will be lost
## Removal Process
### For Deletion:
1. Confirm if subtask has work done
2. Update parent task estimates
3. Remove subtask and its data
4. Clean up dependencies
### For Conversion:
1. Assign new standalone task ID
2. Preserve all task data
3. Update dependency references
4. Maintain task history
## Smart Features
- Warn if subtask is in-progress
- Show impact on parent task
- Preserve important data
- Update related estimates
## Example Flows
```
/project:tm/remove-subtask 5.1
→ Warning: Subtask #5.1 is in-progress
→ This will delete all subtask data
→ Parent task #5 will be updated
Confirm deletion? (y/n)
/project:tm/remove-subtask 5.1 convert
→ Converting subtask #5.1 to standalone task #89
→ Preserved: All task data and history
→ Updated: 2 dependency references
→ New task #89 is now independent
```
## Post-Removal
- Update parent task status
- Recalculate estimates
- Show updated hierarchy
- Suggest next actions

View File

@@ -1,107 +0,0 @@
Remove a task permanently from the project.
Arguments: $ARGUMENTS (task ID)
Delete a task and handle all its relationships properly.
## Task Removal
Permanently removes a task while maintaining project integrity.
## Argument Parsing
- "remove task 5"
- "delete 5"
- "5" → remove task 5
- Can include "-y" for auto-confirm
## Execution
```bash
task-master remove-task --id=<id> [-y]
```
## Pre-Removal Analysis
1. **Task Details**
- Current status
- Work completed
- Time invested
- Associated data
2. **Relationship Check**
- Tasks that depend on this
- Dependencies this task has
- Subtasks that will be removed
- Blocking implications
3. **Impact Assessment**
```
Task Removal Impact
━━━━━━━━━━━━━━━━━━
Task: #5 "Implement authentication" (in-progress)
Status: 60% complete (~8 hours work)
Will affect:
- 3 tasks depend on this (will be blocked)
- Has 4 subtasks (will be deleted)
- Part of critical path
⚠️ This action cannot be undone
```
## Smart Warnings
- Warn if task is in-progress
- Show dependent tasks that will be blocked
- Highlight if part of critical path
- Note any completed work being lost
## Removal Process
1. Show comprehensive impact
2. Require confirmation (unless -y)
3. Update dependent task references
4. Remove task and subtasks
5. Clean up orphaned dependencies
6. Log removal with timestamp
## Alternative Actions
Suggest before deletion:
- Mark as cancelled instead
- Convert to documentation
- Archive task data
- Transfer work to another task
## Post-Removal
- List affected tasks
- Show broken dependencies
- Update project statistics
- Suggest dependency fixes
- Recalculate timeline
## Example Flows
```
/project:tm/remove-task 5
→ Task #5 is in-progress with 8 hours logged
→ 3 other tasks depend on this
→ Suggestion: Mark as cancelled instead?
Remove anyway? (y/n)
/project:tm/remove-task 5 -y
→ Removed: Task #5 and 4 subtasks
→ Updated: 3 task dependencies
→ Warning: Tasks #7, #8, #9 now have missing dependency
→ Run /project:tm/fix-dependencies to resolve
```
## Safety Features
- Confirmation required
- Impact preview
- Removal logging
- Suggest alternatives
- No cascade delete of dependents

View File

@@ -1,55 +0,0 @@
Cancel a task permanently.
Arguments: $ARGUMENTS (task ID)
## Cancelling a Task
This status indicates a task is no longer needed and won't be completed.
## Valid Reasons for Cancellation
- Requirements changed
- Feature deprecated
- Duplicate of another task
- Strategic pivot
- Technical approach invalidated
## Pre-Cancellation Checks
1. Confirm no critical dependencies
2. Check for partial implementation
3. Verify cancellation rationale
4. Document lessons learned
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=cancelled
```
## Cancellation Impact
When cancelling:
1. **Dependency Updates**
- Notify dependent tasks
- Update project scope
- Recalculate timelines
2. **Clean-up Actions**
- Remove related branches
- Archive any work done
- Update documentation
- Close related issues
3. **Learning Capture**
- Document why cancelled
- Note what was learned
- Update estimation models
- Prevent future duplicates
## Historical Preservation
- Keep for reference
- Tag with cancellation reason
- Link to replacement if any
- Maintain audit trail

View File

@@ -1,47 +0,0 @@
Defer a task for later consideration.
Arguments: $ARGUMENTS (task ID)
## Deferring a Task
This status indicates a task is valid but not currently actionable or prioritized.
## Valid Reasons for Deferral
- Waiting for external dependencies
- Reprioritized for future sprint
- Blocked by technical limitations
- Resource constraints
- Strategic timing considerations
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=deferred
```
## Deferral Management
When deferring:
1. **Document Reason**
- Capture why it's being deferred
- Set reactivation criteria
- Note any partial work completed
2. **Impact Analysis**
- Check dependent tasks
- Update project timeline
- Notify affected stakeholders
3. **Future Planning**
- Set review reminders
- Tag for specific milestone
- Preserve context for reactivation
- Link to blocking issues
## Smart Tracking
- Monitor deferral duration
- Alert when criteria met
- Prevent scope creep
- Regular review cycles

View File

@@ -1,44 +0,0 @@
Mark a task as completed.
Arguments: $ARGUMENTS (task ID)
## Completing a Task
This command validates task completion and updates project state intelligently.
## Pre-Completion Checks
1. Verify test strategy was followed
2. Check if all subtasks are complete
3. Validate acceptance criteria met
4. Ensure code is committed
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=done
```
## Post-Completion Actions
1. **Update Dependencies**
- Identify newly unblocked tasks
- Update sprint progress
- Recalculate project timeline
2. **Documentation**
- Generate completion summary
- Update CLAUDE.md with learnings
- Log implementation approach
3. **Next Steps**
- Show newly available tasks
- Suggest logical next task
- Update velocity metrics
## Celebration & Learning
- Show impact of completion
- Display unblocked work
- Recognize achievement
- Capture lessons learned

View File

@@ -1,36 +0,0 @@
Start working on a task by setting its status to in-progress.
Arguments: $ARGUMENTS (task ID)
## Starting Work on Task
This command does more than just change status - it prepares your environment for productive work.
## Pre-Start Checks
1. Verify dependencies are met
2. Check if another task is already in-progress
3. Ensure task details are complete
4. Validate test strategy exists
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=in-progress
```
## Environment Setup
After setting to in-progress:
1. Create/checkout appropriate git branch
2. Open relevant documentation
3. Set up test watchers if applicable
4. Display task details and acceptance criteria
5. Show similar completed tasks for reference
## Smart Suggestions
- Estimated completion time based on complexity
- Related files from similar tasks
- Potential blockers to watch for
- Recommended first steps

View File

@@ -1,32 +0,0 @@
Set a task's status to pending.
Arguments: $ARGUMENTS (task ID)
## Setting Task to Pending
This moves a task back to the pending state, useful for:
- Resetting erroneously started tasks
- Deferring work that was prematurely begun
- Reorganizing sprint priorities
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=pending
```
## Validation
Before setting to pending:
- Warn if task is currently in-progress
- Check if this will block other tasks
- Suggest documenting why it's being reset
- Preserve any work already done
## Smart Actions
After setting to pending:
- Update sprint planning if needed
- Notify about freed resources
- Suggest priority reassessment
- Log the status change with context

View File

@@ -1,40 +0,0 @@
Set a task's status to review.
Arguments: $ARGUMENTS (task ID)
## Marking Task for Review
This status indicates work is complete but needs verification before final approval.
## When to Use Review Status
- Code complete but needs peer review
- Implementation done but needs testing
- Documentation written but needs proofreading
- Design complete but needs stakeholder approval
## Execution
```bash
task-master set-status --id=$ARGUMENTS --status=review
```
## Review Preparation
When setting to review:
1. **Generate Review Checklist**
- Link to PR/MR if applicable
- Highlight key changes
- Note areas needing attention
- Include test results
2. **Documentation**
- Update task with review notes
- Link relevant artifacts
- Specify reviewers if known
3. **Smart Actions**
- Create review reminders
- Track review duration
- Suggest reviewers based on expertise
- Prepare rollback plan if needed

View File

@@ -1,117 +0,0 @@
Check if Task Master is installed and install it if needed.
This command helps you get Task Master set up globally on your system.
## Detection and Installation Process
1. **Check Current Installation**
```bash
# Check if task-master command exists
which task-master || echo "Task Master not found"
# Check npm global packages
npm list -g task-master-ai
```
2. **System Requirements Check**
```bash
# Verify Node.js is installed
node --version
# Verify npm is installed
npm --version
# Check Node version (need 16+)
```
3. **Install Task Master Globally**
If not installed, run:
```bash
npm install -g task-master-ai
```
4. **Verify Installation**
```bash
# Check version
task-master --version
# Verify command is available
which task-master
```
5. **Initial Setup**
```bash
# Initialize in current directory
task-master init
```
6. **Configure AI Provider**
Ensure you have at least one AI provider API key set:
```bash
# Check current configuration
task-master models --status
# If no API keys found, guide setup
echo "You'll need at least one API key:"
echo "- ANTHROPIC_API_KEY for Claude"
echo "- OPENAI_API_KEY for GPT models"
echo "- PERPLEXITY_API_KEY for research"
echo ""
echo "Set them in your shell profile or .env file"
```
7. **Quick Test**
```bash
# Create a test PRD
echo "Build a simple hello world API" > test-prd.txt
# Try parsing it
task-master parse-prd test-prd.txt -n 3
```
## Troubleshooting
If installation fails:
**Permission Errors:**
```bash
# Try with sudo (macOS/Linux)
sudo npm install -g task-master-ai
# Or fix npm permissions
npm config set prefix ~/.npm-global
export PATH=~/.npm-global/bin:$PATH
```
**Network Issues:**
```bash
# Use different registry
npm install -g task-master-ai --registry https://registry.npmjs.org/
```
**Node Version Issues:**
```bash
# Install Node 18+ via nvm
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash
nvm install 18
nvm use 18
```
## Success Confirmation
Once installed, you should see:
```
✅ Task Master v0.16.2 (or higher) installed
✅ Command 'task-master' available globally
✅ AI provider configured
✅ Ready to use slash commands!
Try: /project:task-master:init your-prd.md
```
## Next Steps
After installation:
1. Run `/project:utils:check-health` to verify setup
2. Configure AI providers with `/project:task-master:models`
3. Start using Task Master commands!

View File

@@ -1,22 +0,0 @@
Quick install Task Master globally if not already installed.
Execute this streamlined installation:
```bash
# Check and install in one command
task-master --version 2>/dev/null || npm install -g task-master-ai
# Verify installation
task-master --version
# Quick setup check
task-master models --status || echo "Note: You'll need to set up an AI provider API key"
```
If you see "command not found" after installation, you may need to:
1. Restart your terminal
2. Or add npm global bin to PATH: `export PATH=$(npm bin -g):$PATH`
Once installed, you can use all the Task Master commands!
Quick test: Run `/project:help` to see all available commands.

View File

@@ -1,82 +0,0 @@
Show detailed task information with rich context and insights.
Arguments: $ARGUMENTS
## Enhanced Task Display
Parse arguments to determine what to show and how.
### 1. **Smart Task Selection**
Based on $ARGUMENTS:
- Number → Show specific task with full context
- "current" → Show active in-progress task(s)
- "next" → Show recommended next task
- "blocked" → Show all blocked tasks with reasons
- "critical" → Show critical path tasks
- Multiple IDs → Comparative view
### 2. **Contextual Information**
For each task, intelligently include:
**Core Details**
- Full task information (id, title, description, details)
- Current status with history
- Test strategy and acceptance criteria
- Priority and complexity analysis
**Relationships**
- Dependencies (what it needs)
- Dependents (what needs it)
- Parent/subtask hierarchy
- Related tasks (similar work)
**Time Intelligence**
- Created/updated timestamps
- Time in current status
- Estimated vs actual time
- Historical completion patterns
### 3. **Visual Enhancements**
```
📋 Task #45: Implement User Authentication
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Status: 🟡 in-progress (2 hours)
Priority: 🔴 High | Complexity: 73/100
Dependencies: ✅ #41, ✅ #42, ⏳ #43 (blocked)
Blocks: #46, #47, #52
Progress: ████████░░ 80% complete
Recent Activity:
- 2h ago: Status changed to in-progress
- 4h ago: Dependency #42 completed
- Yesterday: Task expanded with 3 subtasks
```
### 4. **Intelligent Insights**
Based on task analysis:
- **Risk Assessment**: Complexity vs time remaining
- **Bottleneck Analysis**: Is this blocking critical work?
- **Recommendation**: Suggested approach or concerns
- **Similar Tasks**: How others completed similar work
### 5. **Action Suggestions**
Context-aware next steps:
- If blocked → Show how to unblock
- If complex → Suggest expansion
- If in-progress → Show completion checklist
- If done → Show dependent tasks ready to start
### 6. **Multi-Task View**
When showing multiple tasks:
- Common dependencies
- Optimal completion order
- Parallel work opportunities
- Combined complexity analysis

View File

@@ -1,64 +0,0 @@
Enhanced status command with comprehensive project insights.
Arguments: $ARGUMENTS
## Intelligent Status Overview
### 1. **Executive Summary**
Quick dashboard view:
- 🏃 Active work (in-progress tasks)
- 📊 Progress metrics (% complete, velocity)
- 🚧 Blockers and risks
- ⏱️ Time analysis (estimated vs actual)
- 🎯 Sprint/milestone progress
### 2. **Contextual Analysis**
Based on $ARGUMENTS, focus on:
- "sprint" → Current sprint progress and burndown
- "blocked" → Dependency chains and resolution paths
- "team" → Task distribution and workload
- "timeline" → Schedule adherence and projections
- "risk" → High complexity or overdue items
### 3. **Smart Insights**
**Workflow Health:**
- Idle tasks (in-progress > 24h without updates)
- Bottlenecks (multiple tasks waiting on same dependency)
- Quick wins (low complexity, high impact)
**Predictive Analytics:**
- Completion projections based on velocity
- Risk of missing deadlines
- Recommended task order for optimal flow
### 4. **Visual Intelligence**
Dynamic visualization based on data:
```
Sprint Progress: ████████░░ 80% (16/20 tasks)
Velocity Trend: ↗️ +15% this week
Blocked Tasks: 🔴 3 critical path items
Priority Distribution:
High: ████████ 8 tasks (2 blocked)
Medium: ████░░░░ 4 tasks
Low: ██░░░░░░ 2 tasks
```
### 5. **Actionable Recommendations**
Based on analysis:
1. **Immediate actions** (unblock critical path)
2. **Today's focus** (optimal task sequence)
3. **Process improvements** (recurring patterns)
4. **Resource needs** (skills, time, dependencies)
### 6. **Historical Context**
Compare to previous periods:
- Velocity changes
- Pattern recognition
- Improvement areas
- Success patterns to repeat

View File

@@ -1,117 +0,0 @@
Export tasks to README.md with professional formatting.
