Compare commits

..

1 Commits

Author SHA1 Message Date
Ralph Khreish
bd258c2e9c Revert "Update analyze-complexity with realtime feedback and enhanced complex…"
This reverts commit 16f4d4b932.
2025-04-02 19:24:48 +02:00
339 changed files with 27054 additions and 95553 deletions

View File

@@ -1,44 +0,0 @@
---
'task-master-ai': minor
---
Add comprehensive AI-powered research command with intelligent context gathering and interactive follow-ups.
The new `research` command provides AI-powered research capabilities that automatically gather relevant project context to answer your questions. The command intelligently selects context from multiple sources and supports interactive follow-up questions in CLI mode.
**Key Features:**
- **Intelligent Task Discovery**: Automatically finds relevant tasks and subtasks using fuzzy search based on your query keywords, supplementing any explicitly provided task IDs
- **Multi-Source Context**: Gathers context from tasks, files, project structure, and custom text to provide comprehensive answers
- **Interactive Follow-ups**: CLI users can ask follow-up questions that build on the conversation history while allowing fresh context discovery for each question
- **Flexible Detail Levels**: Choose from low (concise), medium (balanced), or high (comprehensive) response detail levels
- **Token Transparency**: Displays detailed token breakdown showing context size, sources, and estimated costs
- **Enhanced Display**: Syntax-highlighted code blocks and structured output with clear visual separation
**Usage Examples:**
```bash
# Basic research with auto-discovered context
task-master research "How should I implement user authentication?"
# Research with specific task context
task-master research "What's the best approach for this?" --id=15,23.2
# Research with file context and project tree
task-master research "How does the current auth system work?" --files=src/auth.js,config/auth.json --tree
# Research with custom context and low detail
task-master research "Quick implementation steps?" --context="Using JWT tokens" --detail=low
```
**Context Sources:**
- **Tasks**: Automatically discovers relevant tasks/subtasks via fuzzy search, plus any explicitly specified via `--id`
- **Files**: Include specific files via `--files` for code-aware responses
- **Project Tree**: Add `--tree` to include project structure overview
- **Custom Context**: Provide additional context via `--context` for domain-specific information
**Interactive Features (CLI only):**
- Follow-up questions that maintain conversation history
- Fresh fuzzy search for each follow-up to discover newly relevant tasks
- Cumulative context building across the conversation
- Clean visual separation between exchanges
The research command integrates with the existing AI service layer and supports all configured AI providers. MCP integration provides the same functionality for programmatic access without interactive features.

View File

@@ -1,13 +0,0 @@
---
'task-master-ai': patch
---
Fix critical bugs in task move functionality:
- **Fixed moving tasks to become subtasks of empty parents**: When moving a task to become a subtask of a parent that had no existing subtasks (e.g., task 89 → task 98.1), the operation would fail with validation errors.
- **Fixed moving subtasks between parents**: Subtasks can now be properly moved between different parent tasks, including to parents that previously had no subtasks.
- **Improved comma-separated batch moves**: Multiple tasks can now be moved simultaneously using comma-separated IDs (e.g., "88,90" → "92,93") with proper error handling and atomic operations.
These fixes enables proper task hierarchy reorganization for corner cases that were previously broken.

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': minor
---
Add AWS bedrock support

View File

@@ -1,13 +0,0 @@
---
'task-master-ai': minor
---
# Add Google Vertex AI Provider Integration
- Implemented `VertexAIProvider` class extending BaseAIProvider
- Added authentication and configuration handling for Vertex AI
- Updated configuration manager with Vertex-specific getters
- Modified AI services unified system to integrate the provider
- Added documentation for Vertex AI setup and configuration
- Updated environment variable examples for Vertex AI support
- Implemented specialized error handling for Vertex-specific issues

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': minor
---
Add support for Azure

View File

@@ -1,17 +0,0 @@
---
'task-master-ai': minor
---
Add comprehensive `research` MCP tool for AI-powered research queries
- **New MCP Tool**: `research` tool enables AI-powered research with project context
- **Context Integration**: Supports task IDs, file paths, custom context, and project tree
- **Fuzzy Task Discovery**: Automatically finds relevant tasks using semantic search
- **Token Management**: Detailed token counting and breakdown by context type
- **Multiple Detail Levels**: Support for low, medium, and high detail research responses
- **Telemetry Integration**: Full cost tracking and usage analytics
- **Direct Function**: `researchDirect` with comprehensive parameter validation
- **Silent Mode**: Prevents console output interference with MCP JSON responses
- **Error Handling**: Robust error handling with proper MCP response formatting
This completes subtasks 94.5 (Direct Function) and 94.6 (MCP Tool) for the research command implementation, providing a powerful research interface for integrated development environments like Cursor.

View File

@@ -1,5 +0,0 @@
---
"task-master-ai": minor
---
Increased minimum required node version to > 18 (was > 14)

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': minor
---
Renamed baseUrl to baseURL

View File

@@ -0,0 +1,5 @@
---
"task-master-ai": patch
---
Fix github actions creating npm releases on next branch push

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Fix max_tokens error when trying to use claude-sonnet-4 and claude-opus-4

View File

@@ -1,7 +0,0 @@
---
'task-master-ai': minor
---
Add TASK_MASTER_PROJECT_ROOT env variable supported in mcp.json and .env for project root resolution
- Some users were having issues where the MCP wasn't able to detect the location of their project root, you can now set the `TASK_MASTER_PROJECT_ROOT` environment variable to the root of your project.

View File

@@ -1,19 +0,0 @@
---
'task-master-ai': minor
---
Enhanced get-task/show command to support comma-separated task IDs for efficient batch operations
**New Features:**
- **Multiple Task Retrieval**: Pass comma-separated IDs to get/show multiple tasks at once (e.g., `task-master show 1,3,5` or MCP `get_task` with `id: "1,3,5"`)
- **Smart Display Logic**: Single ID shows detailed view, multiple IDs show compact summary table with interactive options
- **Batch Action Menu**: Interactive menu for multiple tasks with copy-paste ready commands for common operations (mark as done/in-progress, expand all, view dependencies, etc.)
- **MCP Array Response**: MCP tool returns structured array of task objects for efficient AI agent context gathering
**Benefits:**
- **Faster Context Gathering**: AI agents can collect multiple tasks/subtasks in one call instead of iterating
- **Improved Workflow**: Interactive batch operations reduce repetitive command execution
- **Better UX**: Responsive layout adapts to terminal width, maintains consistency with existing UI patterns
- **API Efficiency**: RESTful array responses in MCP format enable more sophisticated integrations
This enhancement maintains full backward compatibility while significantly improving efficiency for both human users and AI agents working with multiple tasks.

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Fix add-task MCP command causing an error

View File

@@ -1,44 +1,10 @@
{
"mcpServers": {
"task-master-ai-tm": {
"taskmaster-ai": {
"command": "node",
"args": [
"./mcp-server/server.js"
],
"env": {
"ANTHROPIC_API_KEY": "ANTHROPIC_API_KEY_HERE",
"PERPLEXITY_API_KEY": "PERPLEXITY_API_KEY_HERE",
"OPENAI_API_KEY": "OPENAI_API_KEY_HERE",
"GOOGLE_API_KEY": "GOOGLE_API_KEY_HERE",
"XAI_API_KEY": "XAI_API_KEY_HERE",
"OPENROUTER_API_KEY": "OPENROUTER_API_KEY_HERE",
"MISTRAL_API_KEY": "MISTRAL_API_KEY_HERE",
"AZURE_OPENAI_API_KEY": "AZURE_OPENAI_API_KEY_HERE",
"OLLAMA_API_KEY": "OLLAMA_API_KEY_HERE"
}
},
"task-master-ai": {
"command": "npx",
"args": [
"-y",
"--package=task-master-ai",
"task-master-ai"
],
"env": {
"ANTHROPIC_API_KEY": "ANTHROPIC_API_KEY_HERE",
"PERPLEXITY_API_KEY": "PERPLEXITY_API_KEY_HERE",
"OPENAI_API_KEY": "OPENAI_API_KEY_HERE",
"GOOGLE_API_KEY": "GOOGLE_API_KEY_HERE",
"XAI_API_KEY": "XAI_API_KEY_HERE",
"OPENROUTER_API_KEY": "OPENROUTER_API_KEY_HERE",
"MISTRAL_API_KEY": "MISTRAL_API_KEY_HERE",
"AZURE_OPENAI_API_KEY": "AZURE_OPENAI_API_KEY_HERE",
"OLLAMA_API_KEY": "OLLAMA_API_KEY_HERE"
]
}
}
},
"env": {
"TASKMASTER_TELEMETRY_API_KEY": "339a81c9-5b9c-4d60-92d8-cba2ee2a8cc3",
"TASKMASTER_TELEMETRY_USER_EMAIL": "user_1748640077834@taskmaster.dev"
}
}

View File

@@ -1,156 +0,0 @@
---
description: Guidelines for managing Task Master AI providers and models.
globs:
alwaysApply: false
---
# Task Master AI Provider Management
This rule guides AI assistants on how to view, configure, and interact with the different AI providers and models supported by Task Master. For internal implementation details of the service layer, see [`ai_services.mdc`](mdc:.cursor/rules/ai_services.mdc).
- **Primary Interaction:**
- Use the `models` MCP tool or the `task-master models` CLI command to manage AI configurations. See [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc) for detailed command/tool usage.
- **Configuration Roles:**
- Task Master uses three roles for AI models:
- `main`: Primary model for general tasks (generation, updates).
- `research`: Model used when the `--research` flag or `research: true` parameter is used (typically models with web access or specialized knowledge).
- `fallback`: Model used if the primary (`main`) model fails.
- Each role is configured with a specific `provider:modelId` pair (e.g., `openai:gpt-4o`).
- **Viewing Configuration & Available Models:**
- To see the current model assignments for each role and list all models available for assignment:
- **MCP Tool:** `models` (call with no arguments or `listAvailableModels: true`)
- **CLI Command:** `task-master models`
- The output will show currently assigned models and a list of others, prefixed with their provider (e.g., `google:gemini-2.5-pro-exp-03-25`).
- **Setting Models for Roles:**
- To assign a model to a role:
- **MCP Tool:** `models` with `setMain`, `setResearch`, or `setFallback` parameters.
- **CLI Command:** `task-master models` with `--set-main`, `--set-research`, or `--set-fallback` flags.
- **Crucially:** When providing the model ID to *set*, **DO NOT include the `provider:` prefix**. Use only the model ID itself.
- ✅ **DO:** `models(setMain='gpt-4o')` or `task-master models --set-main=gpt-4o`
- ❌ **DON'T:** `models(setMain='openai:gpt-4o')` or `task-master models --set-main=openai:gpt-4o`
- The tool/command will automatically determine the provider based on the model ID.
- **Setting Custom Models (Ollama/OpenRouter):**
- To set a model ID not in the internal list for Ollama or OpenRouter:
- **MCP Tool:** Use `models` with `set<Role>` and **also** `ollama: true` or `openrouter: true`.
- Example: `models(setMain='my-custom-ollama-model', ollama=true)`
- Example: `models(setMain='some-openrouter-model', openrouter=true)`
- **CLI Command:** Use `task-master models` with `--set-<role>` and **also** `--ollama` or `--openrouter`.
- Example: `task-master models --set-main=my-custom-ollama-model --ollama`
- Example: `task-master models --set-main=some-openrouter-model --openrouter`
- **Interactive Setup:** Use `task-master models --setup` and select the `Ollama (Enter Custom ID)` or `OpenRouter (Enter Custom ID)` options.
- **OpenRouter Validation:** When setting a custom OpenRouter model, Taskmaster attempts to validate the ID against the live OpenRouter API.
- **Ollama:** No live validation occurs for custom Ollama models; ensure the model is available on your Ollama server.
- **Supported Providers & Required API Keys:**
- Task Master integrates with various providers via the Vercel AI SDK.
- **API keys are essential** for most providers and must be configured correctly.
- **Key Locations** (See [`dev_workflow.mdc`](mdc:.cursor/rules/dev_workflow.mdc) - Configuration Management):
- **MCP/Cursor:** Set keys in the `env` section of `.cursor/mcp.json`.
- **CLI:** Set keys in a `.env` file in the project root.
- As the AI agent, you do not have access to read the .env -- but do not attempt to recreate it!
- **Provider List & Keys:**
- **`anthropic`**: Requires `ANTHROPIC_API_KEY`.
- **`google`**: Requires `GOOGLE_API_KEY`.
- **`openai`**: Requires `OPENAI_API_KEY`.
- **`perplexity`**: Requires `PERPLEXITY_API_KEY`.
- **`xai`**: Requires `XAI_API_KEY`.
- **`mistral`**: Requires `MISTRAL_API_KEY`.
- **`azure`**: Requires `AZURE_OPENAI_API_KEY` and `AZURE_OPENAI_ENDPOINT`.
- **`openrouter`**: Requires `OPENROUTER_API_KEY`.
- **`ollama`**: Might require `OLLAMA_API_KEY` (not currently supported) *and* `OLLAMA_BASE_URL` (default: `http://localhost:11434/api`). *Check specific setup.*
- **Troubleshooting:**
- If AI commands fail (especially in MCP context):
1. **Verify API Key:** Ensure the correct API key for the *selected provider* (check `models` output) exists in the appropriate location (`.cursor/mcp.json` env or `.env`).
2. **Check Model ID:** Ensure the model ID set for the role is valid (use `models` listAvailableModels/`task-master models`).
3. **Provider Status:** Check the status of the external AI provider's service.
4. **Restart MCP:** If changes were made to configuration or provider code, restart the MCP server.
## Adding a New AI Provider (Vercel AI SDK Method)
Follow these steps to integrate a new AI provider that has an official Vercel AI SDK adapter (`@ai-sdk/<provider>`):
1. **Install Dependency:**
- Install the provider-specific package:
```bash
npm install @ai-sdk/<provider-name>
```
2. **Create Provider Module:**
- Create a new file in `src/ai-providers/` named `<provider-name>.js`.
- Use existing modules (`openai.js`, `anthropic.js`, etc.) as a template.
- **Import:**
- Import the provider's `create<ProviderName>` function from `@ai-sdk/<provider-name>`.
- Import `generateText`, `streamText`, `generateObject` from the core `ai` package.
- Import the `log` utility from `../../scripts/modules/utils.js`.
- **Implement Core Functions:**
- `generate<ProviderName>Text(params)`:
- Accepts `params` (apiKey, modelId, messages, etc.).
- Instantiate the client: `const client = create<ProviderName>({ apiKey });`
- Call `generateText({ model: client(modelId), ... })`.
- Return `result.text`.
- Include basic validation and try/catch error handling.
- `stream<ProviderName>Text(params)`:
- Similar structure to `generateText`.
- Call `streamText({ model: client(modelId), ... })`.
- Return the full stream result object.
- Include basic validation and try/catch.
- `generate<ProviderName>Object(params)`:
- Similar structure.
- Call `generateObject({ model: client(modelId), schema, messages, ... })`.
- Return `result.object`.
- Include basic validation and try/catch.
- **Export Functions:** Export the three implemented functions (`generate<ProviderName>Text`, `stream<ProviderName>Text`, `generate<ProviderName>Object`).
3. **Integrate with Unified Service:**
- Open `scripts/modules/ai-services-unified.js`.
- **Import:** Add `import * as <providerName> from '../../src/ai-providers/<provider-name>.js';`
- **Map:** Add an entry to the `PROVIDER_FUNCTIONS` map:
```javascript
'<provider-name>': {
generateText: <providerName>.generate<ProviderName>Text,
streamText: <providerName>.stream<ProviderName>Text,
generateObject: <providerName>.generate<ProviderName>Object
},
```
4. **Update Configuration Management:**
- Open `scripts/modules/config-manager.js`.
- **`MODEL_MAP`:** Add the new `<provider-name>` key to the `MODEL_MAP` loaded from `supported-models.json` (or ensure the loading handles new providers dynamically if `supported-models.json` is updated first).
- **`VALID_PROVIDERS`:** Ensure the new `<provider-name>` is included in the `VALID_PROVIDERS` array (this should happen automatically if derived from `MODEL_MAP` keys).
- **API Key Handling:**
- Update the `keyMap` in `_resolveApiKey` and `isApiKeySet` with the correct environment variable name (e.g., `PROVIDER_API_KEY`).
- Update the `switch` statement in `getMcpApiKeyStatus` to check the corresponding key in `mcp.json` and its placeholder value.
- Add a case to the `switch` statement in `getMcpApiKeyStatus` for the new provider, including its placeholder string if applicable.
- **Ollama Exception:** If adding Ollama or another provider *not* requiring an API key, add a specific check at the beginning of `isApiKeySet` and `getMcpApiKeyStatus` to return `true` immediately for that provider.
5. **Update Supported Models List:**
- Edit `scripts/modules/supported-models.json`.
- Add a new key for the `<provider-name>`.
- Add an array of model objects under the provider key, each including:
- `id`: The specific model identifier (e.g., `claude-3-opus-20240229`).
- `name`: A user-friendly name (optional).
- `swe_score`, `cost_per_1m_tokens`: (Optional) Add performance/cost data if available.
- `allowed_roles`: An array of roles (`"main"`, `"research"`, `"fallback"`) the model is suitable for.
- `max_tokens`: (Optional but recommended) The maximum token limit for the model.
6. **Update Environment Examples:**
- Add the new `PROVIDER_API_KEY` to `.env.example`.
- Add the new `PROVIDER_API_KEY` with its placeholder (`YOUR_PROVIDER_API_KEY_HERE`) to the `env` section for `taskmaster-ai` in `.cursor/mcp.json.example` (if it exists) or update instructions.
7. **Add Unit Tests:**
- Create `tests/unit/ai-providers/<provider-name>.test.js`.
- Mock the `@ai-sdk/<provider-name>` module and the core `ai` module functions (`generateText`, `streamText`, `generateObject`).
- Write tests for each exported function (`generate<ProviderName>Text`, etc.) to verify:
- Correct client instantiation.
- Correct parameters passed to the mocked Vercel AI SDK functions.
- Correct handling of results.
- Error handling (missing API key, SDK errors).
8. **Documentation:**
- Update any relevant documentation (like `README.md` or other rules) mentioning supported providers or configuration.
*(Note: For providers **without** an official Vercel AI SDK adapter, the process would involve directly using the provider's own SDK or API within the `src/ai-providers/<provider-name>.js` module and manually constructing responses compatible with the unified service layer, which is significantly more complex.)*

View File

@@ -1,103 +0,0 @@
---
description: Guidelines for interacting with the unified AI service layer.
globs: scripts/modules/ai-services-unified.js, scripts/modules/task-manager/*.js, scripts/modules/commands.js
alwaysApply: false
---
# AI Services Layer Guidelines
This document outlines the architecture and usage patterns for interacting with Large Language Models (LLMs) via Task Master's unified AI service layer (`ai-services-unified.js`). The goal is to centralize configuration, provider selection, API key management, fallback logic, and error handling.
**Core Components:**
* **Configuration (`.taskmasterconfig` & [`config-manager.js`](mdc:scripts/modules/config-manager.js)):**
* Defines the AI provider and model ID for different **roles** (`main`, `research`, `fallback`).
* Stores parameters like `maxTokens` and `temperature` per role.
* Managed via the `task-master models --setup` CLI command.
* [`config-manager.js`](mdc:scripts/modules/config-manager.js) provides **getters** (e.g., `getMainProvider()`, `getParametersForRole()`) to access these settings. Core logic should **only** use these getters for *non-AI related application logic* (e.g., `getDefaultSubtasks`). The unified service fetches necessary AI parameters internally based on the `role`.
* **API keys** are **NOT** stored here; they are resolved via `resolveEnvVariable` (in [`utils.js`](mdc:scripts/modules/utils.js)) from `.env` (for CLI) or the MCP `session.env` object (for MCP calls). See [`utilities.mdc`](mdc:.cursor/rules/utilities.mdc) and [`dev_workflow.mdc`](mdc:.cursor/rules/dev_workflow.mdc).
* **Unified Service (`ai-services-unified.js`):**
* Exports primary interaction functions: `generateTextService`, `generateObjectService`. (Note: `streamTextService` exists but has known reliability issues with some providers/payloads).
* Contains the core `_unifiedServiceRunner` logic.
* Internally uses `config-manager.js` getters to determine the provider/model/parameters based on the requested `role`.
* Implements the **fallback sequence** (e.g., main -> fallback -> research) if the primary provider/model fails.
* Constructs the `messages` array required by the Vercel AI SDK.
* Implements **retry logic** for specific API errors (`_attemptProviderCallWithRetries`).
* Resolves API keys automatically via `_resolveApiKey` (using `resolveEnvVariable`).
* Maps requests to the correct provider implementation (in `src/ai-providers/`) via `PROVIDER_FUNCTIONS`.
* Returns a structured object containing the primary AI result (`mainResult`) and telemetry data (`telemetryData`). See [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc) for details on how this telemetry data is propagated and handled.
* **Provider Implementations (`src/ai-providers/*.js`):**
* Contain provider-specific wrappers around Vercel AI SDK functions (`generateText`, `generateObject`).
**Usage Pattern (from Core Logic like `task-manager/*.js`):**
1. **Import Service:** Import `generateTextService` or `generateObjectService` from `../ai-services-unified.js`.
```javascript
// Preferred for most tasks (especially with complex JSON)
import { generateTextService } from '../ai-services-unified.js';
// Use if structured output is reliable for the specific use case
// import { generateObjectService } from '../ai-services-unified.js';
```
2. **Prepare Parameters:** Construct the parameters object for the service call.
* `role`: **Required.** `'main'`, `'research'`, or `'fallback'`. Determines the initial provider/model/parameters used by the unified service.
* `session`: **Required if called from MCP context.** Pass the `session` object received by the direct function wrapper. The unified service uses `session.env` to find API keys.
* `systemPrompt`: Your system instruction string.
* `prompt`: The user message string (can be long, include stringified data, etc.).
* (For `generateObjectService` only): `schema` (Zod schema), `objectName`.
3. **Call Service:** Use `await` to call the service function.
```javascript
// Example using generateTextService (most common)
try {
const resultText = await generateTextService({
role: useResearch ? 'research' : 'main', // Determine role based on logic
session: context.session, // Pass session from context object
systemPrompt: "You are...",
prompt: userMessageContent
});
// Process the raw text response (e.g., parse JSON, use directly)
// ...
} catch (error) {
// Handle errors thrown by the unified service (if all fallbacks/retries fail)
report('error', `Unified AI service call failed: ${error.message}`);
throw error;
}
// Example using generateObjectService (use cautiously)
try {
const resultObject = await generateObjectService({
role: 'main',
session: context.session,
schema: myZodSchema,
objectName: 'myDataObject',
systemPrompt: "You are...",
prompt: userMessageContent
});
// resultObject is already a validated JS object
// ...
} catch (error) {
report('error', `Unified AI service call failed: ${error.message}`);
throw error;
}
```
4. **Handle Results/Errors:** Process the returned text/object or handle errors thrown by the unified service layer.
**Key Implementation Rules & Gotchas:**
* ✅ **DO**: Centralize **all** LLM calls through `generateTextService` or `generateObjectService`.
* ✅ **DO**: Determine the appropriate `role` (`main`, `research`, `fallback`) in your core logic and pass it to the service.
* ✅ **DO**: Pass the `session` object (received in the `context` parameter, especially from direct function wrappers) to the service call when in MCP context.
* ✅ **DO**: Ensure API keys are correctly configured in `.env` (for CLI) or `.cursor/mcp.json` (for MCP). FYI: As the AI agent, you do not have access to read the .env -- so do not attempt to recreate it!
* ✅ **DO**: Ensure `.taskmasterconfig` exists and has valid provider/model IDs for the roles you intend to use (manage via `task-master models --setup`).
* ✅ **DO**: Use `generateTextService` and implement robust manual JSON parsing (with Zod validation *after* parsing) when structured output is needed, as `generateObjectService` has shown unreliability with some providers/schemas.
* ❌ **DON'T**: Import or call anything from the old `ai-services.js`, `ai-client-factory.js`, or `ai-client-utils.js` files.
* ❌ **DON'T**: Initialize AI clients (Anthropic, Perplexity, etc.) directly within core logic (`task-manager/`) or MCP direct functions.
* ❌ **DON'T**: Fetch AI-specific parameters (model ID, max tokens, temp) using `config-manager.js` getters *for the AI call*. Pass the `role` instead.
* ❌ **DON'T**: Implement fallback or retry logic outside `ai-services-unified.js`.
* ❌ **DON'T**: Handle API key resolution outside the service layer (it uses `utils.js` internally).
* ⚠️ **generateObjectService Caution**: Be aware of potential reliability issues with `generateObjectService` across different providers and complex schemas. Prefer `generateTextService` + manual parsing as a more robust alternative for structured data needs.

View File

@@ -3,6 +3,7 @@ description: Describes the high-level architecture of the Task Master CLI applic
globs: scripts/modules/*.js
alwaysApply: false
---
# Application Architecture Overview
- **Modular Structure**: The Task Master CLI is built using a modular architecture, with distinct modules responsible for different aspects of the application. This promotes separation of concerns, maintainability, and testability.
@@ -13,182 +14,114 @@ alwaysApply: false
- **Purpose**: Defines and registers all CLI commands using Commander.js.
- **Responsibilities** (See also: [`commands.mdc`](mdc:.cursor/rules/commands.mdc)):
- Parses command-line arguments and options.
- Invokes appropriate core logic functions from `scripts/modules/`.
- Handles user input/output for CLI.
- Implements CLI-specific validation.
- Invokes appropriate functions from other modules to execute commands.
- Handles user input and output related to command execution.
- Implements input validation and error handling for CLI commands.
- **Key Components**:
- `programInstance` (Commander.js `Command` instance): Manages command definitions.
- `registerCommands(programInstance)`: Function to register all application commands.
- Command action handlers: Functions executed when a specific command is invoked.
- **[`task-manager.js`](mdc:scripts/modules/task-manager.js) & `task-manager/` directory: Task Data & Core Logic**
- **Purpose**: Contains core functions for task data manipulation (CRUD), AI interactions, and related logic.
- **[`task-manager.js`](mdc:scripts/modules/task-manager.js): Task Data Management**
- **Purpose**: Manages task data, including loading, saving, creating, updating, deleting, and querying tasks.
- **Responsibilities**:
- Reading/writing `tasks.json`.
- Implementing functions for task CRUD, parsing PRDs, expanding tasks, updating status, etc.
- **Delegating AI interactions** to the `ai-services-unified.js` layer.
- Accessing non-AI configuration via `config-manager.js` getters.
- **Key Files**: Individual files within `scripts/modules/task-manager/` handle specific actions (e.g., `add-task.js`, `expand-task.js`).
- Reads and writes task data to `tasks.json` file.
- Implements functions for task CRUD operations (Create, Read, Update, Delete).
- Handles task parsing from PRD documents using AI.
- Manages task expansion and subtask generation.
- Updates task statuses and properties.
- Implements task listing and display logic.
- Performs task complexity analysis using AI.
- **Key Functions**:
- `readTasks(tasksPath)` / `writeTasks(tasksPath, tasksData)`: Load and save task data.
- `parsePRD(prdFilePath, outputPath, numTasks)`: Parses PRD document to create tasks.
- `expandTask(taskId, numSubtasks, useResearch, prompt, force)`: Expands a task into subtasks.
- `setTaskStatus(tasksPath, taskIdInput, newStatus)`: Updates task status.
- `listTasks(tasksPath, statusFilter, withSubtasks)`: Lists tasks with filtering and subtask display options.
- `analyzeComplexity(tasksPath, reportPath, useResearch, thresholdScore)`: Analyzes task complexity.
- **[`dependency-manager.js`](mdc:scripts/modules/dependency-manager.js): Dependency Management**
- **Purpose**: Manages task dependencies.
- **Responsibilities**: Add/remove/validate/fix dependencies.
- **Purpose**: Manages task dependencies, including adding, removing, validating, and fixing dependency relationships.
- **Responsibilities**:
- Adds and removes task dependencies.
- Validates dependency relationships to prevent circular dependencies and invalid references.
- Fixes invalid dependencies by removing non-existent or self-referential dependencies.
- Provides functions to check for circular dependencies.
- **Key Functions**:
- `addDependency(tasksPath, taskId, dependencyId)`: Adds a dependency between tasks.
- `removeDependency(tasksPath, taskId, dependencyId)`: Removes a dependency.
- `validateDependencies(tasksPath)`: Validates task dependencies.
- `fixDependencies(tasksPath)`: Fixes invalid task dependencies.
- `isCircularDependency(tasks, taskId, dependencyChain)`: Detects circular dependencies.
- **[`ui.js`](mdc:scripts/modules/ui.js): User Interface Components**
- **Purpose**: Handles CLI output formatting (tables, colors, boxes, spinners).
- **Responsibilities**: Displaying tasks, reports, progress, suggestions.
- **Purpose**: Handles all user interface elements, including displaying information, formatting output, and providing user feedback.
- **Responsibilities**:
- Displays task lists, task details, and command outputs in a formatted way.
- Uses `chalk` for colored output and `boxen` for boxed messages.
- Implements table display using `cli-table3`.
- Shows loading indicators using `ora`.
- Provides helper functions for status formatting, dependency display, and progress reporting.
- Suggests next actions to the user after command execution.
- **Key Functions**:
- `displayTaskList(tasks, statusFilter, withSubtasks)`: Displays a list of tasks in a table.
- `displayTaskDetails(task)`: Displays detailed information for a single task.
- `displayComplexityReport(reportPath)`: Displays the task complexity report.
- `startLoadingIndicator(message)` / `stopLoadingIndicator(indicator)`: Manages loading indicators.
- `getStatusWithColor(status)`: Returns status string with color formatting.
- `formatDependenciesWithStatus(dependencies, allTasks, inTable)`: Formats dependency list with status indicators.
- **[`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js): Unified AI Service Layer**
- **Purpose**: Centralized interface for all LLM interactions using Vercel AI SDK.
- **Responsibilities** (See also: [`ai_services.mdc`](mdc:.cursor/rules/ai_services.mdc)):
- Exports `generateTextService`, `generateObjectService`.
- Handles provider/model selection based on `role` and `.taskmasterconfig`.
- Resolves API keys (from `.env` or `session.env`). As the AI agent, you do not have access to read the .env -- but do not attempt to recreate it!
- Implements fallback and retry logic.
- Orchestrates calls to provider-specific implementations (`src/ai-providers/`).
- Telemetry data generated by the AI service layer is propagated upwards through core logic, direct functions, and MCP tools. See [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc) for the detailed integration pattern.
- **[`ai-services.js`](mdc:scripts/modules/ai-services.js) (Conceptual): AI Integration**
- **Purpose**: Abstracts interactions with AI models (like Anthropic Claude and Perplexity AI) for various features. *Note: This module might be implicitly implemented within `task-manager.js` and `utils.js` or could be explicitly created for better organization as the project evolves.*
- **Responsibilities**:
- Handles API calls to AI services.
- Manages prompts and parameters for AI requests.
- Parses AI responses and extracts relevant information.
- Implements logic for task complexity analysis, task expansion, and PRD parsing using AI.
- **Potential Functions**:
- `getAIResponse(prompt, model, maxTokens, temperature)`: Generic function to interact with AI model.
- `analyzeTaskComplexityWithAI(taskDescription)`: Sends task description to AI for complexity analysis.
- `expandTaskWithAI(taskDescription, numSubtasks, researchContext)`: Generates subtasks using AI.
- `parsePRDWithAI(prdContent)`: Extracts tasks from PRD content using AI.
- **[`src/ai-providers/*.js`](mdc:src/ai-providers): Provider-Specific Implementations**
- **Purpose**: Provider-specific wrappers for Vercel AI SDK functions.
- **Responsibilities**: Interact directly with Vercel AI SDK adapters.
- **[`config-manager.js`](mdc:scripts/modules/config-manager.js): Configuration Management**
- **Purpose**: Loads, validates, and provides access to configuration.
- **[`utils.js`](mdc:scripts/modules/utils.js): Utility Functions and Configuration**
- **Purpose**: Provides reusable utility functions and global configuration settings used across the application.
- **Responsibilities** (See also: [`utilities.mdc`](mdc:.cursor/rules/utilities.mdc)):
- Reads and merges `.taskmasterconfig` with defaults.
- Provides getters (e.g., `getMainProvider`, `getLogLevel`, `getDefaultSubtasks`) for accessing settings.
- **Note**: Does **not** store or directly handle API keys (keys are in `.env` or MCP `session.env`).
- Manages global configuration settings loaded from environment variables and defaults.
- Implements logging utility with different log levels and output formatting.
- Provides file system operation utilities (read/write JSON files).
- Includes string manipulation utilities (e.g., `truncate`, `sanitizePrompt`).
- Offers task-specific utility functions (e.g., `formatTaskId`, `findTaskById`, `taskExists`).
- Implements graph algorithms like cycle detection for dependency management.
- **Key Components**:
- `CONFIG`: Global configuration object.
- `log(level, ...args)`: Logging function.
- `readJSON(filepath)` / `writeJSON(filepath, data)`: File I/O utilities for JSON files.
- `truncate(text, maxLength)`: String truncation utility.
- `formatTaskId(id)` / `findTaskById(tasks, taskId)`: Task ID and search utilities.
- `findCycles(subtaskId, dependencyMap)`: Cycle detection algorithm.
- **[`utils.js`](mdc:scripts/modules/utils.js): Core Utility Functions**
- **Purpose**: Low-level, reusable CLI utilities.
- **Responsibilities** (See also: [`utilities.mdc`](mdc:.cursor/rules/utilities.mdc)):
- Logging (`log` function), File I/O (`readJSON`, `writeJSON`), String utils (`truncate`).
- Task utils (`findTaskById`), Dependency utils (`findCycles`).
- API Key Resolution (`resolveEnvVariable`).
- Silent Mode Control (`enableSilentMode`, `disableSilentMode`).
- **[`mcp-server/`](mdc:mcp-server): MCP Server Integration**
- **Purpose**: Provides MCP interface using FastMCP.
- **[`mcp-server/`](mdc:mcp-server/): MCP Server Integration**
- **Purpose**: Provides an MCP (Model Context Protocol) interface for Task Master, allowing integration with external tools like Cursor. Uses FastMCP framework.
- **Responsibilities** (See also: [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc)):
- Registers tools (`mcp-server/src/tools/*.js`). Tool `execute` methods **should be wrapped** with the `withNormalizedProjectRoot` HOF (from `tools/utils.js`) to ensure consistent path handling.
- The HOF provides a normalized `args.projectRoot` to the `execute` method.
- Tool `execute` methods call **direct function wrappers** (`mcp-server/src/core/direct-functions/*.js`), passing the normalized `projectRoot` and other args.
- Direct functions use path utilities (`mcp-server/src/core/utils/`) to resolve paths based on `projectRoot` from session.
- Direct functions implement silent mode, logger wrappers, and call core logic functions from `scripts/modules/`.
- Manages MCP caching and response formatting.
- Registers Task Master functionalities as tools consumable via MCP.
- Handles MCP requests and translates them into calls to the Task Master core logic.
- Prefers direct function calls to core modules via [`task-master-core.js`](mdc:mcp-server/src/core/task-master-core.js) for performance.
- Uses CLI execution via `executeTaskMasterCommand` as a fallback.
- **Implements Caching**: Utilizes a caching layer (`ContextManager` with `lru-cache`) invoked via `getCachedOrExecute` within direct function wrappers ([`task-master-core.js`](mdc:mcp-server/src/core/task-master-core.js)) to optimize performance for specific read operations (e.g., listing tasks).
- Standardizes response formatting for MCP clients using utilities in [`tools/utils.js`](mdc:mcp-server/src/tools/utils.js).
- **Key Components**:
- `mcp-server/src/server.js`: Main server setup and initialization.
- `mcp-server/src/tools/`: Directory containing individual tool definitions, each registering a specific Task Master command for MCP.
- **[`init.js`](mdc:scripts/init.js): Project Initialization Logic**
- **Purpose**: Sets up new Task Master project structure.
- **Responsibilities**: Creates directories, copies templates, manages `package.json`, sets up `.cursor/mcp.json`.
- **Data Flow and Module Dependencies**:
- **Data Flow and Module Dependencies (Updated)**:
- **CLI**: `bin/task-master.js` -> `scripts/dev.js` (loads `.env`) -> `scripts/modules/commands.js` -> Core Logic (`scripts/modules/*`) -> Unified AI Service (`ai-services-unified.js`) -> Provider Adapters -> LLM API.
- **MCP**: External Tool -> `mcp-server/server.js` -> Tool (`mcp-server/src/tools/*`) -> Direct Function (`mcp-server/src/core/direct-functions/*`) -> Core Logic (`scripts/modules/*`) -> Unified AI Service (`ai-services-unified.js`) -> Provider Adapters -> LLM API.
- **Configuration**: Core logic needing non-AI settings calls `config-manager.js` getters (passing `session.env` via `explicitRoot` if from MCP). Unified AI Service internally calls `config-manager.js` getters (using `role`) for AI params and `utils.js` (`resolveEnvVariable` with `session.env`) for API keys.
## Silent Mode Implementation Pattern in MCP Direct Functions
Direct functions (the `*Direct` functions in `mcp-server/src/core/direct-functions/`) need to carefully implement silent mode to prevent console logs from interfering with the structured JSON responses required by MCP. This involves both using `enableSilentMode`/`disableSilentMode` around core function calls AND passing the MCP logger via the standard wrapper pattern (see mcp.mdc). Here's the standard pattern for correct implementation:
1. **Import Silent Mode Utilities**:
```javascript
import { enableSilentMode, disableSilentMode, isSilentMode } from '../../../../scripts/modules/utils.js';
```
2. **Parameter Matching with Core Functions**:
- ✅ **DO**: Ensure direct function parameters match the core function parameters
- ✅ **DO**: Check the original core function signature before implementing
- ❌ **DON'T**: Add parameters to direct functions that don't exist in core functions
```javascript
// Example: Core function signature
// async function expandTask(tasksPath, taskId, numSubtasks, useResearch, additionalContext, options)
// Direct function implementation - extract only parameters that exist in core
export async function expandTaskDirect(args, log, context = {}) {
// Extract parameters that match the core function
const taskId = parseInt(args.id, 10);
const numSubtasks = args.num ? parseInt(args.num, 10) : undefined;
const useResearch = args.research === true;
const additionalContext = args.prompt || '';
// Later pass these parameters in the correct order to the core function
const result = await expandTask(
tasksPath,
taskId,
numSubtasks,
useResearch,
additionalContext,
{ mcpLog: log, session: context.session }
);
}
```
3. **Checking Silent Mode State**:
- ✅ **DO**: Always use `isSilentMode()` function to check current status
- ❌ **DON'T**: Directly access the global `silentMode` variable or `global.silentMode`
```javascript
// CORRECT: Use the function to check current state
if (!isSilentMode()) {
// Only create a loading indicator if not in silent mode
loadingIndicator = startLoadingIndicator('Processing...');
}
// INCORRECT: Don't access global variables directly
if (!silentMode) { // ❌ WRONG
loadingIndicator = startLoadingIndicator('Processing...');
}
```
4. **Wrapping Core Function Calls**:
- ✅ **DO**: Use a try/finally block pattern to ensure silent mode is always restored
- ✅ **DO**: Enable silent mode before calling core functions that produce console output
- ✅ **DO**: Disable silent mode in a finally block to ensure it runs even if errors occur
- ❌ **DON'T**: Enable silent mode without ensuring it gets disabled
```javascript
export async function someDirectFunction(args, log) {
try {
// Argument preparation
const tasksPath = findTasksJsonPath(args, log);
const someArg = args.someArg;
// Enable silent mode to prevent console logs
enableSilentMode();
try {
// Call core function which might produce console output
const result = await someCoreFunction(tasksPath, someArg);
// Return standardized result object
return {
success: true,
data: result,
fromCache: false
};
} finally {
// ALWAYS disable silent mode in finally block
disableSilentMode();
}
} catch (error) {
// Standard error handling
log.error(`Error in direct function: ${error.message}`);
return {
success: false,
error: { code: 'OPERATION_ERROR', message: error.message },
fromCache: false
};
}
}
```
5. **Mixed Parameter and Global Silent Mode Handling**:
- For functions that need to handle both a passed `silentMode` parameter and check global state:
```javascript
// Check both the function parameter and global state
const isSilent = options.silentMode || (typeof options.silentMode === 'undefined' && isSilentMode());
if (!isSilent) {
console.log('Operation starting...');
}
```
By following these patterns consistently, direct functions will properly manage console output suppression while ensuring that silent mode is always properly reset, even when errors occur. This creates a more robust system that helps prevent unexpected silent mode states that could cause logging problems in subsequent operations.
- **Commands Initiate Actions**: User commands entered via the CLI (handled by [`commands.js`](mdc:scripts/modules/commands.js)) are the entry points for most operations.
- **Command Handlers Delegate to Managers**: Command handlers in [`commands.js`](mdc:scripts/modules/commands.js) call functions in [`task-manager.js`](mdc:scripts/modules/task-manager.js) and [`dependency-manager.js`](mdc:scripts/modules/dependency-manager.js) to perform core task and dependency management logic.
- **UI for Presentation**: [`ui.js`](mdc:scripts/modules/ui.js) is used by command handlers and task/dependency managers to display information to the user. UI functions primarily consume data and format it for output, without modifying core application state.
- **Utilities for Common Tasks**: [`utils.js`](mdc:scripts/modules/utils.js) provides helper functions used by all other modules for configuration, logging, file operations, and common data manipulations.
- **AI Services Integration**: AI functionalities (complexity analysis, task expansion, PRD parsing) are invoked from [`task-manager.js`](mdc:scripts/modules/task-manager.js) and potentially [`commands.js`](mdc:scripts/modules/commands.js), likely using functions that would reside in a dedicated `ai-services.js` module or be integrated within `utils.js` or `task-manager.js`.
- **MCP Server Interaction**: External tools interact with the `mcp-server`, which then calls direct function wrappers in `task-master-core.js` or falls back to `executeTaskMasterCommand`. Responses are formatted by `mcp-server/src/tools/utils.js`. See [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc) for details.
- **Testing Architecture**:
@@ -231,56 +164,3 @@ By following these patterns consistently, direct functions will properly manage
- **Clarity**: The modular structure provides a clear separation of concerns, making the codebase easier to navigate and understand for developers.
This architectural overview should help AI models understand the structure and organization of the Task Master CLI codebase, enabling them to more effectively assist with code generation, modification, and understanding.
## Implementing MCP Support for a Command
Follow these steps to add MCP support for an existing Task Master command (see [`new_features.mdc`](mdc:.cursor/rules/new_features.mdc) for more detail):
1. **Ensure Core Logic Exists**: Verify the core functionality is implemented and exported from the relevant module in `scripts/modules/`.
2. **Create Direct Function File in `mcp-server/src/core/direct-functions/`:**
- Create a new file (e.g., `your-command.js`) using **kebab-case** naming.
- Import necessary core functions, **`findTasksJsonPath` from `../utils/path-utils.js`**, and **silent mode utilities**.
- Implement `async function yourCommandDirect(args, log)` using **camelCase** with `Direct` suffix:
- **Path Resolution**: Obtain the tasks file path using `const tasksPath = findTasksJsonPath(args, log);`. This relies on `args.projectRoot` being provided.
- Parse other `args` and perform necessary validation.
- **Implement Silent Mode**: Wrap core function calls with `enableSilentMode()` and `disableSilentMode()`.
- Implement caching with `getCachedOrExecute` if applicable.
- Call core logic.
- Return `{ success: true/false, data/error, fromCache: boolean }`.
- Export the wrapper function.
3. **Update `task-master-core.js` with Import/Export**: Add imports/exports for the new `*Direct` function.
4. **Create MCP Tool (`mcp-server/src/tools/`)**:
- Create a new file (e.g., `your-command.js`) using **kebab-case**.
- Import `zod`, `handleApiResult`, **`getProjectRootFromSession`**, and your `yourCommandDirect` function.
- Implement `registerYourCommandTool(server)`.
- **Define parameters, making `projectRoot` optional**: `projectRoot: z.string().optional().describe(...)`.
- Consider if this operation should run in the background using `AsyncOperationManager`.
- Implement the standard `execute` method:
- Get `rootFolder` using `getProjectRootFromSession` (with fallback to `args.projectRoot`).
- Call `yourCommandDirect({ ...args, projectRoot: rootFolder }, log)` or use `asyncOperationManager.addOperation`.
- Pass the result to `handleApiResult`.
5. **Register Tool**: Import and call `registerYourCommandTool` in `mcp-server/src/tools/index.js`.
6. **Update `mcp.json`**: Add the new tool definition.
## Project Initialization
The `initialize_project` command provides a way to set up a new Task Master project:
- **CLI Command**: `task-master init`
- **MCP Tool**: `initialize_project`
- **Functionality**:
- Creates necessary directories and files for a new project
- Sets up `tasks.json` and initial task files
- Configures project metadata (name, description, version)
- Handles shell alias creation if requested
- Works in both interactive and non-interactive modes
- Creates necessary directories and files for a new project
- Sets up `tasks.json` and initial task files
- Configures project metadata (name, description, version)
- Handles shell alias creation if requested
- Works in both interactive and non-interactive modes

View File

@@ -1,105 +0,0 @@
---
description: Guidelines for using Changesets (npm run changeset) to manage versioning and changelogs.
alwaysApply: true
---
# Changesets Workflow Guidelines
Changesets is used to manage package versioning and generate accurate `CHANGELOG.md` files automatically. It's crucial to use it correctly after making meaningful changes that affect the package from an external perspective or significantly impact internal development workflow documented elsewhere.
## When to Run Changeset
- Run `npm run changeset` (or `npx changeset add`) **after** you have staged (`git add .`) a logical set of changes that should be communicated in the next release's `CHANGELOG.md`.
- This typically includes:
- **New Features** (Backward-compatible additions)
- **Bug Fixes** (Fixes to existing functionality)
- **Breaking Changes** (Changes that are not backward-compatible)
- **Performance Improvements** (Enhancements to speed or resource usage)
- **Significant Refactoring** (Major code restructuring, even if external behavior is unchanged, as it might affect stability or maintainability) - *Such as reorganizing the MCP server's direct function implementations into separate files*
- **User-Facing Documentation Updates** (Changes to README, usage guides, public API docs)
- **Dependency Updates** (Especially if they fix known issues or introduce significant changes)
- **Build/Tooling Changes** (If they affect how consumers might build or interact with the package)
- **Every Pull Request** containing one or more of the above change types **should include a changeset file**.
## What NOT to Add a Changeset For
Avoid creating changesets for changes that have **no impact or relevance to external consumers** of the `task-master` package or contributors following **public-facing documentation**. Examples include:
- **Internal Documentation Updates:** Changes *only* to files within `.cursor/rules/` that solely guide internal development practices for this specific repository.
- **Trivial Chores:** Very minor code cleanup, adding comments that don't clarify behavior, typo fixes in non-user-facing code or internal docs.
- **Non-Impactful Test Updates:** Minor refactoring of tests, adding tests for existing functionality without fixing bugs.
- **Local Configuration Changes:** Updates to personal editor settings, local `.env` files, etc.
**Rule of Thumb:** If a user installing or using the `task-master` package wouldn't care about the change, or if a contributor following the main README wouldn't need to know about it for their workflow, you likely don't need a changeset.
## How to Run and What It Asks
1. **Run the command**:
```bash
npm run changeset
# or
npx changeset add
```
2. **Select Packages**: It will prompt you to select the package(s) affected by your changes using arrow keys and spacebar. If this is not a monorepo, select the main package.
3. **Select Bump Type**: Choose the appropriate semantic version bump for **each** selected package:
* **`Major`**: For **breaking changes**. Use sparingly.
* **`Minor`**: For **new features**.
* **`Patch`**: For **bug fixes**, performance improvements, **user-facing documentation changes**, significant refactoring, relevant dependency updates, or impactful build/tooling changes.
4. **Enter Summary**: Provide a concise summary of the changes **for the `CHANGELOG.md`**.
* **Purpose**: This message is user-facing and explains *what* changed in the release.
* **Format**: Use the imperative mood (e.g., "Add feature X", "Fix bug Y", "Update README setup instructions"). Keep it brief, typically a single line.
* **Audience**: Think about users installing/updating the package or developers consuming its public API/CLI.
* **Not a Git Commit Message**: This summary is *different* from your detailed Git commit message.
## Changeset Summary vs. Git Commit Message
- **Changeset Summary**:
- **Audience**: Users/Consumers of the package (reads `CHANGELOG.md`).
- **Purpose**: Briefly describe *what* changed in the released version that is relevant to them.
- **Format**: Concise, imperative mood, single line usually sufficient.
- **Example**: `Fix dependency resolution bug in 'next' command.`
- **Git Commit Message**:
- **Audience**: Developers browsing the Git history of *this* repository.
- **Purpose**: Explain *why* the change was made, the context, and the implementation details (can include internal context).
- **Format**: Follows commit conventions (e.g., Conventional Commits), can be multi-line with a subject and body.
- **Example**:
```
fix(deps): Correct dependency lookup in 'next' command
The logic previously failed to account for subtask dependencies when
determining the next available task. This commit refactors the
dependency check in `findNextTask` within `task-manager.js` to
correctly traverse both direct and subtask dependencies. Added
unit tests to cover this specific scenario.
```
- ✅ **DO**: Provide *both* a concise changeset summary (when appropriate) *and* a detailed Git commit message.
- ❌ **DON'T**: Use your detailed Git commit message body as the changeset summary.
- ❌ **DON'T**: Skip running `changeset` for user-relevant changes just because you wrote a good commit message.
## The `.changeset` File
- Running the command creates a unique markdown file in the `.changeset/` directory (e.g., `.changeset/random-name.md`).
- This file contains the bump type information and the summary you provided.
- **This file MUST be staged and committed** along with your relevant code changes.
## Standard Workflow Sequence (When a Changeset is Needed)
1. Make your code or relevant documentation changes.
2. Stage your changes: `git add .`
3. Run changeset: `npm run changeset`
* Select package(s).
* Select bump type (`Patch`, `Minor`, `Major`).
* Enter the **concise summary** for the changelog.
4. Stage the generated changeset file: `git add .changeset/*.md`
5. Commit all staged changes (code + changeset file) using your **detailed Git commit message**:
```bash
git commit -m "feat(module): Add new feature X..."
```
## Release Process (Context)
- The generated `.changeset/*.md` files are consumed later during the release process.
- Commands like `changeset version` read these files, update `package.json` versions, update the `CHANGELOG.md`, and delete the individual changeset files.
- Commands like `changeset publish` then publish the new versions to npm.
Following this workflow ensures that versioning is consistent and changelogs are automatically and accurately generated based on the contributions made.