Arguments: $ARGUMENTS
Generate a well-formatted README with current task information.
## README Synchronization
Creates or updates README.md with beautifully formatted task information.
## Argument Parsing
Optional filters:
- "pending" → Only pending tasks
- "with-subtasks" → Include subtask details
- "by-priority" → Group by priority
- "sprint" → Current sprint only
## Execution
```bash
task-master sync-readme [--with-subtasks] [--status=<status>]
```
## README Generation
### 1. **Project Header**
```markdown
# Project Name
## 📋 Task Progress
Last Updated: 2024-01-15 10:30 AM
### Summary
- Total Tasks: 45
- Completed: 15 (33%)
- In Progress: 5 (11%)
- Pending: 25 (56%)
```
### 2. **Task Sections**
Organized by status or priority:
- Progress indicators
- Task descriptions
- Dependencies noted
- Time estimates
### 3. **Visual Elements**
- Progress bars
- Status badges
- Priority indicators
- Completion checkmarks
## Smart Features
1. **Intelligent Grouping**
- By feature area
- By sprint/milestone
- By assigned developer
- By priority
2. **Progress Tracking**
- Overall completion
- Sprint velocity
- Burndown indication
- Time tracking
3. **Formatting Options**
- GitHub-flavored markdown
- Task checkboxes
- Collapsible sections
- Table format available
## Example Output
```markdown
## 🚀 Current Sprint
### In Progress
- [ ] 🔄 #5 **Implement user authentication** (60% complete)
- Dependencies: API design (#3 ✅)
- Subtasks: 4 (2 completed)
- Est: 8h / Spent: 5h
### Pending (High Priority)
- [ ]#8 **Create dashboard UI**
- Blocked by: #5
- Complexity: High
- Est: 12h
```
## Customization
Based on arguments:
- Include/exclude sections
- Detail level control
- Custom grouping
- Filter by criteria
## Post-Sync
After generation:
1. Show diff preview
2. Backup existing README
3. Write new content
4. Commit reminder
5. Update timestamp
## Integration
Works well with:
- Git workflows
- CI/CD pipelines
- Project documentation
- Team updates
- Client reports

View File

@@ -1,146 +0,0 @@
# Task Master Command Reference
Comprehensive command structure for Task Master integration with Claude Code.
## Command Organization
Commands are organized hierarchically to match Task Master's CLI structure while providing enhanced Claude Code integration.
## Project Setup & Configuration
### `/project:tm/init`
- `init-project` - Initialize new project (handles PRD files intelligently)
- `init-project-quick` - Quick setup with auto-confirmation (-y flag)
### `/project:tm/models`
- `view-models` - View current AI model configuration
- `setup-models` - Interactive model configuration
- `set-main` - Set primary generation model
- `set-research` - Set research model
- `set-fallback` - Set fallback model
## Task Generation
### `/project:tm/parse-prd`
- `parse-prd` - Generate tasks from PRD document
- `parse-prd-with-research` - Enhanced parsing with research mode
### `/project:tm/generate`
- `generate-tasks` - Create individual task files from tasks.json
## Task Management
### `/project:tm/list`
- `list-tasks` - Smart listing with natural language filters
- `list-tasks-with-subtasks` - Include subtasks in hierarchical view
- `list-tasks-by-status` - Filter by specific status
### `/project:tm/set-status`
- `to-pending` - Reset task to pending
- `to-in-progress` - Start working on task
- `to-done` - Mark task complete
- `to-review` - Submit for review
- `to-deferred` - Defer task
- `to-cancelled` - Cancel task
### `/project:tm/sync-readme`
- `sync-readme` - Export tasks to README.md with formatting
### `/project:tm/update`
- `update-task` - Update tasks with natural language
- `update-tasks-from-id` - Update multiple tasks from a starting point
- `update-single-task` - Update specific task
### `/project:tm/add-task`
- `add-task` - Add new task with AI assistance
### `/project:tm/remove-task`
- `remove-task` - Remove task with confirmation
## Subtask Management
### `/project:tm/add-subtask`
- `add-subtask` - Add new subtask to parent
- `convert-task-to-subtask` - Convert existing task to subtask
### `/project:tm/remove-subtask`
- `remove-subtask` - Remove subtask (with optional conversion)
### `/project:tm/clear-subtasks`
- `clear-subtasks` - Clear subtasks from specific task
- `clear-all-subtasks` - Clear all subtasks globally
## Task Analysis & Breakdown
### `/project:tm/analyze-complexity`
- `analyze-complexity` - Analyze and generate expansion recommendations
### `/project:tm/complexity-report`
- `complexity-report` - Display complexity analysis report
### `/project:tm/expand`
- `expand-task` - Break down specific task
- `expand-all-tasks` - Expand all eligible tasks
- `with-research` - Enhanced expansion
## Task Navigation
### `/project:tm/next`
- `next-task` - Intelligent next task recommendation
### `/project:tm/show`
- `show-task` - Display detailed task information
### `/project:tm/status`
- `project-status` - Comprehensive project dashboard
## Dependency Management
### `/project:tm/add-dependency`
- `add-dependency` - Add task dependency
### `/project:tm/remove-dependency`
- `remove-dependency` - Remove task dependency
### `/project:tm/validate-dependencies`
- `validate-dependencies` - Check for dependency issues
### `/project:tm/fix-dependencies`
- `fix-dependencies` - Automatically fix dependency problems
## Workflows & Automation
### `/project:tm/workflows`
- `smart-workflow` - Context-aware intelligent workflow execution
- `command-pipeline` - Chain multiple commands together
- `auto-implement-tasks` - Advanced auto-implementation with code generation
## Utilities
### `/project:tm/utils`
- `analyze-project` - Deep project analysis and insights
### `/project:tm/setup`
- `install-taskmaster` - Comprehensive installation guide
- `quick-install-taskmaster` - One-line global installation
## Usage Patterns
### Natural Language
Most commands accept natural language arguments:
```
/project:tm/add-task create user authentication system
/project:tm/update mark all API tasks as high priority
/project:tm/list show blocked tasks
```
### ID-Based Commands
Commands requiring IDs intelligently parse from $ARGUMENTS:
```
/project:tm/show 45
/project:tm/expand 23
/project:tm/set-status/to-done 67
```
### Smart Defaults
Commands provide intelligent defaults and suggestions based on context.

View File

@@ -1,119 +0,0 @@
Update a single specific task with new information.
Arguments: $ARGUMENTS
Parse task ID and update details.
## Single Task Update
Precisely update one task with AI assistance to maintain consistency.
## Argument Parsing
Natural language updates:
- "5: add caching requirement"
- "update 5 to include error handling"
- "task 5 needs rate limiting"
- "5 change priority to high"
## Execution
```bash
task-master update-task --id=<id> --prompt="<context>"
```
## Update Types
### 1. **Content Updates**
- Enhance description
- Add requirements
- Clarify details
- Update acceptance criteria
### 2. **Metadata Updates**
- Change priority
- Adjust time estimates
- Update complexity
- Modify dependencies
### 3. **Strategic Updates**
- Revise approach
- Change test strategy
- Update implementation notes
- Adjust subtask needs
## AI-Powered Updates
The AI:
1. **Understands Context**
- Reads current task state
- Identifies update intent
- Maintains consistency
- Preserves important info
2. **Applies Changes**
- Updates relevant fields
- Keeps style consistent
- Adds without removing
- Enhances clarity
3. **Validates Results**
- Checks coherence
- Verifies completeness
- Maintains relationships
- Suggests related updates
## Example Updates
```
/project:tm/update/single 5: add rate limiting
→ Updating Task #5: "Implement API endpoints"
Current: Basic CRUD endpoints
Adding: Rate limiting requirements
Updated sections:
✓ Description: Added rate limiting mention
✓ Details: Added specific limits (100/min)
✓ Test Strategy: Added rate limit tests
✓ Complexity: Increased from 5 to 6
✓ Time Estimate: Increased by 2 hours
Suggestion: Also update task #6 (API Gateway) for consistency?
```
## Smart Features
1. **Incremental Updates**
- Adds without overwriting
- Preserves work history
- Tracks what changed
- Shows diff view
2. **Consistency Checks**
- Related task alignment
- Subtask compatibility
- Dependency validity
- Timeline impact
3. **Update History**
- Timestamp changes
- Track who/what updated
- Reason for update
- Previous versions
## Field-Specific Updates
Quick syntax for specific fields:
- "5 priority:high" → Update priority only
- "5 add-time:4h" → Add to time estimate
- "5 status:review" → Change status
- "5 depends:3,4" → Add dependencies
## Post-Update
- Show updated task
- Highlight changes
- Check related tasks
- Update suggestions
- Timeline adjustments

View File

@@ -1,72 +0,0 @@
Update tasks with intelligent field detection and bulk operations.
Arguments: $ARGUMENTS
## Intelligent Task Updates
Parse arguments to determine update intent and execute smartly.
### 1. **Natural Language Processing**
Understand update requests like:
- "mark 23 as done" → Update status to done
- "increase priority of 45" → Set priority to high
- "add dependency on 12 to task 34" → Add dependency
- "tasks 20-25 need review" → Bulk status update
- "all API tasks high priority" → Pattern-based update
### 2. **Smart Field Detection**
Automatically detect what to update:
- Status keywords: done, complete, start, pause, review
- Priority changes: urgent, high, low, deprioritize
- Dependency updates: depends on, blocks, after
- Assignment: assign to, owner, responsible
- Time: estimate, spent, deadline
### 3. **Bulk Operations**
Support for multiple task updates:
```
Examples:
- "complete tasks 12, 15, 18"
- "all pending auth tasks to in-progress"
- "increase priority for tasks blocking 45"
- "defer all documentation tasks"
```
### 4. **Contextual Validation**
Before updating, check:
- Status transitions are valid
- Dependencies don't create cycles
- Priority changes make sense
- Bulk updates won't break project flow
Show preview:
```
Update Preview:
─────────────────
Tasks to update: #23, #24, #25
Change: status → in-progress
Impact: Will unblock tasks #30, #31
Warning: Task #24 has unmet dependencies
```
### 5. **Smart Suggestions**
Based on update:
- Completing task? → Show newly unblocked tasks
- Changing priority? → Show impact on sprint
- Adding dependency? → Check for conflicts
- Bulk update? → Show summary of changes
### 6. **Workflow Integration**
After updates:
- Auto-update dependent task states
- Trigger status recalculation
- Update sprint/milestone progress
- Log changes with context
Result: Flexible, intelligent task updates with safety checks.

View File

@@ -1,108 +0,0 @@
Update multiple tasks starting from a specific ID.
Arguments: $ARGUMENTS
Parse starting task ID and update context.
## Bulk Task Updates
Update multiple related tasks based on new requirements or context changes.
## Argument Parsing
- "from 5: add security requirements"
- "5 onwards: update API endpoints"
- "starting at 5: change to use new framework"
## Execution
```bash
task-master update --from=<id> --prompt="<context>"
```
## Update Process
### 1. **Task Selection**
Starting from specified ID:
- Include the task itself
- Include all dependent tasks
- Include related subtasks
- Smart boundary detection
### 2. **Context Application**
AI analyzes the update context and:
- Identifies what needs changing
- Maintains consistency
- Preserves completed work
- Updates related information
### 3. **Intelligent Updates**
- Modify descriptions appropriately
- Update test strategies
- Adjust time estimates
- Revise dependencies if needed
## Smart Features
1. **Scope Detection**
- Find natural task groupings
- Identify related features
- Stop at logical boundaries
- Avoid over-updating
2. **Consistency Maintenance**
- Keep naming conventions
- Preserve relationships
- Update cross-references
- Maintain task flow
3. **Change Preview**
```
Bulk Update Preview
━━━━━━━━━━━━━━━━━━
Starting from: Task #5
Tasks to update: 8 tasks + 12 subtasks
Context: "add security requirements"
Changes will include:
- Add security sections to descriptions
- Update test strategies for security
- Add security-related subtasks where needed
- Adjust time estimates (+20% average)
Continue? (y/n)
```
## Example Updates
```
/project:tm/update/from-id 5: change database to PostgreSQL
→ Analyzing impact starting from task #5
→ Found 6 related tasks to update
→ Updates will maintain consistency
→ Preview changes? (y/n)
Applied updates:
✓ Task #5: Updated connection logic references
✓ Task #6: Changed migration approach
✓ Task #7: Updated query syntax notes
✓ Task #8: Revised testing strategy
✓ Task #9: Updated deployment steps
✓ Task #12: Changed backup procedures
```
## Safety Features
- Preview all changes
- Selective confirmation
- Rollback capability
- Change logging
- Validation checks
## Post-Update
- Summary of changes
- Consistency verification
- Suggest review tasks
- Update timeline if needed

View File

@@ -1,97 +0,0 @@
Advanced project analysis with actionable insights and recommendations.
Arguments: $ARGUMENTS
## Comprehensive Project Analysis
Multi-dimensional analysis based on requested focus area.
### 1. **Analysis Modes**
Based on $ARGUMENTS:
- "velocity" → Sprint velocity and trends
- "quality" → Code quality metrics
- "risk" → Risk assessment and mitigation
- "dependencies" → Dependency graph analysis
- "team" → Workload and skill distribution
- "architecture" → System design coherence
- Default → Full spectrum analysis
### 2. **Velocity Analytics**
```
📊 Velocity Analysis
━━━━━━━━━━━━━━━━━━━
Current Sprint: 24 points/week ↗️ +20%
Rolling Average: 20 points/week
Efficiency: 85% (17/20 tasks on time)
Bottlenecks Detected:
- Code review delays (avg 4h wait)
- Test environment availability
- Dependency on external team
Recommendations:
1. Implement parallel review process
2. Add staging environment
3. Mock external dependencies
```
### 3. **Risk Assessment**
**Technical Risks**
- High complexity tasks without backup assignee
- Single points of failure in architecture
- Insufficient test coverage in critical paths
- Technical debt accumulation rate
**Project Risks**
- Critical path dependencies
- Resource availability gaps
- Deadline feasibility analysis
- Scope creep indicators
### 4. **Dependency Intelligence**
Visual dependency analysis:
```
Critical Path:
#12 → #15 → #23 → #45 → #50 (20 days)
↘ #24 → #46 ↗
Optimization: Parallelize #15 and #24
Time Saved: 3 days
```
### 5. **Quality Metrics**
**Code Quality**
- Test coverage trends
- Complexity scores
- Technical debt ratio
- Review feedback patterns
**Process Quality**
- Rework frequency
- Bug introduction rate
- Time to resolution
- Knowledge distribution
### 6. **Predictive Insights**
Based on patterns:
- Completion probability by deadline
- Resource needs projection
- Risk materialization likelihood
- Suggested interventions
### 7. **Executive Dashboard**
High-level summary with:
- Health score (0-100)
- Top 3 risks
- Top 3 opportunities
- Recommended actions
- Success probability
Result: Data-driven decisions with clear action paths.

View File

@@ -1,71 +0,0 @@
Validate all task dependencies for issues.
## Dependency Validation
Comprehensive check for dependency problems across the entire project.
## Execution
```bash
task-master validate-dependencies
```
## Validation Checks
1. **Circular Dependencies**
- A depends on B, B depends on A
- Complex circular chains
- Self-dependencies
2. **Missing Dependencies**
- References to non-existent tasks
- Deleted task references
- Invalid task IDs
3. **Logical Issues**
- Completed tasks depending on pending
- Cancelled tasks in dependency chains
- Impossible sequences
4. **Complexity Warnings**
- Over-complex dependency chains
- Too many dependencies per task
- Bottleneck tasks
## Smart Analysis
The validation provides:
- Visual dependency graph
- Critical path analysis
- Bottleneck identification
- Suggested optimizations
## Report Format
```
Dependency Validation Report
━━━━━━━━━━━━━━━━━━━━━━━━━━
✅ No circular dependencies found
⚠️ 2 warnings found:
- Task #23 has 7 dependencies (consider breaking down)
- Task #45 blocks 5 other tasks (potential bottleneck)
❌ 1 error found:
- Task #67 depends on deleted task #66
Critical Path: #1 → #5 → #23 → #45 → #50 (15 days)
```
## Actionable Output
For each issue found:
- Clear description
- Impact assessment
- Suggested fix
- Command to resolve
## Next Steps
After validation:
- Run `/project:tm/fix-dependencies` to auto-fix
- Manually adjust problematic dependencies
- Rerun to verify fixes

View File

@@ -1,97 +0,0 @@
Enhanced auto-implementation with intelligent code generation and testing.
Arguments: $ARGUMENTS
## Intelligent Auto-Implementation
Advanced implementation with context awareness and quality checks.
### 1. **Pre-Implementation Analysis**
Before starting:
- Analyze task complexity and requirements
- Check codebase patterns and conventions
- Identify similar completed tasks
- Assess test coverage needs
- Detect potential risks
### 2. **Smart Implementation Strategy**
Based on task type and context:
**Feature Tasks**
1. Research existing patterns
2. Design component architecture
3. Implement with tests
4. Integrate with system
5. Update documentation
**Bug Fix Tasks**
1. Reproduce issue
2. Identify root cause
3. Implement minimal fix
4. Add regression tests
5. Verify side effects
**Refactoring Tasks**
1. Analyze current structure
2. Plan incremental changes
3. Maintain test coverage
4. Refactor step-by-step
5. Verify behavior unchanged
### 3. **Code Intelligence**
**Pattern Recognition**
- Learn from existing code
- Follow team conventions
- Use preferred libraries
- Match style guidelines
**Test-Driven Approach**
- Write tests first when possible
- Ensure comprehensive coverage
- Include edge cases
- Performance considerations
### 4. **Progressive Implementation**
Step-by-step with validation:
```
Step 1/5: Setting up component structure ✓
Step 2/5: Implementing core logic ✓
Step 3/5: Adding error handling ⚡ (in progress)
Step 4/5: Writing tests ⏳
Step 5/5: Integration testing ⏳
Current: Adding try-catch blocks and validation...
```
### 5. **Quality Assurance**
Automated checks:
- Linting and formatting
- Test execution
- Type checking
- Dependency validation
- Performance analysis
### 6. **Smart Recovery**
If issues arise:
- Diagnostic analysis
- Suggestion generation
- Fallback strategies
- Manual intervention points
- Learning from failures
### 7. **Post-Implementation**
After completion:
- Generate PR description
- Update documentation
- Log lessons learned
- Suggest follow-up tasks
- Update task relationships
Result: High-quality, production-ready implementations.

View File

@@ -1,77 +0,0 @@
Execute a pipeline of commands based on a specification.
Arguments: $ARGUMENTS
## Command Pipeline Execution
Parse pipeline specification from arguments. Supported formats:
### Simple Pipeline
`init → expand-all → sprint-plan`
### Conditional Pipeline
`status → if:pending>10 → sprint-plan → else → next`
### Iterative Pipeline
`for:pending-tasks → expand → complexity-check`
### Smart Pipeline Patterns
**1. Project Setup Pipeline**
```
init [prd] →
expand-all →
complexity-report →
sprint-plan →
show first-sprint
```
**2. Daily Work Pipeline**
```
standup →
if:in-progress → continue →
else → next → start
```
**3. Task Completion Pipeline**
```
complete [id] →
git-commit →
if:blocked-tasks-freed → show-freed →
next
```
**4. Quality Check Pipeline**
```
list in-progress →
for:each → check-idle-time →
if:idle>1day → prompt-update
```
### Pipeline Features
**Variables**
- Store results: `status → $count=pending-count`
- Use in conditions: `if:$count>10`
- Pass between commands: `expand $high-priority-tasks`
**Error Handling**
- On failure: `try:complete → catch:show-blockers`
- Skip on error: `optional:test-run`
- Retry logic: `retry:3:commit`
**Parallel Execution**
- Parallel branches: `[analyze | test | lint]`
- Join results: `parallel → join:report`
### Execution Flow
1. Parse pipeline specification
2. Validate command sequence
3. Execute with state passing
4. Handle conditions and loops
5. Aggregate results
6. Show summary
This enables complex workflows like:
`parse-prd → expand-all → filter:complex>70 → assign:senior → sprint-plan:weighted`

View File

@@ -1,55 +0,0 @@
Execute an intelligent workflow based on current project state and recent commands.
This command analyzes:
1. Recent commands you've run
2. Current project state
3. Time of day / day of week
4. Your working patterns
Arguments: $ARGUMENTS
## Intelligent Workflow Selection
Based on context, I'll determine the best workflow:
### Context Analysis
- Previous command executed
- Current task states
- Unfinished work from last session
- Your typical patterns
### Smart Execution
If last command was:
- `status` → Likely starting work → Run daily standup
- `complete` → Task finished → Find next task
- `list pending` → Planning → Suggest sprint planning
- `expand` → Breaking down work → Show complexity analysis
- `init` → New project → Show onboarding workflow
If no recent commands:
- Morning? → Daily standup workflow
- Many pending tasks? → Sprint planning
- Tasks blocked? → Dependency resolution
- Friday? → Weekly review
### Workflow Composition
I'll chain appropriate commands:
1. Analyze current state
2. Execute primary workflow
3. Suggest follow-up actions
4. Prepare environment for coding
### Learning Mode
This command learns from your patterns:
- Track command sequences
- Note time preferences
- Remember common workflows
- Adapt to your style
Example flows detected:
- Morning: standup → next → start
- After lunch: status → continue task
- End of day: complete → commit → status

View File

@@ -1,10 +0,0 @@
reviews:
profile: assertive
poem: false
auto_review:
base_branches:
- rc
- beta
- alpha
- production
- next

View File

@@ -8,7 +8,6 @@
"PERPLEXITY_API_KEY": "PERPLEXITY_API_KEY_HERE",
"OPENAI_API_KEY": "OPENAI_API_KEY_HERE",
"GOOGLE_API_KEY": "GOOGLE_API_KEY_HERE",
"GROQ_API_KEY": "GROQ_API_KEY_HERE",
"XAI_API_KEY": "XAI_API_KEY_HERE",
"OPENROUTER_API_KEY": "OPENROUTER_API_KEY_HERE",
"MISTRAL_API_KEY": "MISTRAL_API_KEY_HERE",

View File

@@ -523,7 +523,7 @@ For AI-powered commands that benefit from project context, follow the research c
.option('--details <details>', 'Implementation details for the new subtask, optional')
.option('--dependencies <ids>', 'Comma-separated list of subtask IDs this subtask depends on')
.option('--status <status>', 'Initial status for the subtask', 'pending')
.option('--generate', 'Regenerate task files after adding subtask')
.option('--skip-generate', 'Skip regenerating task files')
.action(async (options) => {
// Validate required parameters
if (!options.parent) {
@@ -545,7 +545,7 @@ For AI-powered commands that benefit from project context, follow the research c
.option('-f, --file <path>', 'Path to the tasks file', 'tasks/tasks.json')
.option('-i, --id <id>', 'ID of the subtask to remove in format parentId.subtaskId, required')
.option('-c, --convert', 'Convert the subtask to a standalone task instead of deleting')
.option('--generate', 'Regenerate task files after removing subtask')
.option('--skip-generate', 'Skip regenerating task files')
.action(async (options) => {
// Implementation with detailed error handling
})
@@ -633,11 +633,11 @@ function showAddSubtaskHelp() {
' --dependencies <ids> Comma-separated list of dependency IDs\n' +
' -s, --status <status> Status for the new subtask (default: "pending")\n' +
' -f, --file <file> Path to the tasks file (default: "tasks/tasks.json")\n' +
' --generate Regenerate task files after adding subtask\n\n' +
' --skip-generate Skip regenerating task files\n\n' +
chalk.cyan('Examples:') + '\n' +
' task-master add-subtask --parent=\'5\' --task-id=\'8\'\n' +
' task-master add-subtask -p \'5\' -t \'Implement login UI\' -d \'Create the login form\'\n' +
' task-master add-subtask -p \'5\' -t \'Handle API Errors\' --details "Handle 401 Unauthorized.\\nHandle 500 Server Error." --generate',
' task-master add-subtask -p \'5\' -t \'Handle API Errors\' --details $\'Handle 401 Unauthorized.\nHandle 500 Server Error.\'',
{ padding: 1, borderColor: 'blue', borderStyle: 'round' }
));
}
@@ -652,7 +652,7 @@ function showRemoveSubtaskHelp() {
' -i, --id <id> Subtask ID(s) to remove in format "parentId.subtaskId" (can be comma-separated, required)\n' +
' -c, --convert Convert the subtask to a standalone task instead of deleting it\n' +
' -f, --file <file> Path to the tasks file (default: "tasks/tasks.json")\n' +
' --generate Regenerate task files after removing subtask\n\n' +
' --skip-generate Skip regenerating task files\n\n' +
chalk.cyan('Examples:') + '\n' +
' task-master remove-subtask --id=\'5.2\'\n' +
' task-master remove-subtask --id=\'5.2,6.3,7.1\'\n' +

View File

@@ -33,7 +33,6 @@ All your standard command executions should operate on the user's current task c
For new projects or when users are getting started, operate within the `master` tag context:
- Start new projects by running `initialize_project` tool / `task-master init` or `parse_prd` / `task-master parse-prd --input='<prd-file.txt>'` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to generate initial tasks.json with tagged structure
- Configure rule sets during initialization with `--rules` flag (e.g., `task-master init --rules cursor,windsurf`) or manage them later with `task-master rules add/remove` commands
- Begin coding sessions with `get_tasks` / `task-master list` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to see current tasks, status, and IDs
- Determine the next task to work on using `next_task` / `task-master next` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc))
- Analyze task complexity with `analyze_project_complexity` / `task-master analyze-complexity --research` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) before breaking down tasks
@@ -153,7 +152,7 @@ When users initialize Taskmaster on existing projects:
4. **Tag-Based Organization**: Parse PRDs into appropriate tags (`refactor-api`, `feature-dashboard`, `tech-debt`, etc.)
5. **Master List Curation**: Keep only the most valuable initiatives in master
The parse-prd's `--append` flag enables the user to parse multiple PRDs within tags or across tags. PRDs should be focused and the number of tasks they are parsed into should be strategically chosen relative to the PRD's complexity and level of detail.
The parse-prd's `--append` flag enables the user to parse multple PRDs within tags or across tags. PRDs should be focused and the number of tasks they are parsed into should be strategically chosen relative to the PRD's complexity and level of detail.
### Workflow Transition Examples
@@ -295,17 +294,6 @@ Taskmaster configuration is managed through two main mechanisms:
**If AI commands FAIL in MCP** verify that the API key for the selected provider is present in the `env` section of `.cursor/mcp.json`.
**If AI commands FAIL in CLI** verify that the API key for the selected provider is present in the `.env` file in the root of the project.
## Rules Management
Taskmaster supports multiple AI coding assistant rule sets that can be configured during project initialization or managed afterward:
- **Available Profiles**: Claude Code, Cline, Codex, Cursor, Roo Code, Trae, Windsurf (claude, cline, codex, cursor, roo, trae, windsurf)
- **During Initialization**: Use `task-master init --rules cursor,windsurf` to specify which rule sets to include
- **After Initialization**: Use `task-master rules add <profiles>` or `task-master rules remove <profiles>` to manage rule sets
- **Interactive Setup**: Use `task-master rules setup` to launch an interactive prompt for selecting rule profiles
- **Default Behavior**: If no `--rules` flag is specified during initialization, all available rule profiles are included
- **Rule Structure**: Each profile creates its own directory (e.g., `.cursor/rules`, `.roo/rules`) with appropriate configuration files
## Determining the Next Task
- Run `next_task` / `task-master next` to show the next task to work on.

View File

@@ -26,7 +26,6 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `--name <name>`: `Set the name for your project in Taskmaster's configuration.`
* `--description <text>`: `Provide a brief description for your project.`
* `--version <version>`: `Set the initial version for your project, e.g., '0.1.0'.`
* `--no-git`: `Skip initializing a Git repository entirely.`
* `-y, --yes`: `Initialize Taskmaster quickly using default settings without interactive prompts.`
* **Usage:** Run this once at the beginning of a new project.
* **MCP Variant Description:** `Set up the basic Taskmaster file structure and configuration in the current directory for a new project by running the 'task-master init' command.`
@@ -37,7 +36,6 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `authorName`: `Author name.` (CLI: `--author <author>`)
* `skipInstall`: `Skip installing dependencies. Default is false.` (CLI: `--skip-install`)
* `addAliases`: `Add shell aliases tm and taskmaster. Default is false.` (CLI: `--aliases`)
* `noGit`: `Skip initializing a Git repository entirely. Default is false.` (CLI: `--no-git`)
* `yes`: `Skip prompts and use defaults/provided arguments. Default is false.` (CLI: `-y, --yes`)
* **Usage:** Run this once at the beginning of a new project, typically via an integrated tool like Cursor. Operates on the current working directory of the MCP server.
* **Important:** Once complete, you *MUST* parse a prd in order to generate tasks. There will be no tasks files until then. The next step after initializing should be to create a PRD using the example PRD in .taskmaster/templates/example_prd.txt.
@@ -158,7 +156,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `details`: `Provide implementation notes or details for the new subtask.` (CLI: `--details <text>`)
* `dependencies`: `Specify IDs of other tasks or subtasks, e.g., '15' or '16.1', that must be done before this new subtask.` (CLI: `--dependencies <ids>`)
* `status`: `Set the initial status for the new subtask. Default is 'pending'.` (CLI: `-s, --status <status>`)
* `generate`: `Enable Taskmaster to regenerate markdown task files after adding the subtask.` (CLI: `--generate`)
* `skipGenerate`: `Prevent Taskmaster from automatically regenerating markdown task files after adding the subtask.` (CLI: `--skip-generate`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Break down tasks manually or reorganize existing tasks.