View File

@@ -6,16 +6,6 @@ alwaysApply: false
# Command-Line Interface Implementation Guidelines
**Note on Interaction Method:**
While this document details the implementation of Task Master's **CLI commands**, the **preferred method for interacting with Task Master in integrated environments (like Cursor) is through the MCP server tools**.
- **Use MCP Tools First**: Always prefer using the MCP tools (e.g., `get_tasks`, `add_task`) when interacting programmatically or via an integrated tool. They offer better performance, structured data, and richer error handling. See [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc) for a comprehensive list of MCP tools and their corresponding CLI commands.
- **CLI as Fallback/User Interface**: The `task-master` CLI commands described here are primarily intended for:
- Direct user interaction in the terminal.
- A fallback mechanism if the MCP server is unavailable or a specific functionality is not exposed via an MCP tool.
- **Implementation Context**: This document (`commands.mdc`) focuses on the standards for *implementing* the CLI commands using Commander.js within the [`commands.js`](mdc:scripts/modules/commands.js) module.
## Command Structure Standards
- **Basic Command Template**:
@@ -24,7 +14,7 @@ While this document details the implementation of Task Master's **CLI commands**
programInstance
.command('command-name')
.description('Clear, concise description of what the command does')
.option('-o, --option <value>', 'Option description', 'default value')
.option('-s, --short-option <value>', 'Option description', 'default value')
.option('--long-option <value>', 'Option description')
.action(async (options) => {
// Command implementation
@@ -34,130 +24,9 @@ While this document details the implementation of Task Master's **CLI commands**
- **Command Handler Organization**:
- ✅ DO: Keep action handlers concise and focused
- ✅ DO: Extract core functionality to appropriate modules
- ✅ DO: Have the action handler import and call the relevant functions from core modules, like `task-manager.js` or `init.js`, passing the parsed `options`.
- ✅ DO: Perform basic parameter validation, such as checking for required options, within the action handler or at the start of the called core function.
- ✅ DO: Include validation for required parameters
- ❌ DON'T: Implement business logic in command handlers
## Best Practices for Removal/Delete Commands
When implementing commands that delete or remove data (like `remove-task` or `remove-subtask`), follow these specific guidelines:
- **Confirmation Prompts**:
- ✅ **DO**: Include a confirmation prompt by default for destructive operations
- ✅ **DO**: Provide a `--yes` or `-y` flag to skip confirmation, useful for scripting or automation
- ✅ **DO**: Show what will be deleted in the confirmation message
- ❌ **DON'T**: Perform destructive operations without user confirmation unless explicitly overridden
```javascript
// ✅ DO: Include confirmation for destructive operations
programInstance
.command('remove-task')
.description('Remove a task or subtask permanently')
.option('-i, --id <id>', 'ID of the task to remove')
.option('-y, --yes', 'Skip confirmation prompt', false)
.action(async (options) => {
// Validation code...
if (!options.yes) {
const confirm = await inquirer.prompt([{
type: 'confirm',
name: 'proceed',
message: `Are you sure you want to permanently delete task ${taskId}? This cannot be undone.`,
default: false
}]);
if (!confirm.proceed) {
console.log(chalk.yellow('Operation cancelled.'));
return;
}
}
// Proceed with removal...
});
```
- **File Path Handling**:
- ✅ **DO**: Use `path.join()` to construct file paths
- ✅ **DO**: Follow established naming conventions for tasks, like `task_001.txt`
- ✅ **DO**: Check if files exist before attempting to delete them
- ✅ **DO**: Handle file deletion errors gracefully
- ❌ **DON'T**: Construct paths with string concatenation
```javascript
// ✅ DO: Properly construct file paths
const taskFilePath = path.join(
path.dirname(tasksPath),
`task_${taskId.toString().padStart(3, '0')}.txt`
);
// ✅ DO: Check existence before deletion
if (fs.existsSync(taskFilePath)) {
try {
fs.unlinkSync(taskFilePath);
console.log(chalk.green(`Task file deleted: ${taskFilePath}`));
} catch (error) {
console.warn(chalk.yellow(`Could not delete task file: ${error.message}`));
}
}
```
- **Clean Up References**:
- ✅ **DO**: Clean up references to the deleted item in other parts of the data
- ✅ **DO**: Handle both direct and indirect references
- ✅ **DO**: Explain what related data is being updated
- ❌ **DON'T**: Leave dangling references
```javascript
// ✅ DO: Clean up references when deleting items
console.log(chalk.blue('Cleaning up task dependencies...'));
let referencesRemoved = 0;
// Update dependencies in other tasks
data.tasks.forEach(task => {
if (task.dependencies && task.dependencies.includes(taskId)) {
task.dependencies = task.dependencies.filter(depId => depId !== taskId);
referencesRemoved++;
}
});
if (referencesRemoved > 0) {
console.log(chalk.green(`Removed ${referencesRemoved} references to task ${taskId} from other tasks`));
}
```
- **Task File Regeneration**:
- ✅ **DO**: Regenerate task files after destructive operations
- ✅ **DO**: Pass all required parameters to generation functions
- ✅ **DO**: Provide an option to skip regeneration if needed
- ❌ **DON'T**: Assume default parameters will work
```javascript
// ✅ DO: Properly regenerate files after deletion
if (!options.skipGenerate) {
console.log(chalk.blue('Regenerating task files...'));
try {
// Note both parameters are explicitly provided
await generateTaskFiles(tasksPath, path.dirname(tasksPath));
console.log(chalk.green('Task files regenerated successfully'));
} catch (error) {
console.warn(chalk.yellow(`Warning: Could not regenerate task files: ${error.message}`));
}
}
```
- **Alternative Suggestions**:
- ✅ **DO**: Suggest non-destructive alternatives when appropriate
- ✅ **DO**: Explain the difference between deletion and status changes
- ✅ **DO**: Include examples of alternative commands
```javascript
// ✅ DO: Suggest alternatives for destructive operations
console.log(chalk.yellow('Note: If you just want to exclude this task from active work, consider:'));
console.log(chalk.cyan(` task-master set-status --id='${taskId}' --status='cancelled'`));
console.log(chalk.cyan(` task-master set-status --id='${taskId}' --status='deferred'`));
console.log('This preserves the task and its history for reference.');
```
## Option Naming Conventions
- **Command Names**:
@@ -166,10 +35,10 @@ When implementing commands that delete or remove data (like `remove-task` or `re
- ✅ DO: Use descriptive, action-oriented names
- **Option Names**:
- ✅ DO: Use kebab-case for long-form option names, like `--output-format`
- ✅ DO: Provide single-letter shortcuts when appropriate, like `-f, --file`
- ✅ DO: Use kebab-case for long-form option names (`--output-format`)
- ✅ DO: Provide single-letter shortcuts when appropriate (`-f, --file`)
- ✅ DO: Use consistent option names across similar commands
- ❌ DON'T: Use different names for the same concept, such as `--file` in one command and `--path` in another
- ❌ DON'T: Use different names for the same concept (`--file` in one command, `--path` in another)
```javascript
// ✅ DO: Use consistent option naming
@@ -181,7 +50,7 @@ When implementing commands that delete or remove data (like `remove-task` or `re
.option('-p, --path <dir>', 'Output directory') // Should be --output
```
> **Note**: Although options are defined with kebab-case, like `--num-tasks`, Commander.js stores them internally as camelCase properties. Access them in code as `options.numTasks`, not `options['num-tasks']`.
> **Note**: Although options are defined with kebab-case (`--num-tasks`), Commander.js stores them internally as camelCase properties. Access them in code as `options.numTasks`, not `options['num-tasks']`.
- **Boolean Flag Conventions**:
- ✅ DO: Use positive flags with `--skip-` prefix for disabling behavior
@@ -210,7 +79,7 @@ When implementing commands that delete or remove data (like `remove-task` or `re
- **Required Parameters**:
- ✅ DO: Check that required parameters are provided
- ✅ DO: Provide clear error messages when parameters are missing
- ✅ DO: Use early returns with `process.exit(1)` for validation failures
- ✅ DO: Use early returns with process.exit(1) for validation failures
```javascript
// ✅ DO: Validate required parameters early
@@ -221,7 +90,7 @@ When implementing commands that delete or remove data (like `remove-task` or `re
```
- **Parameter Type Conversion**:
- ✅ DO: Convert string inputs to appropriate types, such as numbers or booleans
- ✅ DO: Convert string inputs to appropriate types (numbers, booleans)
- ✅ DO: Handle conversion errors gracefully
```javascript
@@ -254,7 +123,7 @@ When implementing commands that delete or remove data (like `remove-task` or `re
const taskId = parseInt(options.id, 10);
if (isNaN(taskId) || taskId <= 0) {
console.error(chalk.red(`Error: Invalid task ID: ${options.id}. Task ID must be a positive integer.`));
console.log(chalk.yellow("Usage example: task-master update-task --id='23' --prompt='Update with new information.\\nEnsure proper error handling.'"));
console.log(chalk.yellow('Usage example: task-master update-task --id=23 --prompt="Update with new information"'));
process.exit(1);
}
@@ -300,8 +169,8 @@ When implementing commands that delete or remove data (like `remove-task` or `re
(dependencies.length > 0 ? chalk.white(`Dependencies: ${dependencies.join(', ')}`) + '\n' : '') +
'\n' +
chalk.white.bold('Next Steps:') + '\n' +
chalk.cyan(`1. Run ${chalk.yellow(`task-master show '${parentId}'`)} to see the parent task with all subtasks`) + '\n' +
chalk.cyan(`2. Run ${chalk.yellow(`task-master set-status --id='${parentId}.${subtask.id}' --status='in-progress'`)} to start working on it`),
chalk.cyan(`1. Run ${chalk.yellow(`task-master show ${parentId}`)} to see the parent task with all subtasks`) + '\n' +
chalk.cyan(`2. Run ${chalk.yellow(`task-master set-status --id=${parentId}.${subtask.id} --status=in-progress`)} to start working on it`),
{ padding: 1, borderColor: 'green', borderStyle: 'round', margin: { top: 1 } }
));
```
@@ -329,60 +198,6 @@ When implementing commands that delete or remove data (like `remove-task` or `re
};
```
## Context-Aware Command Pattern
For AI-powered commands that benefit from project context, follow the research command pattern:
- **Context Integration**:
- ✅ DO: Use `ContextGatherer` utility for multi-source context extraction
- ✅ DO: Support task IDs, file paths, custom context, and project tree
- ✅ DO: Implement fuzzy search for automatic task discovery
- ✅ DO: Display detailed token breakdown for transparency
```javascript
// ✅ DO: Follow this pattern for context-aware commands
programInstance
.command('research')
.description('Perform AI-powered research queries with project context')
.argument('<prompt>', 'Research prompt to investigate')
.option('-i, --id <ids>', 'Comma-separated task/subtask IDs to include as context')
.option('-f, --files <paths>', 'Comma-separated file paths to include as context')
.option('-c, --context <text>', 'Additional custom context')
.option('--tree', 'Include project file tree structure')
.option('-d, --detail <level>', 'Output detail level: low, medium, high', 'medium')
.action(async (prompt, options) => {
// 1. Parameter validation and parsing
const taskIds = options.id ? parseTaskIds(options.id) : [];
const filePaths = options.files ? parseFilePaths(options.files) : [];
// 2. Initialize context gatherer
const projectRoot = findProjectRoot() || '.';
const gatherer = new ContextGatherer(projectRoot, tasksPath);
// 3. Auto-discover relevant tasks if none specified
if (taskIds.length === 0) {
const fuzzySearch = new FuzzyTaskSearch(tasksData.tasks, 'research');
const discoveredIds = fuzzySearch.getTaskIds(
fuzzySearch.findRelevantTasks(prompt)
);
taskIds.push(...discoveredIds);
}
// 4. Gather context with token breakdown
const contextResult = await gatherer.gather({
tasks: taskIds,
files: filePaths,
customContext: options.context,
includeProjectTree: options.projectTree,
format: 'research',
includeTokenCounts: true
});
// 5. Display token breakdown and execute AI call
// Implementation continues...
});
```
## Error Handling
- **Exception Management**:
@@ -430,7 +245,7 @@ For AI-powered commands that benefit from project context, follow the research c
' --option1 <value> Description of option1 (required)\n' +
' --option2 <value> Description of option2\n\n' +
chalk.cyan('Examples:') + '\n' +
' task-master command --option1=\'value1\' --option2=\'value2\'',
' task-master command --option1=value --option2=value',
{ padding: 1, borderColor: 'blue', borderStyle: 'round' }
));
}
@@ -446,9 +261,9 @@ For AI-powered commands that benefit from project context, follow the research c
process.on('uncaughtException', (err) => {
// Handle Commander-specific errors
if (err.code === 'commander.unknownOption') {
const option = err.message.match(/'([^']+)'/)?.[1]; // Safely extract option name
const option = err.message.match(/'([^']+)'/)?.[1];
console.error(chalk.red(`Error: Unknown option '${option}'`));
console.error(chalk.yellow("Run 'task-master <command> --help' to see available options"));
console.error(chalk.yellow(`Run 'task-master <command> --help' to see available options`));
process.exit(1);
}
@@ -473,7 +288,7 @@ For AI-powered commands that benefit from project context, follow the research c
// Provide more helpful error messages for common issues
if (error.message.includes('task') && error.message.includes('not found')) {
console.log(chalk.yellow('\nTo fix this issue:'));
console.log(' 1. Run \'task-master list\' to see all available task IDs');
console.log(' 1. Run task-master list to see all available task IDs');
console.log(' 2. Use a valid task ID with the --id parameter');
} else if (error.message.includes('API key')) {
console.log(chalk.yellow('\nThis error is related to API keys. Check your environment variables.'));
@@ -518,9 +333,9 @@ For AI-powered commands that benefit from project context, follow the research c
.option('-f, --file <path>', 'Path to the tasks file', 'tasks/tasks.json')
.option('-p, --parent <id>', 'ID of the parent task (required)')
.option('-i, --task-id <id>', 'Existing task ID to convert to subtask')
.option('-t, --title <title>', 'Title for the new subtask, required if not converting')
.option('-d, --description <description>', 'Description for the new subtask, optional')
.option('--details <details>', 'Implementation details for the new subtask, optional')
.option('-t, --title <title>', 'Title for the new subtask (when not converting)')
.option('-d, --description <description>', 'Description for the new subtask (when not converting)')
.option('--details <details>', 'Implementation details for the new subtask (when not converting)')
.option('--dependencies <ids>', 'Comma-separated list of subtask IDs this subtask depends on')
.option('--status <status>', 'Initial status for the subtask', 'pending')
.option('--skip-generate', 'Skip regenerating task files')
@@ -543,8 +358,8 @@ For AI-powered commands that benefit from project context, follow the research c
.command('remove-subtask')
.description('Remove a subtask from its parent task, optionally converting it to a standalone task')
.option('-f, --file <path>', 'Path to the tasks file', 'tasks/tasks.json')
.option('-i, --id <id>', 'ID of the subtask to remove in format parentId.subtaskId, required')
.option('-c, --convert', 'Convert the subtask to a standalone task instead of deleting')
.option('-i, --id <id>', 'ID of the subtask to remove in format "parentId.subtaskId" (required)')
.option('-c, --convert', 'Convert the subtask to a standalone task')
.option('--skip-generate', 'Skip regenerating task files')
.action(async (options) => {
// Implementation with detailed error handling
@@ -567,8 +382,7 @@ For AI-powered commands that benefit from project context, follow the research c
// ✅ DO: Implement version checking function
async function checkForUpdate() {
// Implementation details...
// Example return structure:
return { currentVersion, latestVersion, updateAvailable };
return { currentVersion, latestVersion, needsUpdate };
}
// ✅ DO: Implement semantic version comparison
@@ -608,7 +422,7 @@ For AI-powered commands that benefit from project context, follow the research c
// After command execution, check if an update is available
const updateInfo = await updateCheckPromise;
if (updateInfo.updateAvailable) {
if (updateInfo.needsUpdate) {
displayUpgradeNotification(updateInfo.currentVersion, updateInfo.latestVersion);
}
} catch (error) {
@@ -618,45 +432,3 @@ For AI-powered commands that benefit from project context, follow the research c
```
Refer to [`commands.js`](mdc:scripts/modules/commands.js) for implementation examples and [`new_features.mdc`](mdc:.cursor/rules/new_features.mdc) for integration guidelines.
// Helper function to show add-subtask command help
function showAddSubtaskHelp() {
console.log(boxen(
chalk.white.bold('Add Subtask Command Help') + '\n\n' +
chalk.cyan('Usage:') + '\n' +
` task-master add-subtask --parent=<id> [options]\n\n` +
chalk.cyan('Options:') + '\n' +
' -p, --parent <id> Parent task ID (required)\n' +
' -i, --task-id <id> Existing task ID to convert to subtask\n' +
' -t, --title <title> Title for the new subtask\n' +
' -d, --description <text> Description for the new subtask\n' +
' --details <text> Implementation details for the new subtask\n' +
' --dependencies <ids> Comma-separated list of dependency IDs\n' +
' -s, --status <status> Status for the new subtask (default: "pending")\n' +
' -f, --file <file> Path to the tasks file (default: "tasks/tasks.json")\n' +
' --skip-generate Skip regenerating task files\n\n' +
chalk.cyan('Examples:') + '\n' +
' task-master add-subtask --parent=\'5\' --task-id=\'8\'\n' +
' task-master add-subtask -p \'5\' -t \'Implement login UI\' -d \'Create the login form\'\n' +
' task-master add-subtask -p \'5\' -t \'Handle API Errors\' --details $\'Handle 401 Unauthorized.\nHandle 500 Server Error.\'',
{ padding: 1, borderColor: 'blue', borderStyle: 'round' }
));
}
// Helper function to show remove-subtask command help
function showRemoveSubtaskHelp() {
console.log(boxen(
chalk.white.bold('Remove Subtask Command Help') + '\n\n' +
chalk.cyan('Usage:') + '\n' +
` task-master remove-subtask --id=<parentId.subtaskId> [options]\n\n` +
chalk.cyan('Options:') + '\n' +
' -i, --id <id> Subtask ID(s) to remove in format "parentId.subtaskId" (can be comma-separated, required)\n' +
' -c, --convert Convert the subtask to a standalone task instead of deleting it\n' +
' -f, --file <file> Path to the tasks file (default: "tasks/tasks.json")\n' +
' --skip-generate Skip regenerating task files\n\n' +
chalk.cyan('Examples:') + '\n' +
' task-master remove-subtask --id=\'5.2\'\n' +
' task-master remove-subtask --id=\'5.2,6.3,7.1\'\n' +
' task-master remove-subtask --id=\'5.2\' --convert',
{ padding: 1, borderColor: 'blue', borderStyle: 'round' }
));
}

View File

@@ -1,268 +0,0 @@
---
description: Standardized patterns for gathering and processing context from multiple sources in Task Master commands, particularly for AI-powered features.
globs:
alwaysApply: false
---
# Context Gathering Patterns and Utilities
This document outlines the standardized patterns for gathering and processing context from multiple sources in Task Master commands, particularly for AI-powered features.
## Core Context Gathering Utility
The `ContextGatherer` class (`scripts/modules/utils/contextGatherer.js`) provides a centralized, reusable utility for extracting context from multiple sources:
### **Key Features**
- **Multi-source Context**: Tasks, files, custom text, project file tree
- **Token Counting**: Detailed breakdown using `gpt-tokens` library
- **Format Support**: Different output formats (research, chat, system-prompt)
- **Error Handling**: Graceful handling of missing files, invalid task IDs
- **Performance**: File size limits, depth limits for tree generation
### **Usage Pattern**
```javascript
import { ContextGatherer } from '../utils/contextGatherer.js';
// Initialize with project paths
const gatherer = new ContextGatherer(projectRoot, tasksPath);
// Gather context with detailed token breakdown
const result = await gatherer.gather({
tasks: ['15', '16.2'], // Task and subtask IDs
files: ['src/api.js', 'README.md'], // File paths
customContext: 'Additional context text',
includeProjectTree: true, // Include file tree
format: 'research', // Output format
includeTokenCounts: true // Get detailed token breakdown
});
// Access results
const contextString = result.context;
const tokenBreakdown = result.tokenBreakdown;
```
### **Token Breakdown Structure**
```javascript
{
customContext: { tokens: 150, characters: 800 },
tasks: [
{ id: '15', type: 'task', title: 'Task Title', tokens: 245, characters: 1200 },
{ id: '16.2', type: 'subtask', title: 'Subtask Title', tokens: 180, characters: 900 }
],
files: [
{ path: 'src/api.js', tokens: 890, characters: 4500, size: '4.5 KB' }
],
projectTree: { tokens: 320, characters: 1600 },
total: { tokens: 1785, characters: 8000 }
}
```
## Fuzzy Search Integration
The `FuzzyTaskSearch` class (`scripts/modules/utils/fuzzyTaskSearch.js`) provides intelligent task discovery:
### **Key Features**
- **Semantic Matching**: Uses Fuse.js for similarity scoring
- **Purpose Categories**: Pattern-based task categorization
- **Relevance Scoring**: High/medium/low relevance thresholds
- **Context-Aware**: Different search configurations for different use cases
### **Usage Pattern**
```javascript
import { FuzzyTaskSearch } from '../utils/fuzzyTaskSearch.js';
// Initialize with tasks data and context
const fuzzySearch = new FuzzyTaskSearch(tasksData.tasks, 'research');
// Find relevant tasks
const searchResults = fuzzySearch.findRelevantTasks(query, {
maxResults: 8,
includeRecent: true,
includeCategoryMatches: true
});
// Get task IDs for context gathering
const taskIds = fuzzySearch.getTaskIds(searchResults);
```
## Implementation Patterns for Commands
### **1. Context-Aware Command Structure**
```javascript
// In command action handler
async function commandAction(prompt, options) {
// 1. Parameter validation and parsing
const taskIds = options.id ? parseTaskIds(options.id) : [];
const filePaths = options.files ? parseFilePaths(options.files) : [];
// 2. Initialize context gatherer
const projectRoot = findProjectRoot() || '.';
const tasksPath = path.join(projectRoot, 'tasks', 'tasks.json');
const gatherer = new ContextGatherer(projectRoot, tasksPath);
// 3. Auto-discover relevant tasks if none specified
if (taskIds.length === 0) {
const fuzzySearch = new FuzzyTaskSearch(tasksData.tasks, 'research');
const discoveredIds = fuzzySearch.getTaskIds(
fuzzySearch.findRelevantTasks(prompt)
);
taskIds.push(...discoveredIds);
}
// 4. Gather context with token breakdown
const contextResult = await gatherer.gather({
tasks: taskIds,
files: filePaths,
customContext: options.context,
includeProjectTree: options.projectTree,
format: 'research',
includeTokenCounts: true
});
// 5. Display token breakdown (for CLI)
if (outputFormat === 'text') {
displayDetailedTokenBreakdown(contextResult.tokenBreakdown);
}
// 6. Use context in AI call
const aiResult = await generateTextService(role, session, systemPrompt, userPrompt);
// 7. Display results with enhanced formatting
displayResults(aiResult, contextResult.tokenBreakdown);
}
```
### **2. Token Display Pattern**
```javascript
function displayDetailedTokenBreakdown(tokenBreakdown, systemTokens, userTokens) {
const sections = [];
// Build context breakdown
if (tokenBreakdown.tasks?.length > 0) {
const taskDetails = tokenBreakdown.tasks.map(task =>
`${task.type === 'subtask' ? ' ' : ''}${task.id}: ${task.tokens.toLocaleString()}`
).join('\n');
sections.push(`Tasks (${tokenBreakdown.tasks.reduce((sum, t) => sum + t.tokens, 0).toLocaleString()}):\n${taskDetails}`);
}
if (tokenBreakdown.files?.length > 0) {
const fileDetails = tokenBreakdown.files.map(file =>
` ${file.path}: ${file.tokens.toLocaleString()} (${file.size})`
).join('\n');
sections.push(`Files (${tokenBreakdown.files.reduce((sum, f) => sum + f.tokens, 0).toLocaleString()}):\n${fileDetails}`);
}
// Add prompts breakdown
sections.push(`Prompts: system ${systemTokens.toLocaleString()}, user ${userTokens.toLocaleString()}`);
// Display in clean box
const content = sections.join('\n\n');
console.log(boxen(content, {
title: chalk.cyan('Token Usage'),
padding: { top: 1, bottom: 1, left: 2, right: 2 },
borderStyle: 'round',
borderColor: 'cyan'
}));
}
```
### **3. Enhanced Result Display Pattern**
```javascript
function displayResults(result, query, detailLevel, tokenBreakdown) {
// Header with query info
const header = boxen(
chalk.green.bold('Research Results') + '\n\n' +
chalk.gray('Query: ') + chalk.white(query) + '\n' +
chalk.gray('Detail Level: ') + chalk.cyan(detailLevel),
{
padding: { top: 1, bottom: 1, left: 2, right: 2 },
margin: { top: 1, bottom: 0 },
borderStyle: 'round',
borderColor: 'green'
}
);
console.log(header);
// Process and highlight code blocks
const processedResult = processCodeBlocks(result);
// Main content in clean box
const contentBox = boxen(processedResult, {
padding: { top: 1, bottom: 1, left: 2, right: 2 },
margin: { top: 0, bottom: 1 },
borderStyle: 'single',
borderColor: 'gray'
});
console.log(contentBox);
console.log(chalk.green('✓ Research complete'));
}
```
## Code Block Enhancement
### **Syntax Highlighting Pattern**
```javascript
import { highlight } from 'cli-highlight';
function processCodeBlocks(text) {
return text.replace(/```(\w+)?\n([\s\S]*?)```/g, (match, language, code) => {
try {
const highlighted = highlight(code.trim(), {
language: language || 'javascript',
theme: 'default'
});
return `\n${highlighted}\n`;
} catch (error) {
return `\n${code.trim()}\n`;
}
});
}
```
## Integration Guidelines
### **When to Use Context Gathering**
- ✅ **DO**: Use for AI-powered commands that benefit from project context
- ✅ **DO**: Use when users might want to reference specific tasks or files
- ✅ **DO**: Use for research, analysis, or generation commands
- ❌ **DON'T**: Use for simple CRUD operations that don't need AI context
### **Performance Considerations**
- ✅ **DO**: Set reasonable file size limits (50KB default)
- ✅ **DO**: Limit project tree depth (3-5 levels)
- ✅ **DO**: Provide token counts to help users understand context size
- ✅ **DO**: Allow users to control what context is included
### **Error Handling**
- ✅ **DO**: Gracefully handle missing files with warnings
- ✅ **DO**: Validate task IDs and provide helpful error messages
- ✅ **DO**: Continue processing even if some context sources fail
- ✅ **DO**: Provide fallback behavior when context gathering fails
### **Future Command Integration**
Commands that should consider adopting this pattern:
- `analyze-complexity` - Could benefit from file context
- `expand-task` - Could use related task context
- `update-task` - Could reference similar tasks for consistency
- `add-task` - Could use project context for better task generation
## Export Patterns
### **Context Gatherer Module**
```javascript
export {
ContextGatherer,
createContextGatherer // Factory function
};
```
### **Fuzzy Search Module**
```javascript
export {
FuzzyTaskSearch,
PURPOSE_CATEGORIES,
RELEVANCE_THRESHOLDS
};
```
This context gathering system provides a foundation for building more intelligent, context-aware commands that can leverage project knowledge to provide better AI-powered assistance.

View File

@@ -1,130 +1,223 @@
---
description: Guide for using Task Master to manage task-driven development workflows
description: Guide for using meta-development script (scripts/dev.js) to manage task-driven development workflows
globs: **/*
alwaysApply: true
---
# Task Master Development Workflow
This guide outlines the typical process for using Task Master to manage software development projects.
- **Global CLI Commands**
- Task Master now provides a global CLI through the `task-master` command (See [`commands.mdc`](mdc:.cursor/rules/commands.mdc) for details)
- All functionality from `scripts/dev.js` is available through this interface
- Install globally with `npm install -g claude-task-master` or use locally via `npx`
- Use `task-master <command>` instead of `node scripts/dev.js <command>`
- Examples:
- `task-master list`
- `task-master next`
- `task-master expand --id=3`
- All commands accept the same options as their script equivalents
- The CLI (`task-master`) is the **primary** way for users to interact with the application.
## Primary Interaction: MCP Server vs. CLI
Task Master offers two primary ways to interact:
1. **MCP Server (Recommended for Integrated Tools)**:
- For AI agents and integrated development environments (like Cursor), interacting via the **MCP server is the preferred method**.
- The MCP server exposes Task Master functionality through a set of tools (e.g., `get_tasks`, `add_subtask`).
- This method offers better performance, structured data exchange, and richer error handling compared to CLI parsing.
- Refer to [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc) for details on the MCP architecture and available tools.
- A comprehensive list and description of MCP tools and their corresponding CLI commands can be found in [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc).
- **Restart the MCP server** if core logic in `scripts/modules` or MCP tool/direct function definitions change.
2. **`task-master` CLI (For Users & Fallback)**:
- The global `task-master` command provides a user-friendly interface for direct terminal interaction.
- It can also serve as a fallback if the MCP server is inaccessible or a specific function isn't exposed via MCP.
- Install globally with `npm install -g task-master-ai` or use locally via `npx task-master-ai ...`.
- The CLI commands often mirror the MCP tools (e.g., `task-master list` corresponds to `get_tasks`).
- Refer to [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc) for a detailed command reference.
## Standard Development Workflow Process
- Start new projects by running `initialize_project` tool / `task-master init` or `parse_prd` / `task-master parse-prd --input='<prd-file.txt>'` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to generate initial tasks.json
- Begin coding sessions with `get_tasks` / `task-master list` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to see current tasks, status, and IDs
- Determine the next task to work on using `next_task` / `task-master next` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)).
- Analyze task complexity with `analyze_project_complexity` / `task-master analyze-complexity --research` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) before breaking down tasks
- Review complexity report using `complexity_report` / `task-master complexity-report` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)).
- **Development Workflow Process**
- Start new projects by running `task-master init` or `node scripts/dev.js parse-prd --input=<prd-file.txt>` to generate initial tasks.json
- Begin coding sessions with `task-master list` to see current tasks, status, and IDs
- Analyze task complexity with `task-master analyze-complexity --research` before breaking down tasks
- Select tasks based on dependencies (all marked 'done'), priority level, and ID order
- Clarify tasks by checking task files in tasks/ directory or asking for user input
- View specific task details using `get_task` / `task-master show <id>` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to understand implementation requirements
- Break down complex tasks using `expand_task` / `task-master expand --id=<id> --force --research` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) with appropriate flags like `--force` (to replace existing subtasks) and `--research`.
- Clear existing subtasks if needed using `clear_subtasks` / `task-master clear-subtasks --id=<id>` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) before regenerating
- View specific task details using `task-master show <id>` to understand implementation requirements
- Break down complex tasks using `task-master expand --id=<id>` with appropriate flags
- Clear existing subtasks if needed using `task-master clear-subtasks --id=<id>` before regenerating
- Implement code following task details, dependencies, and project standards
- Verify tasks according to test strategies before marking as complete (See [`tests.mdc`](mdc:.cursor/rules/tests.mdc))
- Mark completed tasks with `set_task_status` / `task-master set-status --id=<id> --status=done` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc))
- Update dependent tasks when implementation differs from original plan using `update` / `task-master update --from=<id> --prompt="..."` or `update_task` / `task-master update-task --id=<id> --prompt="..."` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc))
- Add new tasks discovered during implementation using `add_task` / `task-master add-task --prompt="..." --research` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)).
- Add new subtasks as needed using `add_subtask` / `task-master add-subtask --parent=<id> --title="..."` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)).
- Append notes or details to subtasks using `update_subtask` / `task-master update-subtask --id=<subtaskId> --prompt='Add implementation notes here...\nMore details...'` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)).
- Generate task files with `generate` / `task-master generate` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) after updating tasks.json
- Maintain valid dependency structure with `add_dependency`/`remove_dependency` tools or `task-master add-dependency`/`remove-dependency` commands, `validate_dependencies` / `task-master validate-dependencies`, and `fix_dependencies` / `task-master fix-dependencies` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) when needed
- Verify tasks according to test strategies before marking as complete
- Mark completed tasks with `task-master set-status --id=<id> --status=done`
- Update dependent tasks when implementation differs from original plan
- Generate task files with `task-master generate` after updating tasks.json
- Maintain valid dependency structure with `task-master fix-dependencies` when needed
- Respect dependency chains and task priorities when selecting work
- Report progress regularly using `get_tasks` / `task-master list`
- Reorganize tasks as needed using `move_task` / `task-master move --from=<id> --to=<id>` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to change task hierarchy or ordering
- **MCP Server**: For integrations (like Cursor), interact via the MCP server which prefers direct function calls. Restart the MCP server if core logic in `scripts/modules` changes. See [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc).
- Report progress regularly using the list command
## Task Complexity Analysis
- Run `analyze_project_complexity` / `task-master analyze-complexity --research` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) for comprehensive analysis
- Review complexity report via `complexity_report` / `task-master complexity-report` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) for a formatted, readable version.
- **Task Complexity Analysis**
- Run `node scripts/dev.js analyze-complexity --research` for comprehensive analysis
- Review complexity report in scripts/task-complexity-report.json
- Or use `node scripts/dev.js complexity-report` for a formatted, readable version of the report
- Focus on tasks with highest complexity scores (8-10) for detailed breakdown
- Use analysis results to determine appropriate subtask allocation
- Note that reports are automatically used by the `expand_task` tool/command
- Note that reports are automatically used by the expand command
## Task Breakdown Process
- Use `expand_task` / `task-master expand --id=<id>`. It automatically uses the complexity report if found, otherwise generates default number of subtasks.
- Use `--num=<number>` to specify an explicit number of subtasks, overriding defaults or complexity report recommendations.
- Add `--research` flag to leverage Perplexity AI for research-backed expansion.
- Add `--force` flag to clear existing subtasks before generating new ones (default is to append).
- Use `--prompt="<context>"` to provide additional context when needed.
- Review and adjust generated subtasks as necessary.
- Use `expand_all` tool or `task-master expand --all` to expand multiple pending tasks at once, respecting flags like `--force` and `--research`.
- If subtasks need complete replacement (regardless of the `--force` flag on `expand`), clear them first with `clear_subtasks` / `task-master clear-subtasks --id=<id>`.
## Implementation Drift Handling
- **Task Breakdown Process**
- For tasks with complexity analysis, use `node scripts/dev.js expand --id=<id>`
- Otherwise use `node scripts/dev.js expand --id=<id> --subtasks=<number>`
- Add `--research` flag to leverage Perplexity AI for research-backed expansion
- Use `--prompt="<context>"` to provide additional context when needed
- Review and adjust generated subtasks as necessary
- Use `--all` flag to expand multiple pending tasks at once
- If subtasks need regeneration, clear them first with `clear-subtasks` command (See Command Reference below)
- **Implementation Drift Handling**
- When implementation differs significantly from planned approach
- When future tasks need modification due to current implementation choices
- When new dependencies or requirements emerge
- Use `update` / `task-master update --from=<futureTaskId> --prompt='<explanation>\nUpdate context...' --research` to update multiple future tasks.
- Use `update_task` / `task-master update-task --id=<taskId> --prompt='<explanation>\nUpdate context...' --research` to update a single specific task.
## Task Status Management
- Call `node scripts/dev.js update --from=<futureTaskId> --prompt="<explanation>"` to update tasks.json
- **Task Status Management**
- Use 'pending' for tasks ready to be worked on
- Use 'done' for completed and verified tasks
- Use 'deferred' for postponed tasks
- Add custom status values as needed for project-specific workflows
## Task Structure Fields
- **Task File Format Reference**
```
# Task ID: <id>
# Title: <title>
# Status: <status>
# Dependencies: <comma-separated list of dependency IDs>
# Priority: <priority>
# Description: <brief description>
# Details:
<detailed implementation notes>
- **id**: Unique identifier for the task (Example: `1`, `1.1`)
# Test Strategy:
<verification approach>
```
- **Command Reference: parse-prd**
- CLI Syntax: `task-master parse-prd --input=<prd-file.txt>`
- Description: Parses a PRD document and generates a `tasks.json` file with structured tasks
- Parameters:
- `--input=<file>`: Path to the PRD text file (default: sample-prd.txt)
- Example: `task-master parse-prd --input=requirements.txt`
- Notes: Will overwrite existing tasks.json file. Use with caution.
- **Command Reference: update**
- CLI Syntax: `task-master update --from=<id> --prompt="<prompt>"`
- Description: Updates tasks with ID >= specified ID based on the provided prompt
- Parameters:
- `--from=<id>`: Task ID from which to start updating (required)
- `--prompt="<text>"`: Explanation of changes or new context (required)
- Example: `task-master update --from=4 --prompt="Now we are using Express instead of Fastify."`
- Notes: Only updates tasks not marked as 'done'. Completed tasks remain unchanged.
- **Command Reference: update-task**
- CLI Syntax: `task-master update-task --id=<id> --prompt="<prompt>"`
- Description: Updates a single task by ID with new information
- Parameters:
- `--id=<id>`: ID of the task to update (required)
- `--prompt="<text>"`: New information or context to update the task (required)
- `--research`: Use Perplexity AI for research-backed updates
- Example: `task-master update-task --id=5 --prompt="Use JWT for authentication instead of sessions."`
- Notes: Only updates tasks not marked as 'done'. Preserves completed subtasks.
- **Command Reference: update-subtask**
- CLI Syntax: `task-master update-subtask --id=<id> --prompt="<prompt>"`
- Description: Appends additional information to a specific subtask without replacing existing content
- Parameters:
- `--id=<id>`: ID of the subtask to update in format "parentId.subtaskId" (required)
- `--prompt="<text>"`: Information to add to the subtask (required)
- `--research`: Use Perplexity AI for research-backed updates
- Example: `task-master update-subtask --id=5.2 --prompt="Add details about API rate limiting."`
- Notes:
- Appends new information to subtask details with timestamp
- Does not replace existing content, only adds to it
- Uses XML-like tags to clearly mark added information
- Will not update subtasks marked as 'done' or 'completed'
- **Command Reference: generate**
- CLI Syntax: `task-master generate`
- Description: Generates individual task files in tasks/ directory based on tasks.json
- Parameters:
- `--file=<path>, -f`: Use alternative tasks.json file (default: 'tasks/tasks.json')
- `--output=<dir>, -o`: Output directory (default: 'tasks')
- Example: `task-master generate`
- Notes: Overwrites existing task files. Creates tasks/ directory if needed.
- **Command Reference: set-status**
- CLI Syntax: `task-master set-status --id=<id> --status=<status>`
- Description: Updates the status of a specific task in tasks.json
- Parameters:
- `--id=<id>`: ID of the task to update (required)
- `--status=<status>`: New status value (required)
- Example: `task-master set-status --id=3 --status=done`
- Notes: Common values are 'done', 'pending', and 'deferred', but any string is accepted.
- **Command Reference: list**
- CLI Syntax: `task-master list`
- Description: Lists all tasks in tasks.json with IDs, titles, and status
- Parameters:
- `--status=<status>, -s`: Filter by status
- `--with-subtasks`: Show subtasks for each task
- `--file=<path>, -f`: Use alternative tasks.json file (default: 'tasks/tasks.json')
- Example: `task-master list`
- Notes: Provides quick overview of project progress. Use at start of sessions.
- **Command Reference: expand**
- CLI Syntax: `task-master expand --id=<id> [--num=<number>] [--research] [--prompt="<context>"]`
- Description: Expands a task with subtasks for detailed implementation
- Parameters:
- `--id=<id>`: ID of task to expand (required unless using --all)
- `--all`: Expand all pending tasks, prioritized by complexity
- `--num=<number>`: Number of subtasks to generate (default: from complexity report)
- `--research`: Use Perplexity AI for research-backed generation
- `--prompt="<text>"`: Additional context for subtask generation
- `--force`: Regenerate subtasks even for tasks that already have them
- Example: `task-master expand --id=3 --num=5 --research --prompt="Focus on security aspects"`
- Notes: Uses complexity report recommendations if available.
- **Command Reference: analyze-complexity**
- CLI Syntax: `task-master analyze-complexity [options]`
- Description: Analyzes task complexity and generates expansion recommendations
- Parameters:
- `--output=<file>, -o`: Output file path (default: scripts/task-complexity-report.json)
- `--model=<model>, -m`: Override LLM model to use
- `--threshold=<number>, -t`: Minimum score for expansion recommendation (default: 5)
- `--file=<path>, -f`: Use alternative tasks.json file
- `--research, -r`: Use Perplexity AI for research-backed analysis
- Example: `task-master analyze-complexity --research`
- Notes: Report includes complexity scores, recommended subtasks, and tailored prompts.
- **Command Reference: clear-subtasks**
- CLI Syntax: `task-master clear-subtasks --id=<id>`
- Description: Removes subtasks from specified tasks to allow regeneration
- Parameters:
- `--id=<id>`: ID or comma-separated IDs of tasks to clear subtasks from
- `--all`: Clear subtasks from all tasks
- Examples:
- `task-master clear-subtasks --id=3`
- `task-master clear-subtasks --id=1,2,3`
- `task-master clear-subtasks --all`
- Notes:
- Task files are automatically regenerated after clearing subtasks
- Can be combined with expand command to immediately generate new subtasks
- Works with both parent tasks and individual subtasks
- **Task Structure Fields**
- **id**: Unique identifier for the task (Example: `1`)
- **title**: Brief, descriptive title (Example: `"Initialize Repo"`)
- **description**: Concise summary of what the task involves (Example: `"Create a new repository, set up initial structure."`)
- **status**: Current state of the task (Example: `"pending"`, `"done"`, `"deferred"`)
- **dependencies**: IDs of prerequisite tasks (Example: `[1, 2.1]`)
- **dependencies**: IDs of prerequisite tasks (Example: `[1, 2]`)
- Dependencies are displayed with status indicators (✅ for completed, ⏱️ for pending)
- This helps quickly identify which prerequisite tasks are blocking work
- **priority**: Importance level (Example: `"high"`, `"medium"`, `"low"`)
- **details**: In-depth implementation instructions (Example: `"Use GitHub client ID/secret, handle callback, set session token."`)
- **testStrategy**: Verification approach (Example: `"Deploy and call endpoint to confirm 'Hello World' response."`)
- **subtasks**: List of smaller, more specific tasks (Example: `[{"id": 1, "title": "Configure OAuth", ...}]`)
- Refer to task structure details (previously linked to `tasks.mdc`).
## Configuration Management (Updated)
- **Environment Variables Configuration**
- **ANTHROPIC_API_KEY** (Required): Your Anthropic API key for Claude (Example: `ANTHROPIC_API_KEY=sk-ant-api03-...`)
- **MODEL** (Default: `"claude-3-7-sonnet-20250219"`): Claude model to use (Example: `MODEL=claude-3-opus-20240229`)
- **MAX_TOKENS** (Default: `"4000"`): Maximum tokens for responses (Example: `MAX_TOKENS=8000`)
- **TEMPERATURE** (Default: `"0.7"`): Temperature for model responses (Example: `TEMPERATURE=0.5`)
- **DEBUG** (Default: `"false"`): Enable debug logging (Example: `DEBUG=true`)
- **LOG_LEVEL** (Default: `"info"`): Console output level (Example: `LOG_LEVEL=debug`)
- **DEFAULT_SUBTASKS** (Default: `"3"`): Default subtask count (Example: `DEFAULT_SUBTASKS=5`)
- **DEFAULT_PRIORITY** (Default: `"medium"`): Default priority (Example: `DEFAULT_PRIORITY=high`)
- **PROJECT_NAME** (Default: `"MCP SaaS MVP"`): Project name in metadata (Example: `PROJECT_NAME=My Awesome Project`)
- **PROJECT_VERSION** (Default: `"1.0.0"`): Version in metadata (Example: `PROJECT_VERSION=2.1.0`)
- **PERPLEXITY_API_KEY**: For research-backed features (Example: `PERPLEXITY_API_KEY=pplx-...`)
- **PERPLEXITY_MODEL** (Default: `"sonar-medium-online"`): Perplexity model (Example: `PERPLEXITY_MODEL=sonar-large-online`)
Taskmaster configuration is managed through two main mechanisms:
1. **`.taskmasterconfig` File (Primary):**
* Located in the project root directory.
* Stores most configuration settings: AI model selections (main, research, fallback), parameters (max tokens, temperature), logging level, default subtasks/priority, project name, etc.
* **Managed via `task-master models --setup` command.** Do not edit manually unless you know what you are doing.
* **View/Set specific models via `task-master models` command or `models` MCP tool.**
* Created automatically when you run `task-master models --setup` for the first time.
2. **Environment Variables (`.env` / `mcp.json`):**
* Used **only** for sensitive API keys and specific endpoint URLs.
* Place API keys (one per provider) in a `.env` file in the project root for CLI usage.
* For MCP/Cursor integration, configure these keys in the `env` section of `.cursor/mcp.json`.
* Available keys/variables: See `assets/env.example` or the Configuration section in the command reference (previously linked to `taskmaster.mdc`).
**Important:** Non-API key settings (like model selections, `MAX_TOKENS`, `TASKMASTER_LOG_LEVEL`) are **no longer configured via environment variables**. Use the `task-master models` command (or `--setup` for interactive configuration) or the `models` MCP tool.
**If AI commands FAIL in MCP** verify that the API key for the selected provider is present in the `env` section of `.cursor/mcp.json`.
**If AI commands FAIL in CLI** verify that the API key for the selected provider is present in the `.env` file in the root of the project.
## Determining the Next Task
- Run `next_task` / `task-master next` to show the next task to work on.
- The command identifies tasks with all dependencies satisfied
- **Determining the Next Task**
- Run `task-master next` to show the next task to work on
- The next command identifies tasks with all dependencies satisfied
- Tasks are prioritized by priority level, dependency count, and ID
- The command shows comprehensive task information including:
- Basic task details and description
@@ -136,9 +229,8 @@ Taskmaster configuration is managed through two main mechanisms:
- Ensures tasks are completed in the appropriate sequence
- Provides ready-to-use commands for common task actions
## Viewing Specific Task Details
- Run `get_task` / `task-master show <id>` to view a specific task.
- **Viewing Specific Task Details**
- Run `task-master show <id>` or `task-master show --id=<id>` to view a specific task
- Use dot notation for subtasks: `task-master show 1.2` (shows subtask 2 of task 1)
- Displays comprehensive information similar to the next command, but for a specific task
- For parent tasks, shows all subtasks and their current status
@@ -146,94 +238,108 @@ Taskmaster configuration is managed through two main mechanisms:
- Provides contextual suggested actions appropriate for the specific task
- Useful for examining task details before implementation or checking status
## Managing Task Dependencies
- Use `add_dependency` / `task-master add-dependency --id=<id> --depends-on=<id>` to add a dependency.
- Use `remove_dependency` / `task-master remove-dependency --id=<id> --depends-on=<id>` to remove a dependency.
- **Managing Task Dependencies**
- Use `task-master add-dependency --id=<id> --depends-on=<id>` to add a dependency
- Use `task-master remove-dependency --id=<id> --depends-on=<id>` to remove a dependency
- The system prevents circular dependencies and duplicate dependency entries
- Dependencies are checked for existence before being added or removed
- Task files are automatically regenerated after dependency changes
- Dependencies are visualized with status indicators in task listings and files
## Task Reorganization
- **Command Reference: add-dependency**
- CLI Syntax: `task-master add-dependency --id=<id> --depends-on=<id>`
- Description: Adds a dependency relationship between two tasks
- Parameters:
- `--id=<id>`: ID of task that will depend on another task (required)
- `--depends-on=<id>`: ID of task that will become a dependency (required)
- Example: `task-master add-dependency --id=22 --depends-on=21`
- Notes: Prevents circular dependencies and duplicates; updates task files automatically
- Use `move_task` / `task-master move --from=<id> --to=<id>` to move tasks or subtasks within the hierarchy
- This command supports several use cases:
- Moving a standalone task to become a subtask (e.g., `--from=5 --to=7`)
- Moving a subtask to become a standalone task (e.g., `--from=5.2 --to=7`)
- Moving a subtask to a different parent (e.g., `--from=5.2 --to=7.3`)
- Reordering subtasks within the same parent (e.g., `--from=5.2 --to=5.4`)
- Moving a task to a new, non-existent ID position (e.g., `--from=5 --to=25`)
- Moving multiple tasks at once using comma-separated IDs (e.g., `--from=10,11,12 --to=16,17,18`)
- The system includes validation to prevent data loss:
- Allows moving to non-existent IDs by creating placeholder tasks
- Prevents moving to existing task IDs that have content (to avoid overwriting)
- Validates source tasks exist before attempting to move them
- The system maintains proper parent-child relationships and dependency integrity
- Task files are automatically regenerated after the move operation
- This provides greater flexibility in organizing and refining your task structure as project understanding evolves
- This is especially useful when dealing with potential merge conflicts arising from teams creating tasks on separate branches. Solve these conflicts very easily by moving your tasks and keeping theirs.
- **Command Reference: remove-dependency**
- CLI Syntax: `task-master remove-dependency --id=<id> --depends-on=<id>`
- Description: Removes a dependency relationship between two tasks
- Parameters:
- `--id=<id>`: ID of task to remove dependency from (required)
- `--depends-on=<id>`: ID of task to remove as a dependency (required)
- Example: `task-master remove-dependency --id=22 --depends-on=21`
- Notes: Checks if dependency actually exists; updates task files automatically
## Iterative Subtask Implementation
- **Command Reference: validate-dependencies**
- CLI Syntax: `task-master validate-dependencies [options]`
- Description: Checks for and identifies invalid dependencies in tasks.json and task files
- Parameters:
- `--file=<path>, -f`: Use alternative tasks.json file (default: 'tasks/tasks.json')
- Example: `task-master validate-dependencies`
- Notes:
- Reports all non-existent dependencies and self-dependencies without modifying files
- Provides detailed statistics on task dependency state
- Use before fix-dependencies to audit your task structure
Once a task has been broken down into subtasks using `expand_task` or similar methods, follow this iterative process for implementation:
- **Command Reference: fix-dependencies**
- CLI Syntax: `task-master fix-dependencies [options]`
- Description: Finds and fixes all invalid dependencies in tasks.json and task files
- Parameters:
- `--file=<path>, -f`: Use alternative tasks.json file (default: 'tasks/tasks.json')
- Example: `task-master fix-dependencies`
- Notes:
- Removes references to non-existent tasks and subtasks
- Eliminates self-dependencies (tasks depending on themselves)
- Regenerates task files with corrected dependencies
- Provides detailed report of all fixes made
1. **Understand the Goal (Preparation):**
* Use `get_task` / `task-master show <subtaskId>` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to thoroughly understand the specific goals and requirements of the subtask.
- **Command Reference: complexity-report**
- CLI Syntax: `task-master complexity-report [options]`
- Description: Displays the task complexity analysis report in a formatted, easy-to-read way
- Parameters:
- `--file=<path>, -f`: Path to the complexity report file (default: 'scripts/task-complexity-report.json')
- Example: `task-master complexity-report`
- Notes:
- Shows tasks organized by complexity score with recommended actions
- Provides complexity distribution statistics
- Displays ready-to-use expansion commands for complex tasks
- If no report exists, offers to generate one interactively
2. **Initial Exploration & Planning (Iteration 1):**
* This is the first attempt at creating a concrete implementation plan.
* Explore the codebase to identify the precise files, functions, and even specific lines of code that will need modification.
* Determine the intended code changes (diffs) and their locations.
* Gather *all* relevant details from this exploration phase.
- **Command Reference: add-task**
- CLI Syntax: `task-master add-task [options]`
- Description: Add a new task to tasks.json using AI
- Parameters:
- `--file=<path>, -f`: Path to the tasks file (default: 'tasks/tasks.json')
- `--prompt=<text>, -p`: Description of the task to add (required)
- `--dependencies=<ids>, -d`: Comma-separated list of task IDs this task depends on
- `--priority=<priority>`: Task priority (high, medium, low) (default: 'medium')
- Example: `task-master add-task --prompt="Create user authentication using Auth0"`
- Notes: Uses AI to convert description into structured task with appropriate details
3. **Log the Plan:**
* Run `update_subtask` / `task-master update-subtask --id=<subtaskId> --prompt='<detailed plan>'`.
* Provide the *complete and detailed* findings from the exploration phase in the prompt. Include file paths, line numbers, proposed diffs, reasoning, and any potential challenges identified. Do not omit details. The goal is to create a rich, timestamped log within the subtask's `details`.
- **Command Reference: init**
- CLI Syntax: `task-master init`
- Description: Initialize a new project with Task Master structure
- Parameters: None
- Example: `task-master init`
- Notes:
- Creates initial project structure with required files
- Prompts for project settings if not provided
- Merges with existing files when appropriate
- Can be used to bootstrap a new Task Master project quickly
4. **Verify the Plan:**
* Run `get_task` / `task-master show <subtaskId>` again to confirm that the detailed implementation plan has been successfully appended to the subtask's details.
5. **Begin Implementation:**
* Set the subtask status using `set_task_status` / `task-master set-status --id=<subtaskId> --status=in-progress`.
* Start coding based on the logged plan.
6. **Refine and Log Progress (Iteration 2+):**
* As implementation progresses, you will encounter challenges, discover nuances, or confirm successful approaches.
* **Before appending new information**: Briefly review the *existing* details logged in the subtask (using `get_task` or recalling from context) to ensure the update adds fresh insights and avoids redundancy.
* **Regularly** use `update_subtask` / `task-master update-subtask --id=<subtaskId> --prompt='<update details>\n- What worked...\n- What didn't work...'` to append new findings.
* **Crucially, log:**
* What worked ("fundamental truths" discovered).
* What didn't work and why (to avoid repeating mistakes).
* Specific code snippets or configurations that were successful.
* Decisions made, especially if confirmed with user input.
* Any deviations from the initial plan and the reasoning.
* The objective is to continuously enrich the subtask's details, creating a log of the implementation journey that helps the AI (and human developers) learn, adapt, and avoid repeating errors.
7. **Review & Update Rules (Post-Implementation):**
* Once the implementation for the subtask is functionally complete, review all code changes and the relevant chat history.
* Identify any new or modified code patterns, conventions, or best practices established during the implementation.
* Create new or update existing rules following internal guidelines (previously linked to `cursor_rules.mdc` and `self_improve.mdc`).
8. **Mark Task Complete:**
* After verifying the implementation and updating any necessary rules, mark the subtask as completed: `set_task_status` / `task-master set-status --id=<subtaskId> --status=done`.
9. **Commit Changes (If using Git):**
* Stage the relevant code changes and any updated/new rule files (`git add .`).
* Craft a comprehensive Git commit message summarizing the work done for the subtask, including both code implementation and any rule adjustments.
* Execute the commit command directly in the terminal (e.g., `git commit -m 'feat(module): Implement feature X for subtask <subtaskId>\n\n- Details about changes...\n- Updated rule Y for pattern Z'`).
* Consider if a Changeset is needed according to internal versioning guidelines (previously linked to `changeset.mdc`). If so, run `npm run changeset`, stage the generated file, and amend the commit or create a new one.
10. **Proceed to Next Subtask:**
* Identify the next subtask (e.g., using `next_task` / `task-master next`).
## Code Analysis & Refactoring Techniques
- **Top-Level Function Search**:
- Useful for understanding module structure or planning refactors.
- Use grep/ripgrep to find exported functions/constants:
`rg "export (async function|function|const) \w+"` or similar patterns.
- Can help compare functions between files during migrations or identify potential naming conflicts.
---
*This workflow provides a general guideline. Adapt it based on your specific project needs and team practices.*
- **Code Analysis & Refactoring Techniques**
- **Top-Level Function Search**
- Use grep pattern matching to find all exported functions across the codebase
- Command: `grep -E "export (function|const) \w+|function \w+\(|const \w+ = \(|module\.exports" --include="*.js" -r ./`
- Benefits:
- Quickly identify all public API functions without reading implementation details
- Compare functions between files during refactoring (e.g., monolithic to modular structure)
- Verify all expected functions exist in refactored modules
- Identify duplicate functionality or naming conflicts
- Usage examples:
- When migrating from `scripts/dev.js` to modular structure: `grep -E "function \w+\(" scripts/dev.js`
- Check function exports in a directory: `grep -E "export (function|const)" scripts/modules/`
- Find potential naming conflicts: `grep -E "function (get|set|create|update)\w+\(" -r ./`
- Variations:
- Add `-n` flag to include line numbers
- Add `--include="*.ts"` to filter by file extension
- Use with `| sort` to alphabetize results
- Integration with refactoring workflow:
- Start by mapping all functions in the source file
- Create target module files based on function grouping
- Verify all functions were properly migrated
- Check for any unintentional duplications or omissions