@@ -272,7 +270,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **CLI Command:** `task-master clear-subtasks [options]`
* **Description:** `Remove all subtasks from one or more specified Taskmaster parent tasks.`
* **Key Parameters/Options:**
* `id`: `The ID(s) of the Taskmaster parent task(s) whose subtasks you want to remove, e.g., '15' or '16,18'. Required unless using 'all'.` (CLI: `-i, --id <ids>`)
* `id`: `The ID(s) of the Taskmaster parent task(s) whose subtasks you want to remove, e.g., '15' or '16,18'. Required unless using `all`.) (CLI: `-i, --id <ids>`)
* `all`: `Tell Taskmaster to remove subtasks from all parent tasks.` (CLI: `--all`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
@@ -286,7 +284,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **Key Parameters/Options:**
* `id`: `Required. The ID(s) of the Taskmaster subtask(s) to remove, e.g., '15.2' or '16.1,16.3'.` (CLI: `-i, --id <id>`)
* `convert`: `If used, Taskmaster will turn the subtask into a regular top-level task instead of deleting it.` (CLI: `-c, --convert`)
* `generate`: `Enable Taskmaster to regenerate markdown task files after removing the subtask.` (CLI: `--generate`)
* `skipGenerate`: `Prevent Taskmaster from automatically regenerating markdown task files after removing the subtask.` (CLI: `--skip-generate`)
* `tag`: `Specify which tag context to operate on. Defaults to the current active tag.` (CLI: `--tag <name>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Delete unnecessary subtasks or promote a subtask to a top-level task.

View File

@@ -1,803 +0,0 @@
---
description:
globs:
alwaysApply: true
---
# Test Workflow & Development Process
## **Initial Testing Framework Setup**
Before implementing the TDD workflow, ensure your project has a proper testing framework configured. This section covers setup for different technology stacks.
### **Detecting Project Type & Framework Needs**
**AI Agent Assessment Checklist:**
1. **Language Detection**: Check for `package.json` (Node.js/JavaScript), `requirements.txt` (Python), `Cargo.toml` (Rust), etc.
2. **Existing Tests**: Look for test files (`.test.`, `.spec.`, `_test.`) or test directories
3. **Framework Detection**: Check for existing test runners in dependencies
4. **Project Structure**: Analyze directory structure for testing patterns
### **JavaScript/Node.js Projects (Jest Setup)**
#### **Prerequisites Check**
```bash
# Verify Node.js project
ls package.json # Should exist
# Check for existing testing setup
ls jest.config.js jest.config.ts # Check for Jest config
grep -E "(jest|vitest|mocha)" package.json # Check for test runners
```
#### **Jest Installation & Configuration**
**Step 1: Install Dependencies**
```bash
# Core Jest dependencies
npm install --save-dev jest
# TypeScript support (if using TypeScript)
npm install --save-dev ts-jest @types/jest
# Additional useful packages
npm install --save-dev supertest @types/supertest # For API testing
npm install --save-dev jest-watch-typeahead # Enhanced watch mode
```
**Step 2: Create Jest Configuration**
Create `jest.config.js` with the following production-ready configuration:
```javascript
/** @type {import('jest').Config} */
module.exports = {
// Use ts-jest preset for TypeScript support
preset: 'ts-jest',
// Test environment
testEnvironment: 'node',
// Roots for test discovery
roots: ['<rootDir>/src', '<rootDir>/tests'],
// Test file patterns
testMatch: ['**/__tests__/**/*.ts', '**/?(*.)+(spec|test).ts'],
// Transform files
transform: {
'^.+\\.ts$': [
'ts-jest',
{
tsconfig: {
target: 'es2020',
module: 'commonjs',
esModuleInterop: true,
allowSyntheticDefaultImports: true,
skipLibCheck: true,
strict: false,
noImplicitAny: false,
},
},
],
'^.+\\.js$': [
'ts-jest',
{
useESM: false,
tsconfig: {
target: 'es2020',
module: 'commonjs',
esModuleInterop: true,
allowSyntheticDefaultImports: true,
allowJs: true,
},
},
],
},
// Module file extensions
moduleFileExtensions: ['ts', 'tsx', 'js', 'jsx', 'json', 'node'],
// Transform ignore patterns - adjust for ES modules
transformIgnorePatterns: ['node_modules/(?!(your-es-module-deps|.*\\.mjs$))'],
// Coverage configuration
collectCoverage: true,
coverageDirectory: 'coverage',
coverageReporters: [
'text', // Console output
'text-summary', // Brief summary
'lcov', // For IDE integration
'html', // Detailed HTML report
],
// Files to collect coverage from
collectCoverageFrom: [
'src/**/*.ts',
'!src/**/*.d.ts',
'!src/**/*.test.ts',
'!src/**/index.ts', // Often just exports
'!src/generated/**', // Generated code
'!src/config/database.ts', // Database config (tested via integration)
],
// Coverage thresholds - TaskMaster standards
coverageThreshold: {
global: {
branches: 70,
functions: 80,
lines: 80,
statements: 80,
},
// Higher standards for critical business logic
'./src/utils/': {
branches: 85,
functions: 90,
lines: 90,
statements: 90,
},
'./src/middleware/': {
branches: 80,
functions: 85,
lines: 85,
statements: 85,
},
},
// Setup files
setupFilesAfterEnv: ['<rootDir>/tests/setup.ts'],
// Global teardown to prevent worker process leaks
globalTeardown: '<rootDir>/tests/teardown.ts',
// Module path mapping (if needed)
moduleNameMapper: {
'^@/(.*)$': '<rootDir>/src/$1',
},
// Clear mocks between tests
clearMocks: true,
// Restore mocks after each test
restoreMocks: true,
// Global test timeout
testTimeout: 10000,
// Projects for different test types
projects: [
// Unit tests - for pure functions only
{
displayName: 'unit',
testMatch: ['<rootDir>/src/**/*.test.ts'],
testPathIgnorePatterns: ['.*\\.integration\\.test\\.ts$', '/tests/'],
preset: 'ts-jest',
testEnvironment: 'node',
collectCoverageFrom: [
'src/**/*.ts',
'!src/**/*.d.ts',
'!src/**/*.test.ts',
'!src/**/*.integration.test.ts',
],
coverageThreshold: {
global: {
branches: 70,
functions: 80,
lines: 80,
statements: 80,
},
},
},
// Integration tests - real database/services
{
displayName: 'integration',
testMatch: [
'<rootDir>/src/**/*.integration.test.ts',
'<rootDir>/tests/integration/**/*.test.ts',
],
preset: 'ts-jest',
testEnvironment: 'node',
setupFilesAfterEnv: ['<rootDir>/tests/setup/integration.ts'],
testTimeout: 10000,
},
// E2E tests - full workflows
{
displayName: 'e2e',
testMatch: ['<rootDir>/tests/e2e/**/*.test.ts'],
preset: 'ts-jest',
testEnvironment: 'node',
setupFilesAfterEnv: ['<rootDir>/tests/setup/e2e.ts'],
testTimeout: 30000,
},
],
// Verbose output for better debugging
verbose: true,
// Run projects sequentially to avoid conflicts
maxWorkers: 1,
// Enable watch mode plugins
watchPlugins: ['jest-watch-typeahead/filename', 'jest-watch-typeahead/testname'],
};
```
**Step 3: Update package.json Scripts**
Add these scripts to your `package.json`:
```json
{
"scripts": {
"test": "jest",
"test:watch": "jest --watch",
"test:coverage": "jest --coverage",
"test:unit": "jest --selectProjects unit",
"test:integration": "jest --selectProjects integration",
"test:e2e": "jest --selectProjects e2e",
"test:ci": "jest --ci --coverage --watchAll=false"
}
}
```
**Step 4: Create Test Setup Files**
Create essential test setup files:
```typescript
// tests/setup.ts - Global setup
import { jest } from '@jest/globals';
// Global test configuration
beforeAll(() => {
// Set test timeout
jest.setTimeout(10000);
});
afterEach(() => {
// Clean up mocks after each test
jest.clearAllMocks();
});
```
```typescript
// tests/setup/integration.ts - Integration test setup
import { PrismaClient } from '@prisma/client';
const prisma = new PrismaClient();
beforeAll(async () => {
// Connect to test database
await prisma.$connect();
});
afterAll(async () => {
// Cleanup and disconnect
await prisma.$disconnect();
});
beforeEach(async () => {
// Clean test data before each test
// Add your cleanup logic here
});
```
```typescript
// tests/teardown.ts - Global teardown
export default async () => {
// Global cleanup after all tests
console.log('Global test teardown complete');
};
```
**Step 5: Create Initial Test Structure**
```bash
# Create test directories
mkdir -p tests/{setup,fixtures,unit,integration,e2e}
mkdir -p tests/unit/src/{utils,services,middleware}
# Create sample test fixtures
mkdir tests/fixtures
```
### **Generic Testing Framework Setup (Any Language)**
#### **Framework Selection Guide**
**Python Projects:**
- **pytest**: Recommended for most Python projects
- **unittest**: Built-in, suitable for simple projects
- **Coverage**: Use `coverage.py` for code coverage
```bash
# Python setup example
pip install pytest pytest-cov
echo "[tool:pytest]" > pytest.ini
echo "testpaths = tests" >> pytest.ini
echo "addopts = --cov=src --cov-report=html --cov-report=term" >> pytest.ini
```
**Go Projects:**
- **Built-in testing**: Use Go's built-in `testing` package
- **Coverage**: Built-in with `go test -cover`
```bash
# Go setup example
go mod init your-project
mkdir -p tests
# Tests are typically *_test.go files alongside source
```
**Rust Projects:**
- **Built-in testing**: Use Rust's built-in test framework
- **cargo-tarpaulin**: For coverage analysis
```bash
# Rust setup example
cargo new your-project
cd your-project
cargo install cargo-tarpaulin # For coverage
```
**Java Projects:**
- **JUnit 5**: Modern testing framework
- **Maven/Gradle**: Build tools with testing integration
```xml
<!-- Maven pom.xml example -->
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter</artifactId>
<version>5.9.2</version>
<scope>test</scope>
</dependency>
```
#### **Universal Testing Principles**
**Coverage Standards (Adapt to Your Language):**
- **Global Minimum**: 70-80% line coverage
- **Critical Code**: 85-90% coverage
- **New Features**: Must meet or exceed standards
- **Legacy Code**: Gradual improvement strategy
**Test Organization:**
- **Unit Tests**: Fast, isolated, no external dependencies
- **Integration Tests**: Test component interactions
- **E2E Tests**: Test complete user workflows
- **Performance Tests**: Load and stress testing (if applicable)
**Naming Conventions:**
- **Test Files**: `*.test.*`, `*_test.*`, or language-specific patterns
- **Test Functions**: Descriptive names (e.g., `should_return_error_for_invalid_input`)
- **Test Directories**: Organized by test type and mirroring source structure
#### **TaskMaster Integration for Any Framework**
**Document Testing Setup in Subtasks:**
```bash
# Update subtask with testing framework setup
task-master update-subtask --id=X.Y --prompt="Testing framework setup:
- Installed [Framework Name] with coverage support
- Configured [Coverage Tool] with thresholds: 80% lines, 70% branches
- Created test directory structure: unit/, integration/, e2e/
- Added test scripts to build configuration
- All setup tests passing"
```
**Testing Framework Verification:**
```bash
# Verify setup works
[test-command] # e.g., npm test, pytest, go test, cargo test
# Check coverage reporting
[coverage-command] # e.g., npm run test:coverage
# Update task with verification
task-master update-subtask --id=X.Y --prompt="Testing framework verified:
- Sample tests running successfully
- Coverage reporting functional
- CI/CD integration ready
- Ready to begin TDD workflow"
```
## **Test-Driven Development (TDD) Integration**
### **Core TDD Cycle with Jest**
```bash
# 1. Start development with watch mode
npm run test:watch
# 2. Write failing test first
# Create test file: src/utils/newFeature.test.ts
# Write test that describes expected behavior
# 3. Implement minimum code to make test pass
# 4. Refactor while keeping tests green
# 5. Add edge cases and error scenarios
```
### **TDD Workflow Per Subtask**
```bash
# When starting a new subtask:
task-master set-status --id=4.1 --status=in-progress
# Begin TDD cycle:
npm run test:watch # Keep running during development
# Document TDD progress in subtask:
task-master update-subtask --id=4.1 --prompt="TDD Progress:
- Written 3 failing tests for core functionality
- Implemented basic feature, tests now passing
- Adding edge case tests for error handling"
# Complete subtask with test summary:
task-master update-subtask --id=4.1 --prompt="Implementation complete:
- Feature implemented with 8 unit tests
- Coverage: 95% statements, 88% branches
- All tests passing, TDD cycle complete"
```
## **Testing Commands & Usage**
### **Development Commands**
```bash
# Primary development command - use during coding
npm run test:watch # Watch mode with Jest
npm run test:watch -- --testNamePattern="auth" # Watch specific tests
# Targeted testing during development
npm run test:unit # Run only unit tests
npm run test:unit -- --coverage # Unit tests with coverage
# Integration testing when APIs are ready
npm run test:integration # Run integration tests
npm run test:integration -- --detectOpenHandles # Debug hanging tests
# End-to-end testing for workflows
npm run test:e2e # Run E2E tests
npm run test:e2e -- --timeout=30000 # Extended timeout for E2E
```
### **Quality Assurance Commands**
```bash
# Full test suite with coverage (before commits)
npm run test:coverage # Complete coverage analysis
# All tests (CI/CD pipeline)
npm test # Run all test projects
# Specific test file execution
npm test -- auth.test.ts # Run specific test file
npm test -- --testNamePattern="should handle errors" # Run specific tests
```
## **Test Implementation Patterns**
### **Unit Test Development**
```typescript
// ✅ DO: Follow established patterns from auth.test.ts
describe('FeatureName', () => {
beforeEach(() => {
jest.clearAllMocks();
// Setup mocks with proper typing
});
describe('functionName', () => {
it('should handle normal case', () => {
// Test implementation with specific assertions
});
it('should throw error for invalid input', async () => {
// Error scenario testing
await expect(functionName(invalidInput))
.rejects.toThrow('Specific error message');
});
});
});
```
### **Integration Test Development**
```typescript
// ✅ DO: Use supertest for API endpoint testing
import request from 'supertest';
import { app } from '../../src/app';