View File

@@ -1,367 +0,0 @@
---
description: Git workflow integrated with Task Master for feature development and collaboration
globs: "**/*"
alwaysApply: true
---
# Git Workflow with Task Master Integration
## **Branch Strategy**
### **Main Branch Protection**
- **main** branch contains production-ready code
- All feature development happens on task-specific branches
- Direct commits to main are prohibited
- All changes merge via Pull Requests
### **Task Branch Naming**
```bash
# ✅ DO: Use consistent task branch naming
task-001 # For Task 1
task-004 # For Task 4
task-015 # For Task 15
# ❌ DON'T: Use inconsistent naming
feature/user-auth
fix-database-issue
random-branch-name
```
## **Workflow Overview**
```mermaid
flowchart TD
A[Start: On main branch] --> B[Pull latest changes]
B --> C[Create task branch<br/>git checkout -b task-XXX]
C --> D[Set task status: in-progress]
D --> E[Get task context & expand if needed]
E --> F[Identify next subtask]
F --> G[Set subtask: in-progress]
G --> H[Research & collect context<br/>update_subtask with findings]
H --> I[Implement subtask]
I --> J[Update subtask with completion]
J --> K[Set subtask: done]
K --> L[Git commit subtask]
L --> M{More subtasks?}
M -->|Yes| F
M -->|No| N[Run final tests]
N --> O[Commit tests if added]
O --> P[Push task branch]
P --> Q[Create Pull Request]
Q --> R[Human review & merge]
R --> S[Switch to main & pull]
S --> T[Delete task branch]
T --> U[Ready for next task]
style A fill:#e1f5fe
style C fill:#f3e5f5
style G fill:#fff3e0
style L fill:#e8f5e8
style Q fill:#fce4ec
style R fill:#f1f8e9
style U fill:#e1f5fe
```
## **Complete Task Development Workflow**
### **Phase 1: Task Preparation**
```bash
# 1. Ensure you're on main branch and pull latest
git checkout main
git pull origin main
# 2. Check current branch status
git branch # Verify you're on main
# 3. Create task-specific branch
git checkout -b task-004 # For Task 4
# 4. Set task status in Task Master
# Use: set_task_status tool or `task-master set-status --id=4 --status=in-progress`
```
### **Phase 2: Task Analysis & Planning**
```bash
# 5. Get task context and expand if needed
# Use: get_task tool or `task-master show 4`
# Use: expand_task tool or `task-master expand --id=4 --research --force` (if complex)
# 6. Identify next subtask to work on
# Use: next_task tool or `task-master next`
```
### **Phase 3: Subtask Implementation Loop**
For each subtask, follow this pattern:
```bash
# 7. Mark subtask as in-progress
# Use: set_task_status tool or `task-master set-status --id=4.1 --status=in-progress`
# 8. Gather context and research (if needed)
# Use: update_subtask tool with research flag or:
# `task-master update-subtask --id=4.1 --prompt="Research findings..." --research`
# 9. Collect code context through AI exploration
# Document findings in subtask using update_subtask
# 10. Implement the subtask
# Write code, tests, documentation
# 11. Update subtask with completion details
# Use: update_subtask tool or:
# `task-master update-subtask --id=4.1 --prompt="Implementation complete..."`
# 12. Mark subtask as done
# Use: set_task_status tool or `task-master set-status --id=4.1 --status=done`
# 13. Commit the subtask implementation
git add .
git commit -m "feat(task-4): Complete subtask 4.1 - [Subtask Title]
- Implementation details
- Key changes made
- Any important notes
Subtask 4.1: [Brief description of what was accomplished]
Relates to Task 4: [Main task title]"
```
### **Phase 4: Task Completion**
```bash
# 14. When all subtasks are complete, run final testing
# Create test file if needed, ensure all tests pass
npm test # or jest, or manual testing
# 15. If tests were added/modified, commit them
git add .
git commit -m "test(task-4): Add comprehensive tests for Task 4
- Unit tests for core functionality
- Integration tests for API endpoints
- All tests passing
Task 4: [Main task title] - Testing complete"
# 16. Push the task branch
git push origin task-004
# 17. Create Pull Request
# Title: "Task 4: [Task Title]"
# Description should include:
# - Task overview
# - Subtasks completed
# - Testing approach
# - Any breaking changes or considerations
```
### **Phase 5: PR Merge & Cleanup**
```bash
# 18. Human reviews and merges PR into main
# 19. Switch back to main and pull merged changes
git checkout main
git pull origin main
# 20. Delete the feature branch (optional cleanup)
git branch -d task-004
git push origin --delete task-004
```
## **Commit Message Standards**
### **Subtask Commits**
```bash
# ✅ DO: Consistent subtask commit format
git commit -m "feat(task-4): Complete subtask 4.1 - Initialize Express server
- Set up Express.js with TypeScript configuration
- Added CORS and body parsing middleware
- Implemented health check endpoints
- Basic error handling middleware
Subtask 4.1: Initialize project with npm and install dependencies
Relates to Task 4: Setup Express.js Server Project"
# ❌ DON'T: Vague or inconsistent commits
git commit -m "fixed stuff"
git commit -m "working on task"
```
### **Test Commits**
```bash
# ✅ DO: Separate test commits when substantial
git commit -m "test(task-4): Add comprehensive tests for Express server setup
- Unit tests for middleware configuration
- Integration tests for health check endpoints
- Mock tests for database connection
- All tests passing with 95% coverage
Task 4: Setup Express.js Server Project - Testing complete"
```
### **Commit Type Prefixes**
- `feat(task-X):` - New feature implementation
- `fix(task-X):` - Bug fixes
- `test(task-X):` - Test additions/modifications
- `docs(task-X):` - Documentation updates
- `refactor(task-X):` - Code refactoring
- `chore(task-X):` - Build/tooling changes
## **Task Master Commands Integration**
### **Essential Commands for Git Workflow**
```bash
# Task management
task-master show <id> # Get task/subtask details
task-master next # Find next task to work on
task-master set-status --id=<id> --status=<status>
task-master update-subtask --id=<id> --prompt="..." --research
# Task expansion (for complex tasks)
task-master expand --id=<id> --research --force
# Progress tracking
task-master list # View all tasks and status
task-master list --status=in-progress # View active tasks
```
### **MCP Tool Equivalents**
When using Cursor or other MCP-integrated tools:
- `get_task` instead of `task-master show`
- `next_task` instead of `task-master next`
- `set_task_status` instead of `task-master set-status`
- `update_subtask` instead of `task-master update-subtask`
## **Branch Management Rules**
### **Branch Protection**
```bash
# ✅ DO: Always work on task branches
git checkout -b task-005
# Make changes
git commit -m "..."
git push origin task-005
# ❌ DON'T: Commit directly to main
git checkout main
git commit -m "..." # NEVER do this
```
### **Keeping Branches Updated**
```bash
# ✅ DO: Regularly sync with main (for long-running tasks)
git checkout task-005
git fetch origin
git rebase origin/main # or merge if preferred
# Resolve any conflicts and continue
```
## **Pull Request Guidelines**
### **PR Title Format**
```
Task <ID>: <Task Title>
Examples:
Task 4: Setup Express.js Server Project
Task 7: Implement User Authentication
Task 12: Add Stripe Payment Integration
```
### **PR Description Template**
```markdown
## Task Overview
Brief description of the main task objective.
## Subtasks Completed
- [x] 4.1: Initialize project with npm and install dependencies
- [x] 4.2: Configure TypeScript, ESLint and Prettier
- [x] 4.3: Create basic Express app with middleware and health check route
## Implementation Details
- Key architectural decisions made
- Important code changes
- Any deviations from original plan
## Testing
- [ ] Unit tests added/updated
- [ ] Integration tests passing
- [ ] Manual testing completed
## Breaking Changes
List any breaking changes or migration requirements.
## Related Tasks
Mention any dependent tasks or follow-up work needed.
```
## **Conflict Resolution**
### **Task Conflicts**
```bash
# If multiple people work on overlapping tasks:
# 1. Use Task Master's move functionality to reorganize
task-master move --from=5 --to=25 # Move conflicting task
# 2. Update task dependencies
task-master add-dependency --id=6 --depends-on=5
# 3. Coordinate through PR comments and task updates
```
### **Code Conflicts**
```bash
# Standard Git conflict resolution
git fetch origin
git rebase origin/main
# Resolve conflicts in files
git add .
git rebase --continue
```
## **Emergency Procedures**
### **Hotfixes**
```bash
# For urgent production fixes:
git checkout main
git pull origin main
git checkout -b hotfix-urgent-issue
# Make minimal fix
git commit -m "hotfix: Fix critical production issue
- Specific fix description
- Minimal impact change
- Requires immediate deployment"
git push origin hotfix-urgent-issue
# Create emergency PR for immediate review
```
### **Task Abandonment**
```bash
# If task needs to be abandoned or significantly changed:
# 1. Update task status
task-master set-status --id=<id> --status=cancelled
# 2. Clean up branch
git checkout main
git branch -D task-<id>
git push origin --delete task-<id>
# 3. Document reasoning in task
task-master update-task --id=<id> --prompt="Task cancelled due to..."
```
---
**References:**
- [Task Master Workflow](mdc:.cursor/rules/dev_workflow.mdc)
- [Architecture Guidelines](mdc:.cursor/rules/architecture.mdc)
- [Task Master Commands](mdc:.cursor/rules/taskmaster.mdc)

View File

@@ -1,26 +0,0 @@
---
description: Glossary of other Cursor rules
globs: **/*
alwaysApply: true
---
# Glossary of Task Master Cursor Rules
This file provides a quick reference to the purpose of each rule file located in the `.cursor/rules` directory.
- **[`architecture.mdc`](mdc:.cursor/rules/architecture.mdc)**: Describes the high-level architecture of the Task Master CLI application.
- **[`changeset.mdc`](mdc:.cursor/rules/changeset.mdc)**: Guidelines for using Changesets (npm run changeset) to manage versioning and changelogs.
- **[`commands.mdc`](mdc:.cursor/rules/commands.mdc)**: Guidelines for implementing CLI commands using Commander.js.
- **[`cursor_rules.mdc`](mdc:.cursor/rules/cursor_rules.mdc)**: Guidelines for creating and maintaining Cursor rules to ensure consistency and effectiveness.
- **[`dependencies.mdc`](mdc:.cursor/rules/dependencies.mdc)**: Guidelines for managing task dependencies and relationships.
- **[`dev_workflow.mdc`](mdc:.cursor/rules/dev_workflow.mdc)**: Guide for using Task Master to manage task-driven development workflows.
- **[`glossary.mdc`](mdc:.cursor/rules/glossary.mdc)**: This file; provides a glossary of other Cursor rules.
- **[`mcp.mdc`](mdc:.cursor/rules/mcp.mdc)**: Guidelines for implementing and interacting with the Task Master MCP Server.
- **[`new_features.mdc`](mdc:.cursor/rules/new_features.mdc)**: Guidelines for integrating new features into the Task Master CLI.
- **[`self_improve.mdc`](mdc:.cursor/rules/self_improve.mdc)**: Guidelines for continuously improving Cursor rules based on emerging code patterns and best practices.
- **[`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)**: Comprehensive reference for Taskmaster MCP tools and CLI commands.
- **[`tasks.mdc`](mdc:.cursor/rules/tasks.mdc)**: Guidelines for implementing task management operations.
- **[`tests.mdc`](mdc:.cursor/rules/tests.mdc)**: Guidelines for implementing and maintaining tests for Task Master CLI.
- **[`ui.mdc`](mdc:.cursor/rules/ui.mdc)**: Guidelines for implementing and maintaining user interface components.
- **[`utilities.mdc`](mdc:.cursor/rules/utilities.mdc)**: Guidelines for implementing utility functions.
- **[`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc)**: Guidelines for integrating AI usage telemetry across Task Master.