describe('POST /api/auth/register', () => {
beforeEach(async () => {
await integrationTestUtils.cleanupTestData();
});
it('should register user successfully', async () => {
const userData = createTestUser();
const response = await request(app)
.post('/api/auth/register')
.send(userData)
.expect(201);
expect(response.body).toMatchObject({
id: expect.any(String),
email: userData.email
});
// Verify database state
const user = await prisma.user.findUnique({
where: { email: userData.email }
});
expect(user).toBeTruthy();
});
});
```
### **E2E Test Development**
```typescript
// ✅ DO: Test complete user workflows
describe('User Authentication Flow', () => {
it('should complete registration → login → protected access', async () => {
// Step 1: Register
const userData = createTestUser();
await request(app)
.post('/api/auth/register')
.send(userData)
.expect(201);
// Step 2: Login
const loginResponse = await request(app)
.post('/api/auth/login')
.send({ email: userData.email, password: userData.password })
.expect(200);
const { token } = loginResponse.body;
// Step 3: Access protected resource
await request(app)
.get('/api/profile')
.set('Authorization', `Bearer ${token}`)
.expect(200);
}, 30000); // Extended timeout for E2E
});
```
## **Mocking & Test Utilities**
### **Established Mocking Patterns**
```typescript
// ✅ DO: Use established bcrypt mocking pattern
jest.mock('bcrypt');
import bcrypt from 'bcrypt';
const mockHash = bcrypt.hash as jest.MockedFunction<typeof bcrypt.hash>;
const mockCompare = bcrypt.compare as jest.MockedFunction<typeof bcrypt.compare>;
// ✅ DO: Use Prisma mocking for unit tests
jest.mock('@prisma/client', () => ({
PrismaClient: jest.fn().mockImplementation(() => ({
user: {
create: jest.fn(),
findUnique: jest.fn(),
},
$connect: jest.fn(),
$disconnect: jest.fn(),
})),
}));
```
### **Test Fixtures Usage**
```typescript
// ✅ DO: Use centralized test fixtures
import { createTestUser, adminUser, invalidUser } from '../fixtures/users';
describe('User Service', () => {
it('should handle admin user creation', async () => {
const userData = createTestUser(adminUser);
// Test implementation
});
it('should reject invalid user data', async () => {
const userData = createTestUser(invalidUser);
// Error testing
});
});
```
## **Coverage Standards & Monitoring**
### **Coverage Thresholds**
- **Global Standards**: 80% lines/functions, 70% branches
- **Critical Code**: 90% utils, 85% middleware
- **New Features**: Must meet or exceed global thresholds
- **Legacy Code**: Gradual improvement with each change
### **Coverage Reporting & Analysis**
```bash
# Generate coverage reports
npm run test:coverage
# View detailed HTML report
open coverage/lcov-report/index.html
# Coverage files generated:
# - coverage/lcov-report/index.html # Detailed HTML report
# - coverage/lcov.info # LCOV format for IDE integration
# - coverage/coverage-final.json # JSON format for tooling
```
### **Coverage Quality Checks**
```typescript
// ✅ DO: Test all code paths
describe('validateInput', () => {
it('should return true for valid input', () => {
expect(validateInput('valid')).toBe(true);
});
it('should return false for various invalid inputs', () => {
expect(validateInput('')).toBe(false); // Empty string
expect(validateInput(null)).toBe(false); // Null value
expect(validateInput(undefined)).toBe(false); // Undefined
});
it('should throw for unexpected input types', () => {
expect(() => validateInput(123)).toThrow('Invalid input type');
});
});
```
## **Testing During Development Phases**
### **Feature Development Phase**
```bash
# 1. Start feature development
task-master set-status --id=X.Y --status=in-progress
# 2. Begin TDD cycle
npm run test:watch
# 3. Document test progress in subtask
task-master update-subtask --id=X.Y --prompt="Test development:
- Created test file with 5 failing tests
- Implemented core functionality
- Tests passing, adding error scenarios"
# 4. Verify coverage before completion
npm run test:coverage
# 5. Update subtask with final test status
task-master update-subtask --id=X.Y --prompt="Testing complete:
- 12 unit tests with full coverage
- All edge cases and error scenarios covered
- Ready for integration testing"
```
### **Integration Testing Phase**
```bash
# After API endpoints are implemented
npm run test:integration
# Update integration test templates
# Replace placeholder tests with real endpoint calls
# Document integration test results
task-master update-subtask --id=X.Y --prompt="Integration tests:
- Updated auth endpoint tests
- Database integration verified
- All HTTP status codes and responses tested"
```
### **Pre-Commit Testing Phase**
```bash
# Before committing code
npm run test:coverage # Verify all tests pass with coverage
npm run test:unit # Quick unit test verification
npm run test:integration # Integration test verification (if applicable)
# Commit pattern for test updates
git add tests/ src/**/*.test.ts
git commit -m "test(task-X): Add comprehensive tests for Feature Y
- Unit tests with 95% coverage (exceeds 90% threshold)
- Integration tests for API endpoints
- Test fixtures for data generation
- Proper mocking patterns established
Task X: Feature Y - Testing complete"
```
## **Error Handling & Debugging**
### **Test Debugging Techniques**
```typescript
// ✅ DO: Use test utilities for debugging
import { testUtils } from '../setup';
it('should debug complex operation', () => {
testUtils.withConsole(() => {
// Console output visible only for this test
console.log('Debug info:', complexData);
service.complexOperation();
});
});
// ✅ DO: Use proper async debugging
it('should handle async operations', async () => {
const promise = service.asyncOperation();
// Test intermediate state
expect(service.isProcessing()).toBe(true);
const result = await promise;
expect(result).toBe('expected');
expect(service.isProcessing()).toBe(false);
});
```
### **Common Test Issues & Solutions**
```bash
# Hanging tests (common with database connections)
npm run test:integration -- --detectOpenHandles
# Memory leaks in tests
npm run test:unit -- --logHeapUsage
# Slow tests identification
npm run test:coverage -- --verbose
# Mock not working properly
# Check: mock is declared before imports
# Check: jest.clearAllMocks() in beforeEach
# Check: TypeScript typing is correct
```
## **Continuous Integration Integration**
### **CI/CD Pipeline Testing**
```yaml
# Example GitHub Actions integration
- name: Run tests
run: |
npm ci
npm run test:coverage
- name: Upload coverage reports
uses: codecov/codecov-action@v3
with:
file: ./coverage/lcov.info
```
### **Pre-commit Hooks**
```bash
# Setup pre-commit testing (recommended)
# In package.json scripts:
"pre-commit": "npm run test:unit && npm run test:integration"
# Husky integration example:
npx husky add .husky/pre-commit "npm run test:unit"
```
## **Test Maintenance & Evolution**
### **Adding Tests for New Features**
1. **Create test file** alongside source code or in `tests/unit/`
2. **Follow established patterns** from `src/utils/auth.test.ts`
3. **Use existing fixtures** from `tests/fixtures/`
4. **Apply proper mocking** patterns for dependencies
5. **Meet coverage thresholds** for the module
### **Updating Integration/E2E Tests**
1. **Update templates** in `tests/integration/` when APIs change
2. **Modify E2E workflows** in `tests/e2e/` for new user journeys
3. **Update test fixtures** for new data requirements
4. **Maintain database cleanup** utilities
### **Test Performance Optimization**
- **Parallel execution**: Jest runs tests in parallel by default
- **Test isolation**: Use proper setup/teardown for independence
- **Mock optimization**: Mock heavy dependencies appropriately
- **Database efficiency**: Use transaction rollbacks where possible
---
**Key References:**
- [Testing Standards](mdc:.cursor/rules/tests.mdc)
- [Git Workflow](mdc:.cursor/rules/git_workflow.mdc)
- [Development Workflow](mdc:.cursor/rules/dev_workflow.mdc)
- [Jest Configuration](mdc:jest.config.js)

View File

@@ -4,11 +4,9 @@ PERPLEXITY_API_KEY=YOUR_PERPLEXITY_KEY_HERE
OPENAI_API_KEY=YOUR_OPENAI_KEY_HERE
GOOGLE_API_KEY=YOUR_GOOGLE_KEY_HERE
MISTRAL_API_KEY=YOUR_MISTRAL_KEY_HERE
GROQ_API_KEY=YOUR_GROQ_KEY_HERE
OPENROUTER_API_KEY=YOUR_OPENROUTER_KEY_HERE
XAI_API_KEY=YOUR_XAI_KEY_HERE
AZURE_OPENAI_API_KEY=YOUR_AZURE_KEY_HERE
OLLAMA_API_KEY=YOUR_OLLAMA_API_KEY_HERE
# Google Vertex AI Configuration
VERTEX_PROJECT_ID=your-gcp-project-id

View File

@@ -1,45 +0,0 @@
# What type of PR is this?
<!-- Check one -->
- [ ] 🐛 Bug fix
- [ ] ✨ Feature
- [ ] 🔌 Integration
- [ ] 📝 Docs
- [ ] 🧹 Refactor
- [ ] Other:
## Description
<!-- What does this PR do? -->
## Related Issues
<!-- Link issues: Fixes #123 -->
## How to Test This
<!-- Quick steps to verify the changes work -->
```bash
# Example commands or steps
```
**Expected result:**
<!-- What should happen? -->
## Contributor Checklist
- [ ] Created changeset: `npm run changeset`
- [ ] Tests pass: `npm test`
- [ ] Format check passes: `npm run format-check` (or `npm run format` to fix)
- [ ] Addressed CodeRabbit comments (if any)
- [ ] Linked related issues (if any)
- [ ] Manually tested the changes
## Changelog Entry
<!-- One line describing the change for users -->
<!-- Example: "Added Kiro IDE integration with automatic task status updates" -->
---
### For Maintainers
- [ ] PR title follows conventional commits
- [ ] Target branch correct
- [ ] Labels added
- [ ] Milestone assigned (if applicable)

View File

@@ -1,39 +0,0 @@
## 🐛 Bug Fix
### 🔍 Bug Description
<!-- Describe the bug -->
### 🔗 Related Issues
<!-- Fixes #123 -->
### ✨ Solution
<!-- How does this PR fix the bug? -->
## How to Test
### Steps that caused the bug:
1.
2.
**Before fix:**
**After fix:**
### Quick verification:
```bash
# Commands to verify the fix
```
## Contributor Checklist
- [ ] Created changeset: `npm run changeset`
- [ ] Tests pass: `npm test`
- [ ] Format check passes: `npm run format-check`
- [ ] Addressed CodeRabbit comments
- [ ] Added unit tests (if applicable)
- [ ] Manually verified the fix works
---
### For Maintainers
- [ ] Root cause identified
- [ ] Fix doesn't introduce new issues
- [ ] CI passes

View File

@@ -1,11 +0,0 @@
blank_issues_enabled: false
contact_links:
- name: 🐛 Bug Fix
url: https://github.com/eyaltoledano/claude-task-master/compare/next...HEAD?template=bugfix.md
about: Fix a bug in Task Master
- name: ✨ New Feature
url: https://github.com/eyaltoledano/claude-task-master/compare/next...HEAD?template=feature.md
about: Add a new feature to Task Master
- name: 🔌 New Integration
url: https://github.com/eyaltoledano/claude-task-master/compare/next...HEAD?template=integration.md
about: Add support for a new tool, IDE, or platform

View File

@@ -1,49 +0,0 @@
## ✨ New Feature
### 📋 Feature Description
<!-- Brief description -->
### 🎯 Problem Statement
<!-- What problem does this feature solve? Why is it needed? -->
### 💡 Solution
<!-- How does this feature solve the problem? What's the approach? -->
### 🔗 Related Issues
<!-- Link related issues: Fixes #123, Part of #456 -->
## How to Use It
### Quick Start
```bash
# Basic usage example
```
### Example
<!-- Show a real use case -->
```bash
# Practical example
```
**What you should see:**
<!-- Expected behavior -->
## Contributor Checklist
- [ ] Created changeset: `npm run changeset`
- [ ] Tests pass: `npm test`
- [ ] Format check passes: `npm run format-check`
- [ ] Addressed CodeRabbit comments
- [ ] Added tests for new functionality
- [ ] Manually tested in CLI mode
- [ ] Manually tested in MCP mode (if applicable)
## Changelog Entry
<!-- One-liner for release notes -->
---
### For Maintainers
- [ ] Feature aligns with project vision
- [ ] CIs pass
- [ ] Changeset file exists

View File

@@ -1,53 +0,0 @@
# 🔌 New Integration
## What tool/IDE is being integrated?
<!-- Name and brief description -->
## What can users do with it?
<!-- Key benefits -->
## How to Enable
### Setup
```bash
task-master rules add [name]
# Any other setup steps
```
### Example Usage
<!-- Show it in action -->
```bash
# Real example
```
### Natural Language Hooks (if applicable)
```
"When tests pass, mark task as done"
# Other examples
```
## Contributor Checklist
- [ ] Created changeset: `npm run changeset`
- [ ] Tests pass: `npm test`
- [ ] Format check passes: `npm run format-check`
- [ ] Addressed CodeRabbit comments
- [ ] Integration fully tested with target tool/IDE
- [ ] Error scenarios tested
- [ ] Added integration tests
- [ ] Documentation includes setup guide
- [ ] Examples are working and clear
---
## For Maintainers
- [ ] Integration stability verified
- [ ] Documentation comprehensive
- [ ] Examples working

View File

@@ -1,259 +0,0 @@
#!/usr/bin/env node
async function githubRequest(endpoint, token, method = 'GET', body) {
const response = await fetch(`https://api.github.com${endpoint}`, {
method,
headers: {
Authorization: `Bearer ${token}`,
Accept: 'application/vnd.github.v3+json',
'User-Agent': 'auto-close-duplicates-script',
...(body && { 'Content-Type': 'application/json' })
},
...(body && { body: JSON.stringify(body) })
});
if (!response.ok) {
throw new Error(
`GitHub API request failed: ${response.status} ${response.statusText}`
);
}
return response.json();
}
function extractDuplicateIssueNumber(commentBody) {
const match = commentBody.match(/#(\d+)/);
return match ? parseInt(match[1], 10) : null;
}
async function closeIssueAsDuplicate(
owner,
repo,
issueNumber,
duplicateOfNumber,
token
) {
await githubRequest(
`/repos/${owner}/${repo}/issues/${issueNumber}`,
token,
'PATCH',
{
state: 'closed',
state_reason: 'not_planned',
labels: ['duplicate']
}
);
await githubRequest(
`/repos/${owner}/${repo}/issues/${issueNumber}/comments`,
token,
'POST',
{
body: `This issue has been automatically closed as a duplicate of #${duplicateOfNumber}.
If this is incorrect, please re-open this issue or create a new one.
🤖 Generated with [Task Master Bot]`
}
);
}
async function autoCloseDuplicates() {
console.log('[DEBUG] Starting auto-close duplicates script');
const token = process.env.GITHUB_TOKEN;
if (!token) {
throw new Error('GITHUB_TOKEN environment variable is required');
}
console.log('[DEBUG] GitHub token found');
const owner = process.env.GITHUB_REPOSITORY_OWNER || 'eyaltoledano';
const repo = process.env.GITHUB_REPOSITORY_NAME || 'claude-task-master';
console.log(`[DEBUG] Repository: ${owner}/${repo}`);
const threeDaysAgo = new Date();
threeDaysAgo.setDate(threeDaysAgo.getDate() - 3);
console.log(
`[DEBUG] Checking for duplicate comments older than: ${threeDaysAgo.toISOString()}`
);
console.log('[DEBUG] Fetching open issues created more than 3 days ago...');
const allIssues = [];
let page = 1;
const perPage = 100;
const MAX_PAGES = 50; // Increase limit for larger repos
let foundRecentIssue = false;
while (true) {
const pageIssues = await githubRequest(
`/repos/${owner}/${repo}/issues?state=open&per_page=${perPage}&page=${page}&sort=created&direction=desc`,
token
);
if (pageIssues.length === 0) break;
// Filter for issues created more than 3 days ago
const oldEnoughIssues = pageIssues.filter(
(issue) => new Date(issue.created_at) <= threeDaysAgo
);
allIssues.push(...oldEnoughIssues);
// If all issues on this page are newer than 3 days, we can stop
if (oldEnoughIssues.length === 0 && page === 1) {
foundRecentIssue = true;
break;
}
// If we found some old issues but not all, continue to next page
// as there might be more old issues
page++;
// Safety limit to avoid infinite loops
if (page > MAX_PAGES) {
console.log(`[WARNING] Reached maximum page limit of ${MAX_PAGES}`);
break;
}
}
const issues = allIssues;
console.log(`[DEBUG] Found ${issues.length} open issues`);
let processedCount = 0;
let candidateCount = 0;
for (const issue of issues) {
processedCount++;
console.log(
`[DEBUG] Processing issue #${issue.number} (${processedCount}/${issues.length}): ${issue.title}`
);
console.log(`[DEBUG] Fetching comments for issue #${issue.number}...`);
const comments = await githubRequest(
`/repos/${owner}/${repo}/issues/${issue.number}/comments`,
token
);
console.log(
`[DEBUG] Issue #${issue.number} has ${comments.length} comments`
);
const dupeComments = comments.filter(
(comment) =>
comment.body.includes('Found') &&
comment.body.includes('possible duplicate') &&
comment.user.type === 'Bot'
);
console.log(
`[DEBUG] Issue #${issue.number} has ${dupeComments.length} duplicate detection comments`
);
if (dupeComments.length === 0) {
console.log(
`[DEBUG] Issue #${issue.number} - no duplicate comments found, skipping`
);
continue;
}
const lastDupeComment = dupeComments[dupeComments.length - 1];
const dupeCommentDate = new Date(lastDupeComment.created_at);
console.log(
`[DEBUG] Issue #${
issue.number
} - most recent duplicate comment from: ${dupeCommentDate.toISOString()}`
);
if (dupeCommentDate > threeDaysAgo) {
console.log(
`[DEBUG] Issue #${issue.number} - duplicate comment is too recent, skipping`
);
continue;
}
console.log(
`[DEBUG] Issue #${
issue.number
} - duplicate comment is old enough (${Math.floor(
(Date.now() - dupeCommentDate.getTime()) / (1000 * 60 * 60 * 24)
)} days)`
);
const commentsAfterDupe = comments.filter(
(comment) => new Date(comment.created_at) > dupeCommentDate
);
console.log(
`[DEBUG] Issue #${issue.number} - ${commentsAfterDupe.length} comments after duplicate detection`
);
if (commentsAfterDupe.length > 0) {
console.log(
`[DEBUG] Issue #${issue.number} - has activity after duplicate comment, skipping`
);
continue;
}
console.log(
`[DEBUG] Issue #${issue.number} - checking reactions on duplicate comment...`
);
const reactions = await githubRequest(
`/repos/${owner}/${repo}/issues/comments/${lastDupeComment.id}/reactions`,
token
);
console.log(
`[DEBUG] Issue #${issue.number} - duplicate comment has ${reactions.length} reactions`
);
const authorThumbsDown = reactions.some(
(reaction) =>
reaction.user.id === issue.user.id && reaction.content === '-1'
);
console.log(
`[DEBUG] Issue #${issue.number} - author thumbs down reaction: ${authorThumbsDown}`
);
if (authorThumbsDown) {
console.log(
`[DEBUG] Issue #${issue.number} - author disagreed with duplicate detection, skipping`
);
continue;
}
const duplicateIssueNumber = extractDuplicateIssueNumber(
lastDupeComment.body
);
if (!duplicateIssueNumber) {
console.log(
`[DEBUG] Issue #${issue.number} - could not extract duplicate issue number from comment, skipping`
);
continue;
}
candidateCount++;
const issueUrl = `https://github.com/${owner}/${repo}/issues/${issue.number}`;
try {
console.log(
`[INFO] Auto-closing issue #${issue.number} as duplicate of #${duplicateIssueNumber}: ${issueUrl}`
);
await closeIssueAsDuplicate(
owner,
repo,
issue.number,
duplicateIssueNumber,
token
);
console.log(
`[SUCCESS] Successfully closed issue #${issue.number} as duplicate of #${duplicateIssueNumber}`
);
} catch (error) {
console.error(
`[ERROR] Failed to close issue #${issue.number} as duplicate: ${error}`
);
}
}
console.log(
`[DEBUG] Script completed. Processed ${processedCount} issues, found ${candidateCount} candidates for auto-close`
);
}
autoCloseDuplicates().catch(console.error);

View File

@@ -1,178 +0,0 @@
#!/usr/bin/env node
async function githubRequest(endpoint, token, method = 'GET', body) {
const response = await fetch(`https://api.github.com${endpoint}`, {
method,
headers: {
Authorization: `Bearer ${token}`,
Accept: 'application/vnd.github.v3+json',
'User-Agent': 'backfill-duplicate-comments-script',
...(body && { 'Content-Type': 'application/json' })
},
...(body && { body: JSON.stringify(body) })
});
if (!response.ok) {
throw new Error(
`GitHub API request failed: ${response.status} ${response.statusText}`
);
}
return response.json();
}
async function triggerDedupeWorkflow(
owner,
repo,
issueNumber,
token,
dryRun = true
) {
if (dryRun) {
console.log(
`[DRY RUN] Would trigger dedupe workflow for issue #${issueNumber}`
);
return;
}
await githubRequest(
`/repos/${owner}/${repo}/actions/workflows/claude-dedupe-issues.yml/dispatches`,
token,
'POST',
{
ref: 'main',
inputs: {
issue_number: issueNumber.toString()
}
}
);
}
async function backfillDuplicateComments() {
console.log('[DEBUG] Starting backfill duplicate comments script');
const token = process.env.GITHUB_TOKEN;
if (!token) {
throw new Error(`GITHUB_TOKEN environment variable is required
Usage:
node .github/scripts/backfill-duplicate-comments.mjs
Environment Variables:
GITHUB_TOKEN - GitHub personal access token with repo and actions permissions (required)
DRY_RUN - Set to "false" to actually trigger workflows (default: true for safety)
DAYS_BACK - How many days back to look for old issues (default: 90)`);
}
console.log('[DEBUG] GitHub token found');
const owner = process.env.GITHUB_REPOSITORY_OWNER || 'eyaltoledano';
const repo = process.env.GITHUB_REPOSITORY_NAME || 'claude-task-master';
const dryRun = process.env.DRY_RUN !== 'false';
const daysBack = parseInt(process.env.DAYS_BACK || '90', 10);
console.log(`[DEBUG] Repository: ${owner}/${repo}`);
console.log(`[DEBUG] Dry run mode: ${dryRun}`);
console.log(`[DEBUG] Looking back ${daysBack} days`);
const cutoffDate = new Date();
cutoffDate.setDate(cutoffDate.getDate() - daysBack);
console.log(
`[DEBUG] Fetching issues created since ${cutoffDate.toISOString()}...`
);
const allIssues = [];
let page = 1;
const perPage = 100;
while (true) {
const pageIssues = await githubRequest(
`/repos/${owner}/${repo}/issues?state=all&per_page=${perPage}&page=${page}&since=${cutoffDate.toISOString()}`,
token
);
if (pageIssues.length === 0) break;
allIssues.push(...pageIssues);
page++;
// Safety limit to avoid infinite loops
if (page > 100) {
console.log('[DEBUG] Reached page limit, stopping pagination');
break;
}
}
console.log(
`[DEBUG] Found ${allIssues.length} issues from the last ${daysBack} days`
);
let processedCount = 0;
let candidateCount = 0;
let triggeredCount = 0;
for (const issue of allIssues) {
processedCount++;
console.log(
`[DEBUG] Processing issue #${issue.number} (${processedCount}/${allIssues.length}): ${issue.title}`
);
console.log(`[DEBUG] Fetching comments for issue #${issue.number}...`);
const comments = await githubRequest(
`/repos/${owner}/${repo}/issues/${issue.number}/comments`,
token
);
console.log(
`[DEBUG] Issue #${issue.number} has ${comments.length} comments`
);
// Look for existing duplicate detection comments (from the dedupe bot)
const dupeDetectionComments = comments.filter(
(comment) =>
comment.body.includes('Found') &&
comment.body.includes('possible duplicate') &&
comment.user.type === 'Bot'
);
console.log(
`[DEBUG] Issue #${issue.number} has ${dupeDetectionComments.length} duplicate detection comments`
);
// Skip if there's already a duplicate detection comment
if (dupeDetectionComments.length > 0) {
console.log(
`[DEBUG] Issue #${issue.number} already has duplicate detection comment, skipping`
);
continue;
}
candidateCount++;
const issueUrl = `https://github.com/${owner}/${repo}/issues/${issue.number}`;
try {
console.log(
`[INFO] ${dryRun ? '[DRY RUN] ' : ''}Triggering dedupe workflow for issue #${issue.number}: ${issueUrl}`
);
await triggerDedupeWorkflow(owner, repo, issue.number, token, dryRun);
if (!dryRun) {
console.log(
`[SUCCESS] Successfully triggered dedupe workflow for issue #${issue.number}`
);
}
triggeredCount++;
} catch (error) {
console.error(
`[ERROR] Failed to trigger workflow for issue #${issue.number}: ${error}`
);
}
// Add a delay between workflow triggers to avoid overwhelming the system
await new Promise((resolve) => setTimeout(resolve, 1000));
}
console.log(
`[DEBUG] Script completed. Processed ${processedCount} issues, found ${candidateCount} candidates without duplicate comments, ${dryRun ? 'would trigger' : 'triggered'} ${triggeredCount} workflows`
);
}
backfillDuplicateComments().catch(console.error);

View File

@@ -1,102 +0,0 @@
#!/usr/bin/env node
import { readFileSync, existsSync } from 'node:fs';
import { join, dirname, resolve } from 'node:path';
import { fileURLToPath } from 'node:url';
const __filename = fileURLToPath(import.meta.url);
const __dirname = dirname(__filename);
// Get context from command line argument or environment
const context = process.argv[2] || process.env.GITHUB_WORKFLOW || 'manual';
function findRootDir(startDir) {
let currentDir = resolve(startDir);
while (currentDir !== '/') {
if (existsSync(join(currentDir, 'package.json'))) {
try {
const pkg = JSON.parse(
readFileSync(join(currentDir, 'package.json'), 'utf8')
);
if (pkg.name === 'task-master-ai' || pkg.repository) {
return currentDir;
}
} catch {}
}
currentDir = dirname(currentDir);
}
throw new Error('Could not find root directory');
}
function checkPreReleaseMode() {
console.log('🔍 Checking if branch is in pre-release mode...');
const rootDir = findRootDir(__dirname);
const preJsonPath = join(rootDir, '.changeset', 'pre.json');
// Check if pre.json exists
if (!existsSync(preJsonPath)) {
console.log('✅ Not in active pre-release mode - safe to proceed');
process.exit(0);
}
try {
// Read and parse pre.json
const preJsonContent = readFileSync(preJsonPath, 'utf8');
const preJson = JSON.parse(preJsonContent);
// Check if we're in active pre-release mode
if (preJson.mode === 'pre') {
console.error('❌ ERROR: This branch is in active pre-release mode!');
console.error('');
// Provide context-specific error messages
if (context === 'Release Check' || context === 'pull_request') {
console.error(
'Pre-release mode must be exited before merging to main.'
);
console.error('');
console.error(
'To fix this, run the following commands in your branch:'
);
console.error(' npx changeset pre exit');
console.error(' git add -u');
console.error(' git commit -m "chore: exit pre-release mode"');
console.error(' git push');
console.error('');
console.error('Then update this pull request.');
} else if (context === 'Release' || context === 'main') {
console.error(
'Pre-release mode should only be used on feature branches, not main.'