View File

@@ -3,6 +3,7 @@ description: Guidelines for implementing and interacting with the Task Master MC
globs: mcp-server/src/**/*, scripts/modules/**/*
alwaysApply: false
---
# Task Master MCP Server Guidelines
This document outlines the architecture and implementation patterns for the Task Master Model Context Protocol (MCP) server, designed for integration with tools like Cursor.
@@ -11,519 +12,76 @@ This document outlines the architecture and implementation patterns for the Task
The MCP server acts as a bridge between external tools (like Cursor) and the core Task Master CLI logic. It leverages FastMCP for the server framework.
- **Flow**: `External Tool (Cursor)` <-> `FastMCP Server` <-> `MCP Tools` (`mcp-server/src/tools/*.js`) <-> `Core Logic Wrappers` (`mcp-server/src/core/direct-functions/*.js`, exported via `task-master-core.js`) <-> `Core Modules` (`scripts/modules/*.js`)
- **Flow**: `External Tool (Cursor)` <-> `FastMCP Server` <-> `MCP Tools` (`mcp-server/src/tools/*.js`) <-> `Core Logic Wrappers` (`mcp-server/src/core/task-master-core.js`) <-> `Core Modules` (`scripts/modules/*.js`)
- **Goal**: Provide a performant and reliable way for external tools to interact with Task Master functionality without directly invoking the CLI for every operation.
## Direct Function Implementation Best Practices
When implementing a new direct function in `mcp-server/src/core/direct-functions/`, follow these critical guidelines:
1. **Verify Function Dependencies**:
- ✅ **DO**: Check that all helper functions your direct function needs are properly exported from their source modules
- ✅ **DO**: Import these dependencies explicitly at the top of your file
- ❌ **DON'T**: Assume helper functions like `findTaskById` or `taskExists` are automatically available
- **Example**:
```javascript
// At top of direct-function file
import { removeTask, findTaskById, taskExists } from '../../../../scripts/modules/task-manager.js';
```
2. **Parameter Verification and Completeness**:
- ✅ **DO**: Verify the signature of core functions you're calling and ensure all required parameters are provided
- ✅ **DO**: Pass explicit values for required parameters rather than relying on defaults
- ✅ **DO**: Double-check parameter order against function definition
- ❌ **DON'T**: Omit parameters assuming they have default values
- **Example**:
```javascript
// Correct parameter handling in direct function
async function generateTaskFilesDirect(args, log) {
const tasksPath = findTasksJsonPath(args, log);
const outputDir = args.output || path.dirname(tasksPath);
try {
// Pass all required parameters
const result = await generateTaskFiles(tasksPath, outputDir);
return { success: true, data: result, fromCache: false };
} catch (error) {
// Error handling...
}
}
```
3. **Consistent File Path Handling**:
- ✅ **DO**: Use `path.join()` instead of string concatenation for file paths
- ✅ **DO**: Follow established file naming conventions (`task_001.txt` not `1.md`)
- ✅ **DO**: Use `path.dirname()` and other path utilities for manipulating paths
- ✅ **DO**: When paths relate to task files, follow the standard format: `task_${id.toString().padStart(3, '0')}.txt`
- ❌ **DON'T**: Create custom file path handling logic that diverges from established patterns
- **Example**:
```javascript
// Correct file path handling
const taskFilePath = path.join(
path.dirname(tasksPath),
`task_${taskId.toString().padStart(3, '0')}.txt`
);
```
4. **Comprehensive Error Handling**:
- ✅ **DO**: Wrap core function calls *and AI calls* in try/catch blocks
- ✅ **DO**: Log errors with appropriate severity and context
- ✅ **DO**: Return standardized error objects with code and message (`{ success: false, error: { code: '...', message: '...' } }`)
- ✅ **DO**: Handle file system errors, AI client errors, AI processing errors, and core function errors distinctly with appropriate codes.
- **Example**:
```javascript
try {
// Core function call or AI logic
} catch (error) {
log.error(`Failed to execute direct function logic: ${error.message}`);
return {
success: false,
error: {
code: error.code || 'DIRECT_FUNCTION_ERROR', // Use specific codes like AI_CLIENT_ERROR, etc.
message: error.message,
details: error.stack // Optional: Include stack in debug mode
},
fromCache: false // Ensure this is included if applicable
};
}
```
5. **Handling Logging Context (`mcpLog`)**:
- **Requirement**: Core functions (like those in `task-manager.js`) may accept an `options` object containing an optional `mcpLog` property. If provided, the core function expects this object to have methods like `mcpLog.info(...)`, `mcpLog.error(...)`.
- **Solution: The Logger Wrapper Pattern**: When calling a core function from a direct function, pass the `log` object provided by FastMCP *wrapped* in the standard `logWrapper` object. This ensures the core function receives a logger with the expected method structure.
```javascript
// Standard logWrapper pattern within a Direct Function
const logWrapper = {
info: (message, ...args) => log.info(message, ...args),
warn: (message, ...args) => log.warn(message, ...args),
error: (message, ...args) => log.error(message, ...args),
debug: (message, ...args) => log.debug && log.debug(message, ...args),
success: (message, ...args) => log.info(message, ...args)
};
// ... later when calling the core function ...
await coreFunction(
// ... other arguments ...
{
mcpLog: logWrapper, // Pass the wrapper object
session // Also pass session if needed by core logic or AI service
},
'json' // Pass 'json' output format if supported by core function
);
```
- **JSON Output**: Passing `mcpLog` (via the wrapper) often triggers the core function to use a JSON-friendly output format, suppressing spinners/boxes.
- ✅ **DO**: Implement this pattern in direct functions calling core functions that might use `mcpLog`.
6. **Silent Mode Implementation**:
- ✅ **DO**: Import silent mode utilities: `import { enableSilentMode, disableSilentMode, isSilentMode } from '../../../../scripts/modules/utils.js';`
- ✅ **DO**: Wrap core function calls *within direct functions* using `enableSilentMode()` / `disableSilentMode()` in a `try/finally` block if the core function might produce console output (spinners, boxes, direct `console.log`) that isn't reliably controlled by passing `{ mcpLog }` or an `outputFormat` parameter.
- ✅ **DO**: Always disable silent mode in the `finally` block.
- ❌ **DON'T**: Wrap calls to the unified AI service (`generateTextService`, `generateObjectService`) in silent mode; their logging is handled internally.
- **Example (Direct Function Guaranteeing Silence & using Log Wrapper)**:
```javascript
export async function coreWrapperDirect(args, log, context = {}) {
const { session } = context;
const tasksPath = findTasksJsonPath(args, log);
const logWrapper = { /* ... */ };
enableSilentMode(); // Ensure silence for direct console output
try {
const result = await coreFunction(
tasksPath,
args.param1,
{ mcpLog: logWrapper, session }, // Pass context
'json' // Request JSON format if supported
);
return { success: true, data: result };
} catch (error) {
log.error(`Error: ${error.message}`);
return { success: false, error: { /* ... */ } };
} finally {
disableSilentMode(); // Critical: Always disable in finally
}
}
```
7. **Debugging MCP/Core Logic Interaction**:
- ✅ **DO**: If an MCP tool fails with unclear errors (like JSON parsing failures), run the equivalent `task-master` CLI command in the terminal. The CLI often provides more detailed error messages originating from the core logic (e.g., `ReferenceError`, stack traces) that are obscured by the MCP layer.
## Tool Definition and Execution
### Tool Structure
MCP tools must follow a specific structure to properly interact with the FastMCP framework:
```javascript
server.addTool({
name: "tool_name", // Use snake_case for tool names
description: "Description of what the tool does",
parameters: z.object({
// Define parameters using Zod
param1: z.string().describe("Parameter description"),
param2: z.number().optional().describe("Optional parameter description"),
// IMPORTANT: For file operations, always include these optional parameters
file: z.string().optional().describe("Path to the tasks file"),
projectRoot: z.string().optional().describe("Root directory of the project (typically derived from session)")
}),
// The execute function is the core of the tool implementation
execute: async (args, context) => {
// Implementation goes here
// Return response in the appropriate format
}
});
```
### Execute Function Signature
The `execute` function receives validated arguments and the FastMCP context:
```javascript
// Destructured signature (recommended)
execute: async (args, { log, session }) => {
// Tool implementation
}
```
- **args**: Validated parameters.
- **context**: Contains `{ log, session }` from FastMCP. (Removed `reportProgress`).
### Standard Tool Execution Pattern with Path Normalization (Updated)
To ensure consistent handling of project paths across different client environments (Windows, macOS, Linux, WSL) and input formats (e.g., `file:///...`, URI encoded paths), all MCP tool `execute` methods that require access to the project root **MUST** be wrapped with the `withNormalizedProjectRoot` Higher-Order Function (HOF).
This HOF, defined in [`mcp-server/src/tools/utils.js`](mdc:mcp-server/src/tools/utils.js), performs the following before calling the tool's core logic:
1. **Determines the Raw Root:** It prioritizes `args.projectRoot` if provided by the client, otherwise it calls `getRawProjectRootFromSession` to extract the path from the session.
2. **Normalizes the Path:** It uses the `normalizeProjectRoot` helper to decode URIs, strip `file://` prefixes, fix potential Windows drive letter prefixes (e.g., `/C:/`), convert backslashes (`\`) to forward slashes (`/`), and resolve the path to an absolute path suitable for the server's OS.
3. **Injects Normalized Path:** It updates the `args` object by replacing the original `projectRoot` (or adding it) with the normalized, absolute path.
4. **Executes Original Logic:** It calls the original `execute` function body, passing the updated `args` object.
**Implementation Example:**
```javascript
// In mcp-server/src/tools/your-tool.js
import {
handleApiResult,
createErrorResponse,
withNormalizedProjectRoot // <<< Import HOF
} from './utils.js';
import { yourDirectFunction } from '../core/task-master-core.js';
import { findTasksJsonPath } from '../core/utils/path-utils.js'; // If needed
export function registerYourTool(server) {
server.addTool({
name: "your_tool",
description: "...".
parameters: z.object({
// ... other parameters ...
projectRoot: z.string().optional().describe('...') // projectRoot is optional here, HOF handles fallback
}),
// Wrap the entire execute function
execute: withNormalizedProjectRoot(async (args, { log, session }) => {
// args.projectRoot is now guaranteed to be normalized and absolute
const { /* other args */, projectRoot } = args;
try {
log.info(`Executing your_tool with normalized root: ${projectRoot}`);
// Resolve paths using the normalized projectRoot
let tasksPath = findTasksJsonPath({ projectRoot, file: args.file }, log);
// Call direct function, passing normalized projectRoot if needed by direct func
const result = await yourDirectFunction(
{
/* other args */,
projectRoot // Pass it if direct function needs it
},
log,
{ session }
);
return handleApiResult(result, log);
} catch (error) {
log.error(`Error in your_tool: ${error.message}`);
return createErrorResponse(error.message);
}
}) // End HOF wrap
});
}
```
By using this HOF, the core logic within the `execute` method and any downstream functions (like `findTasksJsonPath` or direct functions) can reliably expect `args.projectRoot` to be a clean, absolute path suitable for the server environment.
### Project Initialization Tool
The `initialize_project` tool allows integrated clients like Cursor to set up a new Task Master project:
```javascript
// In initialize-project.js
import { z } from "zod";
import { initializeProjectDirect } from "../core/task-master-core.js";
import { handleApiResult, createErrorResponse } from "./utils.js";
export function registerInitializeProjectTool(server) {
server.addTool({
name: "initialize_project",
description: "Initialize a new Task Master project",
parameters: z.object({
projectName: z.string().optional().describe("The name for the new project"),
projectDescription: z.string().optional().describe("A brief description"),
projectVersion: z.string().optional().describe("Initial version (e.g., '0.1.0')"),
authorName: z.string().optional().describe("The author's name"),
skipInstall: z.boolean().optional().describe("Skip installing dependencies"),
addAliases: z.boolean().optional().describe("Add shell aliases"),
yes: z.boolean().optional().describe("Skip prompts and use defaults")
}),
execute: async (args, { log, reportProgress }) => {
try {
// Since we're initializing, we don't need project root
const result = await initializeProjectDirect(args, log);
return handleApiResult(result, log, 'Error initializing project');
} catch (error) {
log.error(`Error in initialize_project: ${error.message}`);
return createErrorResponse(`Failed to initialize project: ${error.message}`);
}
}
});
}
```
### Logging Convention
The `log` object (destructured from `context`) provides standardized logging methods. Use it within both the `execute` method and the `*Direct` functions. **If progress indication is needed within a direct function, use `log.info()` instead of `reportProgress`**.
```javascript
// Proper logging usage
log.info(`Starting ${toolName} with parameters: ${JSON.stringify(sanitizedArgs)}`);
log.debug("Detailed operation info", { data });
log.warn("Potential issue detected");
log.error(`Error occurred: ${error.message}`, { stack: error.stack });
log.info('Progress: 50% - AI call initiated...'); // Example progress logging
```
## Session Usage Convention
The `session` object (destructured from `context`) contains authenticated session data and client information.
- **Authentication**: Access user-specific data (`session.userId`, etc.) if authentication is implemented.
- **Project Root**: The primary use in Task Master is accessing `session.roots` to determine the client's project root directory via the `getProjectRootFromSession` utility (from [`tools/utils.js`](mdc:mcp-server/src/tools/utils.js)). See the Standard Tool Execution Pattern above.
- **Environment Variables**: The `session.env` object provides access to environment variables set in the MCP client configuration (e.g., `.cursor/mcp.json`). This is the **primary mechanism** for the unified AI service layer (`ai-services-unified.js`) to securely access **API keys** when called from MCP context.
- **Capabilities**: Can be used to check client capabilities (`session.clientCapabilities`).
## Direct Function Wrappers (`*Direct`)
These functions, located in `mcp-server/src/core/direct-functions/`, form the core logic execution layer for MCP tools.
- **Purpose**: Bridge MCP tools and core Task Master modules (`scripts/modules/*`). Handle AI interactions if applicable.
- **Responsibilities**:
- Receive `args` (including `projectRoot`), `log`, and optionally `{ session }` context.
- Find `tasks.json` using `findTasksJsonPath`.
- Validate arguments.
- **Implement Caching (if applicable)**: Use `getCachedOrExecute`.
- **Call Core Logic**: Invoke function from `scripts/modules/*`.
- Pass `outputFormat: 'json'` if applicable.
- Wrap with `enableSilentMode/disableSilentMode` if needed.
- Pass `{ mcpLog: logWrapper, session }` context if core logic needs it.
- Handle errors.
- Return standardized result object.
- ❌ **DON'T**: Call `reportProgress`.
- ❌ **DON'T**: Initialize AI clients or call AI services directly.
## Key Principles
- **Prefer Direct Function Calls**: MCP tools should always call `*Direct` wrappers instead of `executeTaskMasterCommand`.
- **Standardized Execution Flow**: Follow the pattern: MCP Tool -> `getProjectRootFromSession` -> `*Direct` Function -> Core Logic / AI Logic.
- **Path Resolution via Direct Functions**: The `*Direct` function is responsible for finding the exact `tasks.json` path using `findTasksJsonPath`, relying on the `projectRoot` passed in `args`.
- **AI Logic in Core Modules**: AI interactions (prompt building, calling unified service) reside within the core logic functions (`scripts/modules/*`), not direct functions.
- **Silent Mode in Direct Functions**: Wrap *core function* calls (from `scripts/modules`) with `enableSilentMode()` and `disableSilentMode()` if they produce console output not handled by `outputFormat`. Do not wrap AI calls.
- **Selective Async Processing**: Use `AsyncOperationManager` in the *MCP Tool layer* for operations involving multiple steps or long waits beyond a single AI call (e.g., file processing + AI call + file writing). Simple AI calls handled entirely within the `*Direct` function (like `addTaskDirect`) may not need it at the tool layer.
- **No `reportProgress` in Direct Functions**: Do not pass or use `reportProgress` within `*Direct` functions. Use `log.info()` for internal progress or report progress from the `AsyncOperationManager` callback in the MCP tool layer.
- **Output Formatting**: Ensure core functions called by `*Direct` functions can suppress CLI output, ideally via an `outputFormat` parameter.
- **Project Initialization**: Use the initialize_project tool for setting up new projects in integrated environments.
- **Centralized Utilities**: Use helpers from `mcp-server/src/tools/utils.js`, `mcp-server/src/core/utils/path-utils.js`, and `mcp-server/src/core/utils/ai-client-utils.js`. See [`utilities.mdc`](mdc:.cursor/rules/utilities.mdc).
- **Caching in Direct Functions**: Caching logic resides *within* the `*Direct` functions using `getCachedOrExecute`.
## Resources and Resource Templates
Resources provide LLMs with static or dynamic data without executing tools.
- **Implementation**: Use `@mcp.resource()` decorator pattern or `server.addResource`/`server.addResourceTemplate` in `mcp-server/src/core/resources/`.
- **Registration**: Register resources during server initialization in [`mcp-server/src/index.js`](mdc:mcp-server/src/index.js).
- **Best Practices**: Organize resources, validate parameters, use consistent URIs, handle errors. See [`fastmcp-core.txt`](docs/fastmcp-core.txt) for underlying SDK details.
*(Self-correction: Removed detailed Resource implementation examples as they were less relevant to the current user focus on tool execution flow and project roots. Kept the overview.)*
- **Prefer Direct Function Calls**: For optimal performance and error handling, MCP tools should utilize direct function wrappers defined in [`task-master-core.js`](mdc:mcp-server/src/core/task-master-core.js). These wrappers call the underlying logic from the core modules (e.g., [`task-manager.js`](mdc:scripts/modules/task-manager.js)).
- **Use `executeMCPToolAction`**: This utility function in [`tools/utils.js`](mdc:mcp-server/src/tools/utils.js) is the standard wrapper for executing the main logic within an MCP tool's `execute` function. It handles common boilerplate like logging, argument processing, calling the core action (`*Direct` function), and formatting the response.
- **CLI Execution as Fallback**: The `executeTaskMasterCommand` utility in [`tools/utils.js`](mdc:mcp-server/src/tools/utils.js) allows executing commands via the CLI (`task-master ...`). This should **only** be used as a fallback if a direct function wrapper is not yet implemented or if a specific command intrinsically requires CLI execution.
- **Centralized Utilities** (See also: [`utilities.mdc`](mdc:.cursor/rules/utilities.mdc)):
- Use `findTasksJsonPath` (in [`task-master-core.js`](mdc:mcp-server/src/core/task-master-core.js)) within direct function wrappers to locate the `tasks.json` file consistently.
- **Leverage MCP Utilities**: The file [`tools/utils.js`](mdc:mcp-server/src/tools/utils.js) contains essential helpers for MCP tool implementation:
- `getProjectRoot`: Normalizes project paths (used internally by other utils).
- `handleApiResult`: Standardizes handling results from direct function calls (success/error).
- `createContentResponse`/`createErrorResponse`: Formats successful/error MCP responses.
- `processMCPResponseData`: Filters/cleans data for MCP responses (e.g., removing `details`, `testStrategy`). This is the default processor used by `executeMCPToolAction`.
- `executeMCPToolAction`: The primary wrapper function for tool execution logic.
- `executeTaskMasterCommand`: Fallback for executing CLI commands.
- **Caching**: To improve performance for frequently called read operations (like `listTasks`), a caching layer using `lru-cache` is implemented.
- Caching logic should be added *inside* the direct function wrappers in [`task-master-core.js`](mdc:mcp-server/src/core/task-master-core.js) using the `getCachedOrExecute` utility from [`tools/utils.js`](mdc:mcp-server/src/tools/utils.js).
- Generate unique cache keys based on function arguments that define a distinct call.
- Responses will include a `fromCache` flag.
- Cache statistics can be monitored using the `cacheStats` MCP tool (implemented via `getCacheStatsDirect`).
## Implementing MCP Support for a Command
Follow these steps to add MCP support for an existing Task Master command (see [`new_features.mdc`](mdc:.cursor/rules/new_features.mdc) for more detail):
1. **Ensure Core Logic Exists**: Verify the core functionality is implemented and exported from the relevant module in `scripts/modules/`. Ensure the core function can suppress console output (e.g., via an `outputFormat` parameter).
2. **Create Direct Function File in `mcp-server/src/core/direct-functions/`**:
- Create a new file (e.g., `your-command.js`) using **kebab-case** naming.
- Import necessary core functions, `findTasksJsonPath`, silent mode utilities, and potentially AI client/prompt utilities.
- Implement `async function yourCommandDirect(args, log, context = {})` using **camelCase** with `Direct` suffix. **Remember `context` should only contain `{ session }` if needed (for AI keys/config).**
- **Path Resolution**: Obtain `tasksPath` using `findTasksJsonPath(args, log)`.
- Parse other `args` and perform necessary validation.
- **Handle AI (if applicable)**: Initialize clients using `get*ClientForMCP(session, log)`, build prompts, call AI, parse response. Handle AI-specific errors.
- **Implement Caching (if applicable)**: Use `getCachedOrExecute`.
- **Call Core Logic**:
- Wrap with `enableSilentMode/disableSilentMode` if necessary.
- Pass `outputFormat: 'json'` (or similar) if applicable.
- Handle errors from the core function.
- Format the return as `{ success: true/false, data/error, fromCache?: boolean }`.
- ❌ **DON'T**: Call `reportProgress`.
- Export the wrapper function.
3. **Update `task-master-core.js` with Import/Export**: Import and re-export your `*Direct` function and add it to the `directFunctions` map.
4. **Create MCP Tool (`mcp-server/src/tools/`)**:
- Create a new file (e.g., `your-command.js`) using **kebab-case**.
- Import `zod`, `handleApiResult`, `createErrorResponse`, `getProjectRootFromSession`, and your `yourCommandDirect` function. Import `AsyncOperationManager` if needed.
- Implement `registerYourCommandTool(server)`.
- Define the tool `name` using **snake_case** (e.g., `your_command`).
- Define the `parameters` using `zod`. Include `projectRoot: z.string().optional()`.
- Implement the `async execute(args, { log, session })` method (omitting `reportProgress` from destructuring).
- Get `rootFolder` using `getProjectRootFromSession(session, log)`.
- **Determine Execution Strategy**:
- **If using `AsyncOperationManager`**: Create the operation, call the `*Direct` function from within the async task callback (passing `log` and `{ session }`), report progress *from the callback*, and return the initial `ACCEPTED` response.
- **If calling `*Direct` function synchronously** (like `add-task`): Call `await yourCommandDirect({ ...args, projectRoot }, log, { session });`. Handle the result with `handleApiResult`.
- ❌ **DON'T**: Pass `reportProgress` down to the direct function in either case.
5. **Register Tool**: Import and call `registerYourCommandTool` in `mcp-server/src/tools/index.js`.
6. **Update `mcp.json`**: Add the new tool definition to the `tools` array in `.cursor/mcp.json`.
1. **Ensure Core Logic Exists**: Verify the core functionality is implemented and exported from the relevant module in `scripts/modules/`.
2. **Create Direct Wrapper**: In [`task-master-core.js`](mdc:mcp-server/src/core/task-master-core.js):
- Import the core function.
- Import `getCachedOrExecute` from `../tools/utils.js`.
- Create an `async function yourCommandDirect(args, log)` wrapper.
- Inside the wrapper:
- Determine arguments needed for both the core logic and the cache key (e.g., `tasksPath`, filters). Use `findTasksJsonPath(args, log)` if needed.
- **Generate a unique `cacheKey`** based on the arguments that define a distinct operation (e.g., `\`yourCommand:${tasksPath}:${filter}\``).
- **Define the `coreActionFn`**: An `async` function that contains the actual call to the imported core logic function, handling its specific errors and returning `{ success: true/false, data/error }`.
- **Call `getCachedOrExecute`**:
```javascript
const result = await getCachedOrExecute({
cacheKey,
actionFn: coreActionFn, // The function wrapping the core logic call
log
});
return result; // Returns { success, data/error, fromCache }
```
- Export the wrapper function and add it to the `directFunctions` map.
3. **Create MCP Tool**: In `mcp-server/src/tools/`:
- Create a new file (e.g., `yourCommand.js`).
- Import `z` for parameter schema definition.
- Import `executeMCPToolAction` from [`./utils.js`](mdc:mcp-server/src/tools/utils.js).
- Import the `yourCommandDirect` wrapper function from `../core/task-master-core.js`.
- Implement `registerYourCommandTool(server)`:
- Call `server.addTool`.
- Define `name`, `description`, and `parameters` using `zod`. Include `projectRoot` and `file` as optional parameters if relevant.
- Define the `async execute(args, log)` function.
- Inside `execute`, call `executeMCPToolAction`:
```javascript
return executeMCPToolAction({
actionFn: yourCommandDirect, // The direct function wrapper
args, // Arguments from the tool call
log, // MCP logger instance
actionName: 'Your Command Description', // For logging
// processResult: customProcessor // Optional: if default filtering isn't enough
});
```
4. **Register Tool**: Import and call `registerYourCommandTool` in [`mcp-server/src/tools/index.js`](mdc:mcp-server/src/tools/index.js).
5. **Update `mcp.json`**: Add the new tool definition to the `tools` array in `.cursor/mcp.json`.
## Handling Responses
- MCP tools should return the object generated by `handleApiResult`.
- `handleApiResult` uses `createContentResponse` or `createErrorResponse` internally.
- `handleApiResult` also uses `processMCPResponseData` by default to filter potentially large fields (`details`, `testStrategy`) from task data. Provide a custom processor function to `handleApiResult` if different filtering is needed.
- The final JSON response sent to the MCP client will include the `fromCache` boolean flag (obtained from the `*Direct` function's result) alongside the actual data (e.g., `{ "fromCache": true, "data": { ... } }` or `{ "fromCache": false, "data": { ... } }`).
## Parameter Type Handling
- **Prefer Direct Function Calls**: For optimal performance and error handling, MCP tools should utilize direct function wrappers defined in [`task-master-core.js`](mdc:mcp-server/src/core/task-master-core.js). These wrappers call the underlying logic from the core modules (e.g., [`task-manager.js`](mdc:scripts/modules/task-manager.js)).
- **Standard Tool Execution Pattern**:
- The `execute` method within each MCP tool (in `mcp-server/src/tools/*.js`) should:
1. Call the corresponding `*Direct` function wrapper (e.g., `listTasksDirect`) from [`task-master-core.js`](mdc:mcp-server/src/core/task-master-core.js), passing necessary arguments and the logger.
2. Receive the result object (typically `{ success, data/error, fromCache }`).
3. Pass this result object to the `handleApiResult` utility (from [`tools/utils.js`](mdc:mcp-server/src/tools/utils.js)) for standardized response formatting and error handling.
4. Return the formatted response object provided by `handleApiResult`.
- **CLI Execution as Fallback**: The `executeTaskMasterCommand` utility in [`tools/utils.js`](mdc:mcp-server/src/tools/utils.js) allows executing commands via the CLI (`task-master ...`). This should **only** be used as a fallback if a direct function wrapper is not yet implemented or if a specific command intrinsically requires CLI execution.
- **Centralized Utilities** (See also: [`utilities.mdc`](mdc:.cursor/rules/utilities.mdc)):
- Use `findTasksJsonPath` (in [`task-master-core.js`](mdc:mcp-server/src/core/task-master-core.js)) *within direct function wrappers* to locate the `tasks.json` file consistently.
- **Leverage MCP Utilities**: The file [`tools/utils.js`](mdc:mcp-server/src/tools/utils.js) contains essential helpers for MCP tool implementation:
- `getProjectRoot`: Normalizes project paths.
- `handleApiResult`: Takes the raw result from a `*Direct` function and formats it into a standard MCP success or error response, automatically handling data processing via `processMCPResponseData`. This is called by the tool's `execute` method.
- `createContentResponse`/`createErrorResponse`: Used by `handleApiResult` to format successful/error MCP responses.
- `processMCPResponseData`: Filters/cleans data (e.g., removing `details`, `testStrategy`) before it's sent in the MCP response. Called by `handleApiResult`.
- `getCachedOrExecute`: **Used inside `*Direct` functions** in `task-master-core.js` to implement caching logic.
- `executeTaskMasterCommand`: Fallback for executing CLI commands.
- **Caching**: To improve performance for frequently called read operations (like `listTasks`, `showTask`, `nextTask`), a caching layer using `lru-cache` is implemented.
- **Caching logic resides *within* the direct function wrappers** in [`task-master-core.js`](mdc:mcp-server/src/core/task-master-core.js) using the `getCachedOrExecute` utility from [`tools/utils.js`](mdc:mcp-server/src/tools/utils.js).
- Generate unique cache keys based on function arguments that define a distinct call (e.g., file path, filters).
- The `getCachedOrExecute` utility handles checking the cache, executing the core logic function on a cache miss, storing the result, and returning the data along with a `fromCache` flag.
- Cache statistics can be monitored using the `cacheStats` MCP tool (implemented via `getCacheStatsDirect`).
- **Caching should generally be applied to read-only operations** that don't modify the `tasks.json` state. Commands like `set-status`, `add-task`, `update-task`, `parse-prd`, `add-dependency` should *not* be cached as they change the underlying data.
**MCP Tool Implementation Checklist**:
1. **Core Logic Verification**:
- [ ] Confirm the core function is properly exported from its module (e.g., `task-manager.js`)
- [ ] Identify all required parameters and their types
2. **Direct Function Wrapper**:
- [ ] Create the `*Direct` function in the appropriate file in `mcp-server/src/core/direct-functions/`
- [ ] Import silent mode utilities and implement them around core function calls
- [ ] Handle all parameter validations and type conversions
- [ ] Implement path resolving for relative paths
- [ ] Add appropriate error handling with standardized error codes
- [ ] Add to imports/exports in `task-master-core.js`
3. **MCP Tool Implementation**:
- [ ] Create new file in `mcp-server/src/tools/` with kebab-case naming
- [ ] Define zod schema for all parameters
- [ ] Implement the `execute` method following the standard pattern
- [ ] Consider using AsyncOperationManager for long-running operations
- [ ] Register tool in `mcp-server/src/tools/index.js`
4. **Testing**:
- [ ] Write unit tests for the direct function wrapper
- [ ] Write integration tests for the MCP tool
## Standard Error Codes
- **Standard Error Codes**: Use consistent error codes across direct function wrappers
- `INPUT_VALIDATION_ERROR`: For missing or invalid required parameters
- `FILE_NOT_FOUND_ERROR`: For file system path issues
- `CORE_FUNCTION_ERROR`: For errors thrown by the core function
- `UNEXPECTED_ERROR`: For all other unexpected errors
- **Error Object Structure**:
```javascript
{
success: false,
error: {
code: 'ERROR_CODE',
message: 'Human-readable error message'
},
fromCache: false
}
```
- **MCP Tool Logging Pattern**:
- ✅ DO: Log the start of execution with arguments (sanitized if sensitive)
- ✅ DO: Log successful completion with result summary
- ✅ DO: Log all error conditions with appropriate log levels
- ✅ DO: Include the cache status in result logs
- ❌ DON'T: Log entire large data structures or sensitive information
- The MCP server integrates with Task Master core functions through three layers:
1. Tool Definitions (`mcp-server/src/tools/*.js`) - Define parameters and validation
2. Direct Functions (`mcp-server/src/core/direct-functions/*.js`) - Handle core logic integration
3. Core Functions (`scripts/modules/*.js`) - Implement the actual functionality
- This layered approach provides:
- Clear separation of concerns
- Consistent parameter validation
- Centralized error handling
- Performance optimization through caching (for read operations)
- Standardized response formatting
## MCP Naming Conventions
- **Files and Directories**:
- ✅ DO: Use **kebab-case** for all file names: `list-tasks.js`, `set-task-status.js`
- ✅ DO: Use consistent directory structure: `mcp-server/src/tools/` for tool definitions, `mcp-server/src/core/direct-functions/` for direct function implementations
- **JavaScript Functions**:
- ✅ DO: Use **camelCase** with `Direct` suffix for direct function implementations: `listTasksDirect`, `setTaskStatusDirect`
- ✅ DO: Use **camelCase** with `Tool` suffix for tool registration functions: `registerListTasksTool`, `registerSetTaskStatusTool`
- ✅ DO: Use consistent action function naming inside direct functions: `coreActionFn` or similar descriptive name
- **MCP Tool Names**:
- ✅ DO: Use **snake_case** for tool names exposed to MCP clients: `list_tasks`, `set_task_status`, `parse_prd_document`
- ✅ DO: Include the core action in the tool name without redundant words: Use `list_tasks` instead of `list_all_tasks`
- **Examples**:
- File: `list-tasks.js`
- Direct Function: `listTasksDirect`
- Tool Registration: `registerListTasksTool`
- MCP Tool Name: `list_tasks`
- **Mapping**:
- The `directFunctions` map in `task-master-core.js` maps the core function name (in camelCase) to its direct implementation:
```javascript
export const directFunctions = {
list: listTasksDirect,
setStatus: setTaskStatusDirect,
// Add more functions as implemented
};
```
## Telemetry Integration
- Direct functions calling core logic that involves AI should receive and pass through `telemetryData` within their successful `data` payload. See [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc) for the standard pattern.
- MCP tools use `handleApiResult`, which ensures the `data` object (potentially including `telemetryData`) from the direct function is correctly included in the final response.
- MCP tools should return data formatted by `createContentResponse` (which stringifies objects) or `createErrorResponse`.
- The `processMCPResponseData` utility automatically removes potentially large fields like `details` and `testStrategy` from task objects before they are returned. This is the default behavior when using `executeMCPToolAction`. If specific fields need to be preserved or different fields removed, a custom `processResult` function can be passed to `executeMCPToolAction`.
- The `handleApiResult` utility (used by `executeMCPToolAction`) now expects the result object from the direct function wrapper to include a `fromCache` boolean flag. This flag is included in the final JSON response sent to the MCP client, nested alongside the actual data (e.g., `{ "fromCache": true, "data": { ... } }`).