);
console.error('');
console.error('To fix this, run the following commands locally:');
console.error(' npx changeset pre exit');
console.error(' git add -u');
console.error(' git commit -m "chore: exit pre-release mode"');
console.error(' git push origin main');
console.error('');
console.error('Then re-run this workflow.');
} else {
console.error('Pre-release mode must be exited before proceeding.');
console.error('');
console.error('To fix this, run the following commands:');
console.error(' npx changeset pre exit');
console.error(' git add -u');
console.error(' git commit -m "chore: exit pre-release mode"');
console.error(' git push');
}
process.exit(1);
}
console.log('✅ Not in active pre-release mode - safe to proceed');
process.exit(0);
} catch (error) {
console.error(`❌ ERROR: Unable to parse .changeset/pre.json aborting.`);
console.error(`Error details: ${error.message}`);
process.exit(1);
}
}
// Run the check
checkPreReleaseMode();

View File

@@ -1,30 +0,0 @@
#!/usr/bin/env node
import { existsSync, unlinkSync } from 'node:fs';
import { join, dirname } from 'node:path';
import { fileURLToPath } from 'node:url';
import { findRootDir, runCommand } from './utils.mjs';
const __filename = fileURLToPath(import.meta.url);
const __dirname = dirname(__filename);
const rootDir = findRootDir(__dirname);
console.log('🚀 Starting release process...');
// Double-check we're not in pre-release mode (safety net)
const preJsonPath = join(rootDir, '.changeset', 'pre.json');
if (existsSync(preJsonPath)) {
console.log('⚠️ Warning: pre.json still exists. Removing it...');
unlinkSync(preJsonPath);
}
// Check if the extension version has changed and tag it
// This prevents changeset from trying to publish the private package
runCommand('node', [join(__dirname, 'tag-extension.mjs')]);
// Run changeset publish for npm packages
runCommand('npx', ['changeset', 'publish']);
console.log('✅ Release process completed!');
// The extension tag (if created) will trigger the extension-release workflow

View File

@@ -1,33 +0,0 @@
#!/usr/bin/env node
import assert from 'node:assert/strict';
import { readFileSync } from 'node:fs';
import { join, dirname } from 'node:path';
import { fileURLToPath } from 'node:url';
import { findRootDir, createAndPushTag } from './utils.mjs';
const __filename = fileURLToPath(import.meta.url);
const __dirname = dirname(__filename);
const rootDir = findRootDir(__dirname);
// Read the extension's package.json
const extensionDir = join(rootDir, 'apps', 'extension');
const pkgPath = join(extensionDir, 'package.json');
let pkg;
try {
const pkgContent = readFileSync(pkgPath, 'utf8');
pkg = JSON.parse(pkgContent);
} catch (error) {
console.error('Failed to read package.json:', error.message);
process.exit(1);
}
// Ensure we have required fields
assert(pkg.name, 'package.json must have a name field');
assert(pkg.version, 'package.json must have a version field');
const tag = `${pkg.name}@${pkg.version}`;
// Create and push the tag if it doesn't exist
createAndPushTag(tag);

View File

@@ -1,88 +0,0 @@
#!/usr/bin/env node
import { spawnSync } from 'node:child_process';
import { readFileSync } from 'node:fs';
import { join, dirname, resolve } from 'node:path';
// Find the root directory by looking for package.json with task-master-ai
export function findRootDir(startDir) {
let currentDir = resolve(startDir);
while (currentDir !== '/') {
const pkgPath = join(currentDir, 'package.json');
try {
const pkg = JSON.parse(readFileSync(pkgPath, 'utf8'));
if (pkg.name === 'task-master-ai' || pkg.repository) {
return currentDir;
}
} catch {}
currentDir = dirname(currentDir);
}
throw new Error('Could not find root directory');
}
// Run a command with proper error handling
export function runCommand(command, args = [], options = {}) {
console.log(`Running: ${command} ${args.join(' ')}`);
const result = spawnSync(command, args, {
encoding: 'utf8',
stdio: 'inherit',
...options
});
if (result.status !== 0) {
console.error(`Command failed with exit code ${result.status}`);
process.exit(result.status);
}
return result;
}
// Get package version from a package.json file
export function getPackageVersion(packagePath) {
try {
const pkg = JSON.parse(readFileSync(packagePath, 'utf8'));
return pkg.version;
} catch (error) {
console.error(
`Failed to read package version from ${packagePath}:`,
error.message
);
process.exit(1);
}
}
// Check if a git tag exists on remote
export function tagExistsOnRemote(tag, remote = 'origin') {
const result = spawnSync('git', ['ls-remote', remote, tag], {
encoding: 'utf8'
});
return result.status === 0 && result.stdout.trim() !== '';
}
// Create and push a git tag if it doesn't exist
export function createAndPushTag(tag, remote = 'origin') {
// Check if tag already exists
if (tagExistsOnRemote(tag, remote)) {
console.log(`Tag ${tag} already exists on remote, skipping`);
return false;
}
console.log(`Creating new tag: ${tag}`);
// Create the tag locally
const tagResult = spawnSync('git', ['tag', tag]);
if (tagResult.status !== 0) {
console.error('Failed to create tag:', tagResult.error || tagResult.stderr);
process.exit(1);
}
// Push the tag to remote
const pushResult = spawnSync('git', ['push', remote, tag]);
if (pushResult.status !== 0) {
console.error('Failed to push tag:', pushResult.error || pushResult.stderr);
process.exit(1);
}
console.log(`✅ Successfully created and pushed tag: ${tag}`);
return true;
}

View File

@@ -1,31 +0,0 @@
name: Auto-close duplicate issues
# description: Auto-closes issues that are duplicates of existing issues
on:
schedule:
- cron: "0 9 * * *" # Runs daily at 9 AM UTC
workflow_dispatch:
jobs:
auto-close-duplicates:
runs-on: ubuntu-latest
timeout-minutes: 10
permissions:
contents: read
issues: write # Need write permission to close issues and add comments
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: 20
- name: Auto-close duplicate issues
run: node .github/scripts/auto-close-duplicates.mjs
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_REPOSITORY_OWNER: ${{ github.repository_owner }}
GITHUB_REPOSITORY_NAME: ${{ github.event.repository.name }}

View File

@@ -1,46 +0,0 @@
name: Backfill Duplicate Comments
# description: Triggers duplicate detection for old issues that don't have duplicate comments
on:
workflow_dispatch:
inputs:
days_back:
description: "How many days back to look for old issues"
required: false
default: "90"
type: string
dry_run:
description: "Dry run mode (true to only log what would be done)"
required: false
default: "true"
type: choice
options:
- "true"
- "false"
jobs:
backfill-duplicate-comments:
runs-on: ubuntu-latest
timeout-minutes: 30
permissions:
contents: read
issues: read
actions: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: 20
- name: Backfill duplicate comments
run: node .github/scripts/backfill-duplicate-comments.mjs
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_REPOSITORY_OWNER: ${{ github.repository_owner }}
GITHUB_REPOSITORY_NAME: ${{ github.event.repository.name }}
DAYS_BACK: ${{ inputs.days_back }}
DRY_RUN: ${{ inputs.dry_run }}

View File

@@ -1,81 +0,0 @@
name: Claude Issue Dedupe
# description: Automatically dedupe GitHub issues using Claude Code
on:
issues:
types: [opened]
workflow_dispatch:
inputs:
issue_number:
description: "Issue number to process for duplicate detection"
required: true
type: string
jobs:
claude-dedupe-issues:
runs-on: ubuntu-latest
timeout-minutes: 10
permissions:
contents: read
issues: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Run Claude Code slash command
uses: anthropics/claude-code-base-action@beta
with:
prompt: "/dedupe ${{ github.repository }}/issues/${{ github.event.issue.number || inputs.issue_number }}"
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
claude_env: |
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Log duplicate comment event to Statsig
if: always()
env:
STATSIG_API_KEY: ${{ secrets.STATSIG_API_KEY }}
run: |
ISSUE_NUMBER=${{ github.event.issue.number || inputs.issue_number }}
REPO=${{ github.repository }}
if [ -z "$STATSIG_API_KEY" ]; then
echo "STATSIG_API_KEY not found, skipping Statsig logging"
exit 0
fi
# Prepare the event payload
EVENT_PAYLOAD=$(jq -n \
--arg issue_number "$ISSUE_NUMBER" \
--arg repo "$REPO" \
--arg triggered_by "${{ github.event_name }}" \
'{
events: [{
eventName: "github_duplicate_comment_added",
value: 1,
metadata: {
repository: $repo,
issue_number: ($issue_number | tonumber),
triggered_by: $triggered_by,
workflow_run_id: "${{ github.run_id }}"
},
time: (now | floor | tostring)
}]
}')
# Send to Statsig API
echo "Logging duplicate comment event to Statsig for issue #${ISSUE_NUMBER}"
RESPONSE=$(curl -s -w "\n%{http_code}" -X POST https://events.statsigapi.net/v1/log_event \
-H "Content-Type: application/json" \
-H "STATSIG-API-KEY: ${STATSIG_API_KEY}" \
-d "$EVENT_PAYLOAD")
HTTP_CODE=$(echo "$RESPONSE" | tail -n1)
BODY=$(echo "$RESPONSE" | head -n-1)
if [ "$HTTP_CODE" -eq 200 ] || [ "$HTTP_CODE" -eq 202 ]; then
echo "Successfully logged duplicate comment event for issue #${ISSUE_NUMBER}"
else
echo "Failed to log duplicate comment event for issue #${ISSUE_NUMBER}. HTTP ${HTTP_CODE}: ${BODY}"
fi

View File

@@ -1,156 +0,0 @@
name: Claude Documentation Updater
on:
push:
branches:
- next
paths-ignore:
- "apps/docs/**"
- "*.md"
- ".github/workflows/**"
jobs:
update-docs:
# Only run if changes were merged (not direct pushes from bots)
if: github.actor != 'github-actions[bot]' && github.actor != 'dependabot[bot]'
runs-on: ubuntu-latest
permissions:
contents: write
pull-requests: write
issues: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 2 # Need previous commit for comparison
- name: Get changed files
id: changed-files
run: |
echo "Changed files in this push:"
git diff --name-only HEAD^ HEAD | tee changed_files.txt
# Store changed files for Claude to analyze
echo "changed_files<<EOF" >> $GITHUB_OUTPUT
git diff --name-only HEAD^ HEAD >> $GITHUB_OUTPUT
echo "EOF" >> $GITHUB_OUTPUT
# Get the commit message and changes summary
echo "commit_message<<EOF" >> $GITHUB_OUTPUT
git log -1 --pretty=%B >> $GITHUB_OUTPUT
echo "EOF" >> $GITHUB_OUTPUT
# Get diff for documentation context
echo "commit_diff<<EOF" >> $GITHUB_OUTPUT
git diff HEAD^ HEAD --stat >> $GITHUB_OUTPUT
echo "EOF" >> $GITHUB_OUTPUT
- name: Create docs update branch
id: create-branch
run: |
BRANCH_NAME="docs/auto-update-$(date +%Y%m%d-%H%M%S)"
git checkout -b $BRANCH_NAME
echo "branch_name=$BRANCH_NAME" >> $GITHUB_OUTPUT
- name: Run Claude Code to Update Documentation
uses: anthropics/claude-code-action@beta
with:
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
timeout_minutes: "30"
mode: "agent"
github_token: ${{ secrets.GITHUB_TOKEN }}
experimental_allowed_domains: |
.anthropic.com
.github.com
api.github.com
.githubusercontent.com
registry.npmjs.org
.task-master.dev
base_branch: "next"
direct_prompt: |
You are a documentation specialist. Analyze the recent changes pushed to the 'next' branch and update the documentation accordingly.
Recent changes:
- Commit: ${{ steps.changed-files.outputs.commit_message }}
- Changed files:
${{ steps.changed-files.outputs.changed_files }}
- Changes summary:
${{ steps.changed-files.outputs.commit_diff }}
Your task:
1. Analyze the changes to understand what functionality was added, modified, or removed
2. Check if these changes require documentation updates in apps/docs/
3. If documentation updates are needed:
- Update relevant documentation files in apps/docs/
- Ensure examples are updated if APIs changed
- Update any configuration documentation if config options changed
- Add new documentation pages if new features were added
- Update the changelog or release notes if applicable
4. If no documentation updates are needed, skip creating changes
Guidelines:
- Focus only on user-facing changes that need documentation
- Keep documentation clear, concise, and helpful
- Include code examples where appropriate
- Maintain consistent documentation style with existing docs
- Don't document internal implementation details unless they affect users
- Update navigation/menu files if new pages are added
Only make changes if the documentation truly needs updating based on the code changes.
- name: Check if changes were made
id: check-changes
run: |
if git diff --quiet; then
echo "has_changes=false" >> $GITHUB_OUTPUT
else
echo "has_changes=true" >> $GITHUB_OUTPUT
git add -A
git config --local user.email "github-actions[bot]@users.noreply.github.com"
git config --local user.name "github-actions[bot]"
git commit -m "docs: auto-update documentation based on changes in next branch
This PR was automatically generated to update documentation based on recent changes.
Original commit: ${{ steps.changed-files.outputs.commit_message }}
Co-authored-by: Claude <claude-assistant@anthropic.com>"
fi
- name: Push changes and create PR
if: steps.check-changes.outputs.has_changes == 'true'
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
git push origin ${{ steps.create-branch.outputs.branch_name }}
# Create PR using GitHub CLI
gh pr create \
--title "docs: update documentation for recent changes" \
--body "## 📚 Documentation Update
This PR automatically updates documentation based on recent changes merged to the \`next\` branch.
### Original Changes
**Commit:** ${{ github.sha }}
**Message:** ${{ steps.changed-files.outputs.commit_message }}
### Changed Files in Original Commit
\`\`\`
${{ steps.changed-files.outputs.changed_files }}
\`\`\`
### Documentation Updates
This PR includes documentation updates to reflect the changes above. Please review to ensure:
- [ ] Documentation accurately reflects the changes
- [ ] Examples are correct and working
- [ ] No important details are missing
- [ ] Style is consistent with existing documentation
---
*This PR was automatically generated by Claude Code GitHub Action*" \
--base next \
--head ${{ steps.create-branch.outputs.branch_name }} \
--label "documentation" \
--label "automated"

View File

@@ -1,107 +0,0 @@
name: Claude Issue Triage
# description: Automatically triage GitHub issues using Claude Code
on:
issues:
types: [opened]
jobs:
triage-issue:
runs-on: ubuntu-latest
timeout-minutes: 10
permissions:
contents: read
issues: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Create triage prompt
run: |
mkdir -p /tmp/claude-prompts
cat > /tmp/claude-prompts/triage-prompt.txt << 'EOF'
You're an issue triage assistant for GitHub issues. Your task is to analyze the issue and select appropriate labels from the provided list.
IMPORTANT: Don't post any comments or messages to the issue. Your only action should be to apply labels.
Issue Information:
- REPO: ${{ github.repository }}
- ISSUE_NUMBER: ${{ github.event.issue.number }}
TASK OVERVIEW:
1. First, fetch the list of labels available in this repository by running: `gh label list`. Run exactly this command with nothing else.
2. Next, use the GitHub tools to get context about the issue:
- You have access to these tools:
- mcp__github__get_issue: Use this to retrieve the current issue's details including title, description, and existing labels
- mcp__github__get_issue_comments: Use this to read any discussion or additional context provided in the comments
- mcp__github__update_issue: Use this to apply labels to the issue (do not use this for commenting)
- mcp__github__search_issues: Use this to find similar issues that might provide context for proper categorization and to identify potential duplicate issues
- mcp__github__list_issues: Use this to understand patterns in how other issues are labeled
- Start by using mcp__github__get_issue to get the issue details
3. Analyze the issue content, considering:
- The issue title and description
- The type of issue (bug report, feature request, question, etc.)
- Technical areas mentioned
- Severity or priority indicators
- User impact
- Components affected
4. Select appropriate labels from the available labels list provided above:
- Choose labels that accurately reflect the issue's nature
- Be specific but comprehensive
- Select priority labels if you can determine urgency (high-priority, med-priority, or low-priority)
- Consider platform labels (android, ios) if applicable
- If you find similar issues using mcp__github__search_issues, consider using a "duplicate" label if appropriate. Only do so if the issue is a duplicate of another OPEN issue.