View File

@@ -3,6 +3,7 @@ description: Guidelines for integrating new features into the Task Master CLI
globs: scripts/modules/*.js
alwaysApply: false
---
# Task Master Feature Integration Guidelines
## Feature Placement Decision Process
@@ -24,183 +25,11 @@ alwaysApply: false
The standard pattern for adding a feature follows this workflow:
1. **Core Logic**: Implement the business logic in the appropriate module (e.g., [`task-manager.js`](mdc:scripts/modules/task-manager.js)).
2. **Context Gathering (If Applicable)**:
- For AI-powered commands that benefit from project context, use the standardized context gathering patterns from [`context_gathering.mdc`](mdc:.cursor/rules/context_gathering.mdc).
- Import `ContextGatherer` and `FuzzyTaskSearch` utilities for reusable context extraction.
- Support multiple context types: tasks, files, custom text, project tree.
- Implement detailed token breakdown display for transparency.
3. **AI Integration (If Applicable)**:
- Import necessary service functions (e.g., `generateTextService`, `streamTextService`) from [`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js).
- Prepare parameters (`role`, `session`, `systemPrompt`, `prompt`).
- Call the service function.
- Handle the response (direct text or stream object).
- **Important**: Prefer `generateTextService` for calls sending large context (like stringified JSON) where incremental display is not needed. See [`ai_services.mdc`](mdc:.cursor/rules/ai_services.mdc) for detailed usage patterns and cautions.
4. **UI Components**: Add any display functions to [`ui.js`](mdc:scripts/modules/ui.js) following [`ui.mdc`](mdc:.cursor/rules/ui.mdc). Consider enhanced formatting with syntax highlighting for code blocks.
5. **Command Integration**: Add the CLI command to [`commands.js`](mdc:scripts/modules/commands.js) following [`commands.mdc`](mdc:.cursor/rules/commands.mdc).
6. **Testing**: Write tests for all components of the feature (following [`tests.mdc`](mdc:.cursor/rules/tests.mdc))
7. **Configuration**: Update configuration settings or add new ones in [`config-manager.js`](mdc:scripts/modules/config-manager.js) and ensure getters/setters are appropriate. Update documentation in [`utilities.mdc`](mdc:.cursor/rules/utilities.mdc) and [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc). Update the `.taskmasterconfig` structure if needed.
8. **Documentation**: Update help text and documentation in [`dev_workflow.mdc`](mdc:.cursor/rules/dev_workflow.mdc) and [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc).
## Critical Checklist for New Features
- **Comprehensive Function Exports**:
- ✅ **DO**: Export **all core functions, helper functions (like `generateSubtaskPrompt`), and utility methods** needed by your new function or command from their respective modules.
- ✅ **DO**: **Explicitly review the module's `export { ... }` block** at the bottom of the file to ensure every required dependency (even seemingly minor helpers like `findTaskById`, `taskExists`, specific prompt generators, AI call handlers, etc.) is included.
- ❌ **DON'T**: Assume internal functions are already exported - **always verify**. A missing export will cause runtime errors (e.g., `ReferenceError: generateSubtaskPrompt is not defined`).
- **Example**: If implementing a feature that checks task existence, ensure the helper function is in exports:
```javascript
// At the bottom of your module file:
export {
// ... existing exports ...
yourNewFunction,
taskExists, // Helper function used by yourNewFunction
findTaskById, // Helper function used by yourNewFunction
generateSubtaskPrompt, // Helper needed by expand/add features
getSubtasksFromAI, // Helper needed by expand/add features
};
```
- **Parameter Completeness and Matching**:
- ✅ **DO**: Pass all required parameters to functions you call within your implementation
- ✅ **DO**: Check function signatures before implementing calls to them
- ✅ **DO**: Verify that direct function parameters match their core function counterparts
- ✅ **DO**: When implementing a direct function for MCP, ensure it only accepts parameters that exist in the core function
- ✅ **DO**: Verify the expected *internal structure* of complex object parameters (like the `mcpLog` object, see mcp.mdc for the required logger wrapper pattern)
- ❌ **DON'T**: Add parameters to direct functions that don't exist in core functions
- ❌ **DON'T**: Assume default parameter values will handle missing arguments
- ❌ **DON'T**: Assume object parameters will work without verifying their required internal structure or methods.
- **Example**: When calling file generation, pass all required parameters:
```javascript
// ✅ DO: Pass all required parameters
await generateTaskFiles(tasksPath, path.dirname(tasksPath));
// ❌ DON'T: Omit required parameters
await generateTaskFiles(tasksPath); // Error - missing outputDir parameter
```
**Example**: Properly match direct function parameters to core function:
```javascript
// Core function signature
async function expandTask(tasksPath, taskId, numSubtasks, useResearch = false, additionalContext = '', options = {}) {
// Implementation...
}
// ✅ DO: Match direct function parameters to core function
export async function expandTaskDirect(args, log, context = {}) {
// Extract only parameters that exist in the core function
const taskId = parseInt(args.id, 10);
const numSubtasks = args.num ? parseInt(args.num, 10) : undefined;
const useResearch = args.research === true;
const additionalContext = args.prompt || '';
// Call core function with matched parameters
const result = await expandTask(
tasksPath,
taskId,
numSubtasks,
useResearch,
additionalContext,
{ mcpLog: log, session: context.session }
);
// Return result
return { success: true, data: result, fromCache: false };
}
// ❌ DON'T: Use parameters that don't exist in the core function
export async function expandTaskDirect(args, log, context = {}) {
// DON'T extract parameters that don't exist in the core function!
const force = args.force === true; // ❌ WRONG - 'force' doesn't exist in core function
// DON'T pass non-existent parameters to core functions
const result = await expandTask(
tasksPath,
args.id,
args.num,
args.research,
args.prompt,
force, // ❌ WRONG - this parameter doesn't exist in the core function
{ mcpLog: log }
);
}
```
- **Consistent File Path Handling**:
- ✅ DO: Use consistent file naming conventions: `task_${id.toString().padStart(3, '0')}.txt`
- ✅ DO: Use `path.join()` for composing file paths
- ✅ DO: Use appropriate file extensions (.txt for tasks, .json for data)
- ❌ DON'T: Hardcode path separators or inconsistent file extensions
- **Example**: Creating file paths for tasks:
```javascript
// ✅ DO: Use consistent file naming and path.join
const taskFileName = path.join(
path.dirname(tasksPath),
`task_${taskId.toString().padStart(3, '0')}.txt`
);
// ❌ DON'T: Use inconsistent naming or string concatenation
const taskFileName = path.dirname(tasksPath) + '/' + taskId + '.md';
```
- **Error Handling and Reporting**:
- ✅ DO: Use structured error objects with code and message properties
- ✅ DO: Include clear error messages identifying the specific problem
- ✅ DO: Handle both function-specific errors and potential file system errors
- ✅ DO: Log errors at appropriate severity levels
- **Example**: Structured error handling in core functions:
```javascript
try {
// Implementation...
} catch (error) {
log('error', `Error removing task: ${error.message}`);
throw {
code: 'REMOVE_TASK_ERROR',
message: error.message,
details: error.stack
};
}
```
- **Silent Mode Implementation**:
- ✅ **DO**: Import all silent mode utilities together:
```javascript
import { enableSilentMode, disableSilentMode, isSilentMode } from '../../../../scripts/modules/utils.js';
```
- ✅ **DO**: Always use `isSilentMode()` function to check global silent mode status, never reference global variables.
- ✅ **DO**: Wrap core function calls **within direct functions** using `enableSilentMode()` and `disableSilentMode()` in a `try/finally` block if the core function might produce console output (like banners, spinners, direct `console.log`s) that isn't reliably controlled by an `outputFormat` parameter.
```javascript
// Direct Function Example:
try {
// Prefer passing 'json' if the core function reliably handles it
const result = await coreFunction(...args, 'json');
// OR, if outputFormat is not enough/unreliable:
// enableSilentMode(); // Enable *before* the call
// const result = await coreFunction(...args);
// disableSilentMode(); // Disable *after* the call (typically in finally)
return { success: true, data: result };
} catch (error) {
log.error(`Error: ${error.message}`);
return { success: false, error: { message: error.message } };
} finally {
// If you used enable/disable, ensure disable is called here
// disableSilentMode();
}
```
- ✅ **DO**: Core functions themselves *should* ideally check `outputFormat === 'text'` before displaying UI elements (banners, spinners, boxes) and use internal logging (`log`/`report`) that respects silent mode. The `enable/disableSilentMode` wrapper in the direct function is a safety net.
- ✅ **DO**: Handle mixed parameter/global silent mode correctly for functions accepting both (less common now, prefer `outputFormat`):
```javascript
// Check both the passed parameter and global silent mode
const isSilent = silentMode || (typeof silentMode === 'undefined' && isSilentMode());
```
- ❌ **DON'T**: Forget to disable silent mode in a `finally` block if you enabled it.
- ❌ **DON'T**: Access the global `silentMode` flag directly.
- **Debugging Strategy**:
- ✅ **DO**: If an MCP tool fails with vague errors (e.g., JSON parsing issues like `Unexpected token ... is not valid JSON`), **try running the equivalent CLI command directly in the terminal** (e.g., `task-master expand --all`). CLI output often provides much more specific error messages (like missing function definitions or stack traces from the core logic) that pinpoint the root cause.
- ❌ **DON'T**: Rely solely on MCP logs if the error is unclear; use the CLI as a complementary debugging tool for core logic issues.
- **Telemetry Integration**: Ensure AI calls correctly handle and propagate `telemetryData` as described in [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc).
2. **UI Components**: Add any display functions to [`ui.js`](mdc:scripts/modules/ui.js) following [`ui.mdc`](mdc:.cursor/rules/ui.mdc).
3. **Command Integration**: Add the CLI command to [`commands.js`](mdc:scripts/modules/commands.js) following [`commands.mdc`](mdc:.cursor/rules/commands.mdc).
4. **Testing**: Write tests for all components of the feature (following [`tests.mdc`](mdc:.cursor/rules/tests.mdc))
5. **Configuration**: Update any configuration in [`utils.js`](mdc:scripts/modules/utils.js) if needed, following [`utilities.mdc`](mdc:.cursor/rules/utilities.mdc).
6. **Documentation**: Update help text and documentation in [dev_workflow.mdc](mdc:scripts/modules/dev_workflow.mdc)
```javascript
// 1. CORE LOGIC: Add function to appropriate module (example in task-manager.js)
@@ -223,29 +52,7 @@ export {
```
```javascript
// 2. AI Integration: Add import and use necessary service functions
import { generateTextService } from './ai-services-unified.js';
// Example usage:
async function handleAIInteraction() {
const role = 'user';
const session = 'exampleSession';
const systemPrompt = 'You are a helpful assistant.';
const prompt = 'What is the capital of France?';
const result = await generateTextService(role, session, systemPrompt, prompt);
console.log(result);
}
// Export from the module
export {
// ... existing exports ...
handleAIInteraction,
};
```
```javascript
// 3. UI COMPONENTS: Add display function to ui.js
// 2. UI COMPONENTS: Add display function to ui.js
/**
* Display archive operation results
* @param {string} archivePath - Path to the archive file
@@ -266,7 +73,7 @@ export {
```
```javascript
// 4. COMMAND INTEGRATION: Add to commands.js
// 3. COMMAND INTEGRATION: Add to commands.js
import { archiveTasks } from './task-manager.js';
import { displayArchiveResults } from './ui.js';
@@ -486,7 +293,7 @@ npm test
For each new feature:
1. Add help text to the command definition
2. Update [`dev_workflow.mdc`](mdc:.cursor/rules/dev_workflow.mdc) with command reference
2. Update [`dev_workflow.mdc`](mdc:scripts/modules/dev_workflow.mdc) with command reference
3. Consider updating [`architecture.mdc`](mdc:.cursor/rules/architecture.mdc) if the feature significantly changes module responsibilities.
Follow the existing command reference format:
@@ -505,132 +312,48 @@ For more information on module structure, see [`MODULE_PLAN.md`](mdc:scripts/mod
## Adding MCP Server Support for Commands
Integrating Task Master commands with the MCP server (for use by tools like Cursor) follows a specific pattern distinct from the CLI command implementation, prioritizing performance and reliability.
Integrating Task Master commands with the MCP server (for use by tools like Cursor) follows a specific pattern distinct from the CLI command implementation.
- **Goal**: Leverage direct function calls to core logic, avoiding CLI overhead.
- **Goal**: Leverage direct function calls for performance and reliability, avoiding CLI overhead.
- **Reference**: See [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc) for full details.
**MCP Integration Workflow**:
1. **Core Logic**: Ensure the command's core logic exists and is exported from the appropriate module (e.g., [`task-manager.js`](mdc:scripts/modules/task-manager.js)).
2. **Direct Function Wrapper (`mcp-server/src/core/direct-functions/`)**:
- Create a new file (e.g., `your-command.js`) in `mcp-server/src/core/direct-functions/` using **kebab-case** naming.
- Import the core logic function, necessary MCP utilities like **`findTasksJsonPath` from `../utils/path-utils.js`**, and **silent mode utilities**: `import { enableSilentMode, disableSilentMode } from '../../../../scripts/modules/utils.js';`
- Implement an `async function yourCommandDirect(args, log)` using **camelCase** with `Direct` suffix.
- **Path Finding**: Inside this function, obtain the `tasksPath` by calling `const tasksPath = findTasksJsonPath(args, log);`. This relies on `args.projectRoot` (derived from the session) being passed correctly.
- Perform validation on other arguments received in `args`.
- **Implement Silent Mode**: Wrap core function calls with `enableSilentMode()` and `disableSilentMode()` to prevent logs from interfering with JSON responses.
- **If Caching**: Implement caching using `getCachedOrExecute` from `../../tools/utils.js`.
- **If Not Caching**: Directly call the core logic function within a try/catch block.
- Format the return as `{ success: true/false, data/error, fromCache: boolean }`.
- Export the wrapper function.
3. **Update `task-master-core.js` with Import/Export**: Import and re-export your `*Direct` function and add it to the `directFunctions` map.
4. **Create MCP Tool (`mcp-server/src/tools/`)**:
- Create a new file (e.g., `your-command.js`) using **kebab-case**.
- Import `zod`, `handleApiResult`, **`withNormalizedProjectRoot` HOF**, and your `yourCommandDirect` function.
- Implement `registerYourCommandTool(server)`.
- **Define parameters**: Make `projectRoot` optional (`z.string().optional().describe(...)`) as the HOF handles fallback.
- Consider if this operation should run in the background using `AsyncOperationManager`.
- Implement the standard `execute` method **wrapped with `withNormalizedProjectRoot`**:
1. **Core Logic**: Ensure the command's core logic exists in the appropriate module (e.g., [`task-manager.js`](mdc:scripts/modules/task-manager.js)).
2. **Direct Function Wrapper**:
- In [`task-master-core.js`](mdc:mcp-server/src/core/task-master-core.js), create an `async function yourCommandDirect(args, log)`.
- This function imports and calls the core logic.
- It uses utilities like `findTasksJsonPath` if needed.
- It handles argument parsing and validation specific to the direct call.
- **Implement Caching (if applicable)**: For read operations that benefit from caching, use the `getCachedOrExecute` utility here to wrap the core logic call. Generate a unique cache key based on relevant arguments.
- It returns a standard `{ success: true/false, data/error, fromCache: boolean }` object.
- Export the function and add it to the `directFunctions` map.
3. **MCP Tool File**:
- Create a new file in `mcp-server/src/tools/` (e.g., `yourCommand.js`).
- Import `zod`, `executeMCPToolAction` from `./utils.js`, and your `yourCommandDirect` function.
- Implement `registerYourCommandTool(server)` which calls `server.addTool`:
- Define the tool `name`, `description`, and `parameters` using `zod`. Include optional `projectRoot` and `file` if relevant, following patterns in existing tools.
- Define the `async execute(args, log)` method for the tool.
- **Crucially**, the `execute` method should primarily call `executeMCPToolAction`:
```javascript
execute: withNormalizedProjectRoot(async (args, { log, session }) => {
// args.projectRoot is now normalized
const { projectRoot /*, other args */ } = args;
// ... resolve tasks path if needed using normalized projectRoot ...
const result = await yourCommandDirect(
{ /* other args */, projectRoot /* if needed by direct func */ },
log,
{ session }
);
return handleApiResult(result, log);
})
```
5. **Register Tool**: Import and call `registerYourCommandTool` in `mcp-server/src/tools/index.js`.
6. **Update `mcp.json`**: Add the new tool definition to the `tools` array in `.cursor/mcp.json`.
## Implementing Background Operations
For long-running operations that should not block the client, use the AsyncOperationManager:
1. **Identify Background-Appropriate Operations**:
- ✅ **DO**: Use async operations for CPU-intensive tasks like task expansion or PRD parsing
- ✅ **DO**: Consider async operations for tasks that may take more than 1-2 seconds
- ❌ **DON'T**: Use async operations for quick read/status operations
- ❌ **DON'T**: Use async operations when immediate feedback is critical
2. **Use AsyncOperationManager in MCP Tools**:
```javascript
import { asyncOperationManager } from '../core/utils/async-manager.js';
// In execute method:
const operationId = asyncOperationManager.addOperation(
expandTaskDirect, // The direct function to run in background
{ ...args, projectRoot: rootFolder }, // Args to pass to the function
{ log, reportProgress, session } // Context to preserve for the operation
);
// Return immediate response with operation ID
return createContentResponse({
message: "Operation started successfully",
operationId,
status: "pending"
});
```
3. **Implement Progress Reporting**:
- ✅ **DO**: Use the reportProgress function in direct functions:
```javascript
// In your direct function:
if (reportProgress) {
await reportProgress({ progress: 50 }); // 50% complete
}
```
- AsyncOperationManager will forward progress updates to the client
4. **Check Operation Status**:
- Implement a way for clients to check status using the `get_operation_status` MCP tool
- Return appropriate status codes and messages
## Project Initialization
When implementing project initialization commands:
1. **Support Programmatic Initialization**:
- ✅ **DO**: Design initialization to work with both CLI and MCP
- ✅ **DO**: Support non-interactive modes with sensible defaults
- ✅ **DO**: Handle project metadata like name, description, version
- ✅ **DO**: Create necessary files and directories
2. **In MCP Tool Implementation**:
```javascript
// In initialize-project.js MCP tool:
// In mcp-server/src/tools/yourCommand.js
import { executeMCPToolAction } from "./utils.js";
import { yourCommandDirect } from "../core/task-master-core.js";
import { z } from "zod";
import { initializeProjectDirect } from "../core/task-master-core.js";
export function registerInitializeProjectTool(server) {
export function registerYourCommandTool(server) {
server.addTool({
name: "initialize_project",
description: "Initialize a new Task Master project",
parameters: z.object({
projectName: z.string().optional().describe("The name for the new project"),
projectDescription: z.string().optional().describe("A brief description"),
projectVersion: z.string().optional().describe("Initial version (e.g., '0.1.0')"),
// Add other parameters as needed
}),
execute: async (args, { log, reportProgress, session }) => {
try {
// No need for project root since we're creating a new project
const result = await initializeProjectDirect(args, log);
return handleApiResult(result, log, 'Error initializing project');
} catch (error) {
log.error(`Error in initialize_project: ${error.message}`);
return createErrorResponse(`Failed to initialize project: ${error.message}`);
}
name: "yourCommand",
description: "Description of your command.",
parameters: z.object({ /* zod schema */ }),
async execute(args, log) {
return executeMCPToolAction({
actionFn: yourCommandDirect, // Pass the direct function wrapper
args, log, actionName: "Your Command Description"
});
}
});
}
```
4. **Register in Tool Index**: Import and call `registerYourCommandTool` in [`mcp-server/src/tools/index.js`](mdc:mcp-server/src/tools/index.js).
5. **Update `mcp.json`**: Add the tool definition to `.cursor/mcp.json`.

View File

@@ -69,4 +69,5 @@ alwaysApply: true
- Update references to external docs
- Maintain links between related rules
- Document breaking changes
Follow [cursor_rules.mdc](mdc:.cursor/rules/cursor_rules.mdc) for proper rule formatting and structure.

View File

@@ -1,445 +0,0 @@
---
description: Comprehensive reference for Taskmaster MCP tools and CLI commands.
globs: **/*
alwaysApply: true
---
# Taskmaster Tool & Command Reference
This document provides a detailed reference for interacting with Taskmaster, covering both the recommended MCP tools, suitable for integrations like Cursor, and the corresponding `task-master` CLI commands, designed for direct user interaction or fallback.