5. Apply the selected labels:
- Use mcp__github__update_issue to apply your selected labels
- DO NOT post any comments explaining your decision
- DO NOT communicate directly with users
- If no labels are clearly applicable, do not apply any labels
IMPORTANT GUIDELINES:
- Be thorough in your analysis
- Only select labels from the provided list above
- DO NOT post any comments to the issue
- Your ONLY action should be to apply labels using mcp__github__update_issue
- It's okay to not add any labels if none are clearly applicable
EOF
- name: Setup GitHub MCP Server
run: |
mkdir -p /tmp/mcp-config
cat > /tmp/mcp-config/mcp-servers.json << 'EOF'
{
"mcpServers": {
"github": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"GITHUB_PERSONAL_ACCESS_TOKEN",
"ghcr.io/github/github-mcp-server:sha-7aced2b"
],
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "${{ secrets.GITHUB_TOKEN }}"
}
}
}
}
EOF
- name: Run Claude Code for Issue Triage
uses: anthropics/claude-code-base-action@beta
with:
prompt_file: /tmp/claude-prompts/triage-prompt.txt
allowed_tools: "Bash(gh label list),mcp__github__get_issue,mcp__github__get_issue_comments,mcp__github__update_issue,mcp__github__search_issues,mcp__github__list_issues"
timeout_minutes: "5"
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
mcp_config: /tmp/mcp-config/mcp-servers.json
claude_env: |
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -1,36 +0,0 @@
name: Claude Code
on:
issue_comment:
types: [created]
pull_request_review_comment:
types: [created]
issues:
types: [opened, assigned]
pull_request_review:
types: [submitted]
jobs:
claude:
if: |
(github.event_name == 'issue_comment' && contains(github.event.comment.body, '@claude')) ||
(github.event_name == 'pull_request_review_comment' && contains(github.event.comment.body, '@claude')) ||
(github.event_name == 'pull_request_review' && contains(github.event.review.body, '@claude')) ||
(github.event_name == 'issues' && (contains(github.event.issue.body, '@claude') || contains(github.event.issue.title, '@claude')))
runs-on: ubuntu-latest
permissions:
contents: read
pull-requests: read
issues: read
id-token: write
steps:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4
with:
fetch-depth: 1
- name: Run Claude Code
id: claude
uses: anthropics/claude-code-action@beta
with:
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}

View File

@@ -1,143 +0,0 @@
name: Extension CI
on:
push:
branches:
- main
- next
paths:
- 'apps/extension/**'
- '.github/workflows/extension-ci.yml'
pull_request:
branches:
- main
- next
paths:
- 'apps/extension/**'
- '.github/workflows/extension-ci.yml'
permissions:
contents: read
jobs:
setup:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- uses: actions/setup-node@v4
with:
node-version: 20
- name: Cache node_modules
uses: actions/cache@v4
with:
path: |
node_modules
*/*/node_modules
key: ${{ runner.os }}-node-${{ hashFiles('**/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-
- name: Install Extension Dependencies
working-directory: apps/extension
run: npm ci
timeout-minutes: 5
typecheck:
needs: setup
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-node@v4
with:
node-version: 20
- name: Restore node_modules
uses: actions/cache@v4
with:
path: |
node_modules
*/*/node_modules
key: ${{ runner.os }}-node-${{ hashFiles('**/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-
- name: Install if cache miss
working-directory: apps/extension
run: npm ci
timeout-minutes: 3
- name: Type Check Extension
working-directory: apps/extension
run: npm run check-types
env:
FORCE_COLOR: 1
build:
needs: setup
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-node@v4
with:
node-version: 20
- name: Restore node_modules
uses: actions/cache@v4
with:
path: |
node_modules
*/*/node_modules
key: ${{ runner.os }}-node-${{ hashFiles('**/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-
- name: Install if cache miss
working-directory: apps/extension
run: npm ci
timeout-minutes: 3
- name: Build Extension
working-directory: apps/extension
run: npm run build
env:
FORCE_COLOR: 1
- name: Package Extension
working-directory: apps/extension
run: npm run package
env:
FORCE_COLOR: 1
- name: Verify Package Contents
working-directory: apps/extension
run: |
echo "Checking vsix-build contents..."
ls -la vsix-build/
echo "Checking dist contents..."
ls -la vsix-build/dist/
echo "Checking package.json exists..."
test -f vsix-build/package.json
- name: Create VSIX Package (Test)
working-directory: apps/extension/vsix-build
run: npx vsce package --no-dependencies
env:
FORCE_COLOR: 1
- name: Upload Extension Artifact
uses: actions/upload-artifact@v4
with:
name: extension-package
path: |
apps/extension/vsix-build/*.vsix
apps/extension/dist/
retention-days: 30

View File

@@ -1,111 +0,0 @@
name: Extension Release
on:
push:
tags:
- "extension@*"
permissions:
contents: write
concurrency: extension-release-${{ github.ref }}
jobs:
publish-extension:
runs-on: ubuntu-latest
environment: extension-release
steps:
- uses: actions/checkout@v4
- uses: actions/setup-node@v4
with:
node-version: 20
- name: Cache node_modules
uses: actions/cache@v4
with:
path: |
node_modules
*/*/node_modules
key: ${{ runner.os }}-node-${{ hashFiles('**/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-
- name: Install Extension Dependencies
working-directory: apps/extension
run: npm ci
timeout-minutes: 5
- name: Type Check Extension
working-directory: apps/extension
run: npm run check-types
env:
FORCE_COLOR: 1
- name: Build Extension
working-directory: apps/extension
run: npm run build
env:
FORCE_COLOR: 1
- name: Package Extension
working-directory: apps/extension
run: npm run package
env:
FORCE_COLOR: 1
- name: Create VSIX Package
working-directory: apps/extension/vsix-build
run: npx vsce package --no-dependencies
env:
FORCE_COLOR: 1
- name: Get VSIX filename
id: vsix-info
working-directory: apps/extension/vsix-build
run: |
VSIX_FILE=$(find . -maxdepth 1 -name "*.vsix" -type f | head -n1 | xargs basename)
if [ -z "$VSIX_FILE" ]; then
echo "Error: No VSIX file found"
exit 1
fi
echo "vsix-filename=$VSIX_FILE" >> "$GITHUB_OUTPUT"
echo "Found VSIX: $VSIX_FILE"
- name: Publish to VS Code Marketplace
working-directory: apps/extension/vsix-build
run: npx vsce publish --packagePath "${{ steps.vsix-info.outputs.vsix-filename }}"
env:
VSCE_PAT: ${{ secrets.VSCE_PAT }}
FORCE_COLOR: 1
- name: Install Open VSX CLI
run: npm install -g ovsx
- name: Publish to Open VSX Registry
working-directory: apps/extension/vsix-build
run: ovsx publish "${{ steps.vsix-info.outputs.vsix-filename }}"
env:
OVSX_PAT: ${{ secrets.OVSX_PAT }}
FORCE_COLOR: 1
- name: Upload Build Artifacts
uses: actions/upload-artifact@v4
with:
name: extension-release-${{ github.ref_name }}
path: |
apps/extension/vsix-build/*.vsix
apps/extension/dist/
retention-days: 90
notify-success:
needs: publish-extension
if: success()
runs-on: ubuntu-latest
steps:
- name: Success Notification
run: |
echo "🎉 Extension ${{ github.ref_name }} successfully published!"
echo "📦 Available on VS Code Marketplace"
echo "🌍 Available on Open VSX Registry"
echo "🏷️ GitHub release created: ${{ github.ref_name }}"

View File

@@ -1,176 +0,0 @@
name: Log GitHub Issue Events
on:
issues:
types: [opened, closed]
jobs:
log-issue-created:
if: github.event.action == 'opened'
runs-on: ubuntu-latest
timeout-minutes: 5
permissions:
contents: read
issues: read
steps:
- name: Log issue creation to Statsig
env:
STATSIG_API_KEY: ${{ secrets.STATSIG_API_KEY }}
run: |
ISSUE_NUMBER=${{ github.event.issue.number }}
REPO=${{ github.repository }}
ISSUE_TITLE=$(echo '${{ github.event.issue.title }}' | sed "s/'/'\\\\''/g")
AUTHOR="${{ github.event.issue.user.login }}"
CREATED_AT="${{ github.event.issue.created_at }}"
if [ -z "$STATSIG_API_KEY" ]; then
echo "STATSIG_API_KEY not found, skipping Statsig logging"
exit 0
fi
# Prepare the event payload
EVENT_PAYLOAD=$(jq -n \
--arg issue_number "$ISSUE_NUMBER" \
--arg repo "$REPO" \
--arg title "$ISSUE_TITLE" \
--arg author "$AUTHOR" \
--arg created_at "$CREATED_AT" \
'{
events: [{
eventName: "github_issue_created",
value: 1,
metadata: {
repository: $repo,
issue_number: ($issue_number | tonumber),
issue_title: $title,
issue_author: $author,
created_at: $created_at
},
time: (now | floor | tostring)
}]
}')
# Send to Statsig API
echo "Logging issue creation to Statsig for issue #${ISSUE_NUMBER}"
RESPONSE=$(curl -s -w "\n%{http_code}" -X POST https://events.statsigapi.net/v1/log_event \
-H "Content-Type: application/json" \
-H "STATSIG-API-KEY: ${STATSIG_API_KEY}" \
-d "$EVENT_PAYLOAD")
HTTP_CODE=$(echo "$RESPONSE" | tail -n1)
BODY=$(echo "$RESPONSE" | head -n-1)
if [ "$HTTP_CODE" -eq 200 ] || [ "$HTTP_CODE" -eq 202 ]; then
echo "Successfully logged issue creation for issue #${ISSUE_NUMBER}"
else
echo "Failed to log issue creation for issue #${ISSUE_NUMBER}. HTTP ${HTTP_CODE}: ${BODY}"
fi
log-issue-closed:
if: github.event.action == 'closed'
runs-on: ubuntu-latest
timeout-minutes: 5
permissions:
contents: read
issues: read
steps:
- name: Log issue closure to Statsig
env:
STATSIG_API_KEY: ${{ secrets.STATSIG_API_KEY }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
ISSUE_NUMBER=${{ github.event.issue.number }}
REPO=${{ github.repository }}
ISSUE_TITLE=$(echo '${{ github.event.issue.title }}' | sed "s/'/'\\\\''/g")
CLOSED_BY="${{ github.event.issue.closed_by.login }}"
CLOSED_AT="${{ github.event.issue.closed_at }}"
STATE_REASON="${{ github.event.issue.state_reason }}"
if [ -z "$STATSIG_API_KEY" ]; then
echo "STATSIG_API_KEY not found, skipping Statsig logging"
exit 0
fi
# Get additional issue data via GitHub API
echo "Fetching additional issue data for #${ISSUE_NUMBER}"
ISSUE_DATA=$(curl -s -H "Authorization: token ${GITHUB_TOKEN}" \
-H "Accept: application/vnd.github.v3+json" \
"https://api.github.com/repos/${REPO}/issues/${ISSUE_NUMBER}")
COMMENTS_COUNT=$(echo "$ISSUE_DATA" | jq -r '.comments')
# Get reactions data
REACTIONS_DATA=$(curl -s -H "Authorization: token ${GITHUB_TOKEN}" \
-H "Accept: application/vnd.github.v3+json" \
"https://api.github.com/repos/${REPO}/issues/${ISSUE_NUMBER}/reactions")
REACTIONS_COUNT=$(echo "$REACTIONS_DATA" | jq '. | length')
# Check if issue was closed automatically (by checking if closed_by is a bot)
CLOSED_AUTOMATICALLY="false"
if [[ "$CLOSED_BY" == *"[bot]"* ]]; then
CLOSED_AUTOMATICALLY="true"
fi
# Check if closed as duplicate by state_reason
CLOSED_AS_DUPLICATE="false"
if [ "$STATE_REASON" = "duplicate" ]; then
CLOSED_AS_DUPLICATE="true"
fi
# Prepare the event payload
EVENT_PAYLOAD=$(jq -n \
--arg issue_number "$ISSUE_NUMBER" \
--arg repo "$REPO" \
--arg title "$ISSUE_TITLE" \
--arg closed_by "$CLOSED_BY" \
--arg closed_at "$CLOSED_AT" \
--arg state_reason "$STATE_REASON" \
--arg comments_count "$COMMENTS_COUNT" \
--arg reactions_count "$REACTIONS_COUNT" \
--arg closed_automatically "$CLOSED_AUTOMATICALLY" \
--arg closed_as_duplicate "$CLOSED_AS_DUPLICATE" \
'{
events: [{
eventName: "github_issue_closed",
value: 1,
metadata: {
repository: $repo,
issue_number: ($issue_number | tonumber),
issue_title: $title,
closed_by: $closed_by,
closed_at: $closed_at,
state_reason: $state_reason,
comments_count: ($comments_count | tonumber),
reactions_count: ($reactions_count | tonumber),
closed_automatically: ($closed_automatically | test("true")),
closed_as_duplicate: ($closed_as_duplicate | test("true"))
},
time: (now | floor | tostring)
}]
}')
# Send to Statsig API
echo "Logging issue closure to Statsig for issue #${ISSUE_NUMBER}"
RESPONSE=$(curl -s -w "\n%{http_code}" -X POST https://events.statsigapi.net/v1/log_event \
-H "Content-Type: application/json" \
-H "STATSIG-API-KEY: ${STATSIG_API_KEY}" \
-d "$EVENT_PAYLOAD")
HTTP_CODE=$(echo "$RESPONSE" | tail -n1)
BODY=$(echo "$RESPONSE" | head -n-1)
if [ "$HTTP_CODE" -eq 200 ] || [ "$HTTP_CODE" -eq 202 ]; then
echo "Successfully logged issue closure for issue #${ISSUE_NUMBER}"
echo "Closed by: $CLOSED_BY"
echo "Comments: $COMMENTS_COUNT"
echo "Reactions: $REACTIONS_COUNT"
echo "Closed automatically: $CLOSED_AUTOMATICALLY"
echo "Closed as duplicate: $CLOSED_AS_DUPLICATE"
else
echo "Failed to log issue closure for issue #${ISSUE_NUMBER}. HTTP ${HTTP_CODE}: ${BODY}"
fi

View File

@@ -3,13 +3,11 @@ name: Pre-Release (RC)
on:
workflow_dispatch: # Allows manual triggering from GitHub UI/API
concurrency: pre-release-${{ github.ref_name }}
concurrency: pre-release-${{ github.ref }}
jobs:
rc:
runs-on: ubuntu-latest
# Only allow pre-releases on non-main branches
if: github.ref != 'refs/heads/main'
environment: extension-release
steps:
- uses: actions/checkout@v4
with:
@@ -18,7 +16,7 @@ jobs:
- uses: actions/setup-node@v4
with:
node-version: 20
cache: "npm"
cache: 'npm'
- name: Cache node_modules
uses: actions/cache@v4
@@ -34,30 +32,10 @@ jobs:
run: npm ci
timeout-minutes: 2
- name: Enter RC mode (if not already in RC mode)
- name: Enter RC mode
run: |
# Check if we're in pre-release mode with the "rc" tag
if [ -f .changeset/pre.json ]; then
MODE=$(jq -r '.mode' .changeset/pre.json 2>/dev/null || echo '')
TAG=$(jq -r '.tag' .changeset/pre.json 2>/dev/null || echo '')
if [ "$MODE" = "exit" ]; then
echo "Pre-release mode is in 'exit' state, re-entering RC mode..."
npx changeset pre exit || true
npx changeset pre enter rc
elif [ "$MODE" = "pre" ] && [ "$TAG" != "rc" ]; then
echo "In pre-release mode but with wrong tag ($TAG), switching to RC..."
npx changeset pre exit
npx changeset pre enter rc
elif [ "$MODE" = "pre" ] && [ "$TAG" = "rc" ]; then
echo "Already in RC pre-release mode"
else
echo "Unknown mode state: $MODE, entering RC mode..."
npx changeset pre enter rc
fi
else
echo "No pre.json found, entering RC mode..."
npx changeset pre enter rc
fi
- name: Version RC packages
run: npx changeset version
@@ -68,14 +46,17 @@ jobs:
- name: Create Release Candidate Pull Request or Publish Release Candidate to npm
uses: changesets/action@v1
with:
publish: npx changeset publish
publish: npm run release
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
NPM_TOKEN: ${{ secrets.NPM_TOKEN }}
- name: Exit RC mode
run: npx changeset pre exit
- name: Commit & Push changes
uses: actions-js/push@master
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
branch: ${{ github.ref }}
message: "chore: rc version bump"
message: 'chore: rc version bump'

Some files were not shown because too many files have changed in this diff Show More