**Note:** For interacting with Taskmaster programmatically or via integrated tools, using the **MCP tools is strongly recommended** due to better performance, structured data, and error handling. The CLI commands serve as a user-friendly alternative and fallback.
**Important:** Several MCP tools involve AI processing... The AI-powered tools include `parse_prd`, `analyze_project_complexity`, `update_subtask`, `update_task`, `update`, `expand_all`, `expand_task`, and `add_task`.
---
## Initialization & Setup
### 1. Initialize Project (`init`)
* **MCP Tool:** `initialize_project`
* **CLI Command:** `task-master init [options]`
* **Description:** `Set up the basic Taskmaster file structure and configuration in the current directory for a new project.`
* **Key CLI Options:**
* `--name <name>`: `Set the name for your project in Taskmaster's configuration.`
* `--description <text>`: `Provide a brief description for your project.`
* `--version <version>`: `Set the initial version for your project, e.g., '0.1.0'.`
* `-y, --yes`: `Initialize Taskmaster quickly using default settings without interactive prompts.`
* **Usage:** Run this once at the beginning of a new project.
* **MCP Variant Description:** `Set up the basic Taskmaster file structure and configuration in the current directory for a new project by running the 'task-master init' command.`
* **Key MCP Parameters/Options:**
* `projectName`: `Set the name for your project.` (CLI: `--name <name>`)
* `projectDescription`: `Provide a brief description for your project.` (CLI: `--description <text>`)
* `projectVersion`: `Set the initial version for your project, e.g., '0.1.0'.` (CLI: `--version <version>`)
* `authorName`: `Author name.` (CLI: `--author <author>`)
* `skipInstall`: `Skip installing dependencies. Default is false.` (CLI: `--skip-install`)
* `addAliases`: `Add shell aliases tm and taskmaster. Default is false.` (CLI: `--aliases`)
* `yes`: `Skip prompts and use defaults/provided arguments. Default is false.` (CLI: `-y, --yes`)
* **Usage:** Run this once at the beginning of a new project, typically via an integrated tool like Cursor. Operates on the current working directory of the MCP server.
* **Important:** Once complete, you *MUST* parse a prd in order to generate tasks. There will be no tasks files until then. The next step after initializing should be to create a PRD using the example PRD in scripts/example_prd.txt.
### 2. Parse PRD (`parse_prd`)
* **MCP Tool:** `parse_prd`
* **CLI Command:** `task-master parse-prd [file] [options]`
* **Description:** `Parse a Product Requirements Document, PRD, or text file with Taskmaster to automatically generate an initial set of tasks in tasks.json.`
* **Key Parameters/Options:**
* `input`: `Path to your PRD or requirements text file that Taskmaster should parse for tasks.` (CLI: `[file]` positional or `-i, --input <file>`)
* `output`: `Specify where Taskmaster should save the generated 'tasks.json' file. Defaults to 'tasks/tasks.json'.` (CLI: `-o, --output <file>`)
* `numTasks`: `Approximate number of top-level tasks Taskmaster should aim to generate from the document.` (CLI: `-n, --num-tasks <number>`)
* `force`: `Use this to allow Taskmaster to overwrite an existing 'tasks.json' without asking for confirmation.` (CLI: `-f, --force`)
* **Usage:** Useful for bootstrapping a project from an existing requirements document.
* **Notes:** Task Master will strictly adhere to any specific requirements mentioned in the PRD, such as libraries, database schemas, frameworks, tech stacks, etc., while filling in any gaps where the PRD isn't fully specified. Tasks are designed to provide the most direct implementation path while avoiding over-engineering.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress. If the user does not have a PRD, suggest discussing their idea and then use the example PRD in `scripts/example_prd.txt` as a template for creating the PRD based on their idea, for use with `parse-prd`.
---
## AI Model Configuration
### 2. Manage Models (`models`)
* **MCP Tool:** `models`
* **CLI Command:** `task-master models [options]`
* **Description:** `View the current AI model configuration or set specific models for different roles (main, research, fallback). Allows setting custom model IDs for Ollama and OpenRouter.`
* **Key MCP Parameters/Options:**
* `setMain <model_id>`: `Set the primary model ID for task generation/updates.` (CLI: `--set-main <model_id>`)
* `setResearch <model_id>`: `Set the model ID for research-backed operations.` (CLI: `--set-research <model_id>`)
* `setFallback <model_id>`: `Set the model ID to use if the primary fails.` (CLI: `--set-fallback <model_id>`)
* `ollama <boolean>`: `Indicates the set model ID is a custom Ollama model.` (CLI: `--ollama`)
* `openrouter <boolean>`: `Indicates the set model ID is a custom OpenRouter model.` (CLI: `--openrouter`)
* `listAvailableModels <boolean>`: `If true, lists available models not currently assigned to a role.` (CLI: No direct equivalent; CLI lists available automatically)
* `projectRoot <string>`: `Optional. Absolute path to the project root directory.` (CLI: Determined automatically)
* **Key CLI Options:**
* `--set-main <model_id>`: `Set the primary model.`
* `--set-research <model_id>`: `Set the research model.`
* `--set-fallback <model_id>`: `Set the fallback model.`
* `--ollama`: `Specify that the provided model ID is for Ollama (use with --set-*).`
* `--openrouter`: `Specify that the provided model ID is for OpenRouter (use with --set-*). Validates against OpenRouter API.`
* `--setup`: `Run interactive setup to configure models, including custom Ollama/OpenRouter IDs.`
* **Usage (MCP):** Call without set flags to get current config. Use `setMain`, `setResearch`, or `setFallback` with a valid model ID to update the configuration. Use `listAvailableModels: true` to get a list of unassigned models. To set a custom model, provide the model ID and set `ollama: true` or `openrouter: true`.
* **Usage (CLI):** Run without flags to view current configuration and available models. Use set flags to update specific roles. Use `--setup` for guided configuration, including custom models. To set a custom model via flags, use `--set-<role>=<model_id>` along with either `--ollama` or `--openrouter`.
* **Notes:** Configuration is stored in `.taskmasterconfig` in the project root. This command/tool modifies that file. Use `listAvailableModels` or `task-master models` to see internally supported models. OpenRouter custom models are validated against their live API. Ollama custom models are not validated live.
* **API note:** API keys for selected AI providers (based on their model) need to exist in the mcp.json file to be accessible in MCP context. The API keys must be present in the local .env file for the CLI to be able to read them.
* **Model costs:** The costs in supported models are expressed in dollars. An input/output value of 3 is $3.00. A value of 0.8 is $0.80.
* **Warning:** DO NOT MANUALLY EDIT THE .taskmasterconfig FILE. Use the included commands either in the MCP or CLI format as needed. Always prioritize MCP tools when available and use the CLI as a fallback.
---
## Task Listing & Viewing
### 3. Get Tasks (`get_tasks`)
* **MCP Tool:** `get_tasks`
* **CLI Command:** `task-master list [options]`
* **Description:** `List your Taskmaster tasks, optionally filtering by status and showing subtasks.`
* **Key Parameters/Options:**
* `status`: `Show only Taskmaster tasks matching this status, e.g., 'pending' or 'done'.` (CLI: `-s, --status <status>`)
* `withSubtasks`: `Include subtasks indented under their parent tasks in the list.` (CLI: `--with-subtasks`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Get an overview of the project status, often used at the start of a work session.
### 4. Get Next Task (`next_task`)
* **MCP Tool:** `next_task`
* **CLI Command:** `task-master next [options]`
* **Description:** `Ask Taskmaster to show the next available task you can work on, based on status and completed dependencies.`
* **Key Parameters/Options:**
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Identify what to work on next according to the plan.
### 5. Get Task Details (`get_task`)
* **MCP Tool:** `get_task`
* **CLI Command:** `task-master show [id] [options]`
* **Description:** `Display detailed information for a specific Taskmaster task or subtask by its ID.`
* **Key Parameters/Options:**
* `id`: `Required. The ID of the Taskmaster task, e.g., '15', or subtask, e.g., '15.2', you want to view.` (CLI: `[id]. Supports comma-separated list of tasks to get multiple tasks at once.` positional or `-i, --id <id>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Understand the full details, implementation notes, and test strategy for a specific task before starting work.
* **CRITICAL INFORMATION** If you need to collect information from multiple tasks, use comma-separated IDs (i.e. 1,2,3) to receive an array of tasks. Do not needlessly get tasks one at a time if you need to get many as that is wasteful.
---
## Task Creation & Modification
### 6. Add Task (`add_task`)
* **MCP Tool:** `add_task`
* **CLI Command:** `task-master add-task [options]`
* **Description:** `Add a new task to Taskmaster by describing it; AI will structure it.`
* **Key Parameters/Options:**
* `prompt`: `Required. Describe the new task you want Taskmaster to create, e.g., "Implement user authentication using JWT".` (CLI: `-p, --prompt <text>`)
* `dependencies`: `Specify the IDs of any Taskmaster tasks that must be completed before this new one can start, e.g., '12,14'.` (CLI: `-d, --dependencies <ids>`)
* `priority`: `Set the priority for the new task: 'high', 'medium', or 'low'. Default is 'medium'.` (CLI: `--priority <priority>`)
* `research`: `Enable Taskmaster to use the research role for potentially more informed task creation.` (CLI: `-r, --research`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Quickly add newly identified tasks during development.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
### 7. Add Subtask (`add_subtask`)
* **MCP Tool:** `add_subtask`
* **CLI Command:** `task-master add-subtask [options]`
* **Description:** `Add a new subtask to a Taskmaster parent task, or convert an existing task into a subtask.`
* **Key Parameters/Options:**
* `id` / `parent`: `Required. The ID of the Taskmaster task that will be the parent.` (MCP: `id`, CLI: `-p, --parent <id>`)
* `taskId`: `Use this if you want to convert an existing top-level Taskmaster task into a subtask of the specified parent.` (CLI: `-i, --task-id <id>`)
* `title`: `Required if not using taskId. The title for the new subtask Taskmaster should create.` (CLI: `-t, --title <title>`)
* `description`: `A brief description for the new subtask.` (CLI: `-d, --description <text>`)
* `details`: `Provide implementation notes or details for the new subtask.` (CLI: `--details <text>`)
* `dependencies`: `Specify IDs of other tasks or subtasks, e.g., '15' or '16.1', that must be done before this new subtask.` (CLI: `--dependencies <ids>`)
* `status`: `Set the initial status for the new subtask. Default is 'pending'.` (CLI: `-s, --status <status>`)
* `skipGenerate`: `Prevent Taskmaster from automatically regenerating markdown task files after adding the subtask.` (CLI: `--skip-generate`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Break down tasks manually or reorganize existing tasks.
### 8. Update Tasks (`update`)
* **MCP Tool:** `update`
* **CLI Command:** `task-master update [options]`
* **Description:** `Update multiple upcoming tasks in Taskmaster based on new context or changes, starting from a specific task ID.`
* **Key Parameters/Options:**
* `from`: `Required. The ID of the first task Taskmaster should update. All tasks with this ID or higher that are not 'done' will be considered.` (CLI: `--from <id>`)
* `prompt`: `Required. Explain the change or new context for Taskmaster to apply to the tasks, e.g., "We are now using React Query instead of Redux Toolkit for data fetching".` (CLI: `-p, --prompt <text>`)
* `research`: `Enable Taskmaster to use the research role for more informed updates. Requires appropriate API key.` (CLI: `-r, --research`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Handle significant implementation changes or pivots that affect multiple future tasks. Example CLI: `task-master update --from='18' --prompt='Switching to React Query.\nNeed to refactor data fetching...'`
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
### 9. Update Task (`update_task`)
* **MCP Tool:** `update_task`
* **CLI Command:** `task-master update-task [options]`
* **Description:** `Modify a specific Taskmaster task or subtask by its ID, incorporating new information or changes.`
* **Key Parameters/Options:**
* `id`: `Required. The specific ID of the Taskmaster task, e.g., '15', or subtask, e.g., '15.2', you want to update.` (CLI: `-i, --id <id>`)
* `prompt`: `Required. Explain the specific changes or provide the new information Taskmaster should incorporate into this task.` (CLI: `-p, --prompt <text>`)
* `research`: `Enable Taskmaster to use the research role for more informed updates. Requires appropriate API key.` (CLI: `-r, --research`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Refine a specific task based on new understanding or feedback. Example CLI: `task-master update-task --id='15' --prompt='Clarification: Use PostgreSQL instead of MySQL.\nUpdate schema details...'`
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
### 10. Update Subtask (`update_subtask`)
* **MCP Tool:** `update_subtask`
* **CLI Command:** `task-master update-subtask [options]`
* **Description:** `Append timestamped notes or details to a specific Taskmaster subtask without overwriting existing content. Intended for iterative implementation logging.`
* **Key Parameters/Options:**
* `id`: `Required. The specific ID of the Taskmaster subtask, e.g., '15.2', you want to add information to.` (CLI: `-i, --id <id>`)
* `prompt`: `Required. Provide the information or notes Taskmaster should append to the subtask's details. Ensure this adds *new* information not already present.` (CLI: `-p, --prompt <text>`)
* `research`: `Enable Taskmaster to use the research role for more informed updates. Requires appropriate API key.` (CLI: `-r, --research`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Add implementation notes, code snippets, or clarifications to a subtask during development. Before calling, review the subtask's current details to append only fresh insights, helping to build a detailed log of the implementation journey and avoid redundancy. Example CLI: `task-master update-subtask --id='15.2' --prompt='Discovered that the API requires header X.\nImplementation needs adjustment...'`
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
### 11. Set Task Status (`set_task_status`)
* **MCP Tool:** `set_task_status`
* **CLI Command:** `task-master set-status [options]`
* **Description:** `Update the status of one or more Taskmaster tasks or subtasks, e.g., 'pending', 'in-progress', 'done'.`
* **Key Parameters/Options:**
* `id`: `Required. The ID(s) of the Taskmaster task(s) or subtask(s), e.g., '15', '15.2', or '16,17.1', to update.` (CLI: `-i, --id <id>`)
* `status`: `Required. The new status to set, e.g., 'done', 'pending', 'in-progress', 'review', 'cancelled'.` (CLI: `-s, --status <status>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Mark progress as tasks move through the development cycle.
### 12. Remove Task (`remove_task`)
* **MCP Tool:** `remove_task`
* **CLI Command:** `task-master remove-task [options]`
* **Description:** `Permanently remove a task or subtask from the Taskmaster tasks list.`
* **Key Parameters/Options:**
* `id`: `Required. The ID of the Taskmaster task, e.g., '5', or subtask, e.g., '5.2', to permanently remove.` (CLI: `-i, --id <id>`)
* `yes`: `Skip the confirmation prompt and immediately delete the task.` (CLI: `-y, --yes`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Permanently delete tasks or subtasks that are no longer needed in the project.
* **Notes:** Use with caution as this operation cannot be undone. Consider using 'blocked', 'cancelled', or 'deferred' status instead if you just want to exclude a task from active planning but keep it for reference. The command automatically cleans up dependency references in other tasks.
---
## Task Structure & Breakdown
### 13. Expand Task (`expand_task`)
* **MCP Tool:** `expand_task`
* **CLI Command:** `task-master expand [options]`
* **Description:** `Use Taskmaster's AI to break down a complex task into smaller, manageable subtasks. Appends subtasks by default.`
* **Key Parameters/Options:**
* `id`: `The ID of the specific Taskmaster task you want to break down into subtasks.` (CLI: `-i, --id <id>`)
* `num`: `Optional: Suggests how many subtasks Taskmaster should aim to create. Uses complexity analysis/defaults otherwise.` (CLI: `-n, --num <number>`)
* `research`: `Enable Taskmaster to use the research role for more informed subtask generation. Requires appropriate API key.` (CLI: `-r, --research`)
* `prompt`: `Optional: Provide extra context or specific instructions to Taskmaster for generating the subtasks.` (CLI: `-p, --prompt <text>`)
* `force`: `Optional: If true, clear existing subtasks before generating new ones. Default is false (append).` (CLI: `--force`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Generate a detailed implementation plan for a complex task before starting coding. Automatically uses complexity report recommendations if available and `num` is not specified.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
### 14. Expand All Tasks (`expand_all`)
* **MCP Tool:** `expand_all`
* **CLI Command:** `task-master expand --all [options]` (Note: CLI uses the `expand` command with the `--all` flag)
* **Description:** `Tell Taskmaster to automatically expand all eligible pending/in-progress tasks based on complexity analysis or defaults. Appends subtasks by default.`
* **Key Parameters/Options:**
* `num`: `Optional: Suggests how many subtasks Taskmaster should aim to create per task.` (CLI: `-n, --num <number>`)
* `research`: `Enable research role for more informed subtask generation. Requires appropriate API key.` (CLI: `-r, --research`)
* `prompt`: `Optional: Provide extra context for Taskmaster to apply generally during expansion.` (CLI: `-p, --prompt <text>`)
* `force`: `Optional: If true, clear existing subtasks before generating new ones for each eligible task. Default is false (append).` (CLI: `--force`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Useful after initial task generation or complexity analysis to break down multiple tasks at once.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
### 15. Clear Subtasks (`clear_subtasks`)
* **MCP Tool:** `clear_subtasks`
* **CLI Command:** `task-master clear-subtasks [options]`
* **Description:** `Remove all subtasks from one or more specified Taskmaster parent tasks.`
* **Key Parameters/Options:**
* `id`: `The ID(s) of the Taskmaster parent task(s) whose subtasks you want to remove, e.g., '15' or '16,18'. Required unless using `all`.) (CLI: `-i, --id <ids>`)
* `all`: `Tell Taskmaster to remove subtasks from all parent tasks.` (CLI: `--all`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Used before regenerating subtasks with `expand_task` if the previous breakdown needs replacement.
### 16. Remove Subtask (`remove_subtask`)
* **MCP Tool:** `remove_subtask`
* **CLI Command:** `task-master remove-subtask [options]`
* **Description:** `Remove a subtask from its Taskmaster parent, optionally converting it into a standalone task.`
* **Key Parameters/Options:**
* `id`: `Required. The ID(s) of the Taskmaster subtask(s) to remove, e.g., '15.2' or '16.1,16.3'.` (CLI: `-i, --id <id>`)
* `convert`: `If used, Taskmaster will turn the subtask into a regular top-level task instead of deleting it.` (CLI: `-c, --convert`)
* `skipGenerate`: `Prevent Taskmaster from automatically regenerating markdown task files after removing the subtask.` (CLI: `--skip-generate`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Delete unnecessary subtasks or promote a subtask to a top-level task.
### 17. Move Task (`move_task`)
* **MCP Tool:** `move_task`
* **CLI Command:** `task-master move [options]`
* **Description:** `Move a task or subtask to a new position within the task hierarchy.`
* **Key Parameters/Options:**
* `from`: `Required. ID of the task/subtask to move (e.g., "5" or "5.2"). Can be comma-separated for multiple tasks.` (CLI: `--from <id>`)
* `to`: `Required. ID of the destination (e.g., "7" or "7.3"). Must match the number of source IDs if comma-separated.` (CLI: `--to <id>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Reorganize tasks by moving them within the hierarchy. Supports various scenarios like:
* Moving a task to become a subtask
* Moving a subtask to become a standalone task
* Moving a subtask to a different parent
* Reordering subtasks within the same parent
* Moving a task to a new, non-existent ID (automatically creates placeholders)
* Moving multiple tasks at once with comma-separated IDs
* **Validation Features:**
* Allows moving tasks to non-existent destination IDs (creates placeholder tasks)
* Prevents moving to existing task IDs that already have content (to avoid overwriting)
* Validates that source tasks exist before attempting to move them
* Maintains proper parent-child relationships
* **Example CLI:** `task-master move --from=5.2 --to=7.3` to move subtask 5.2 to become subtask 7.3.
* **Example Multi-Move:** `task-master move --from=10,11,12 --to=16,17,18` to move multiple tasks to new positions.
* **Common Use:** Resolving merge conflicts in tasks.json when multiple team members create tasks on different branches.
---
## Dependency Management
### 18. Add Dependency (`add_dependency`)
* **MCP Tool:** `add_dependency`
* **CLI Command:** `task-master add-dependency [options]`
* **Description:** `Define a dependency in Taskmaster, making one task a prerequisite for another.`
* **Key Parameters/Options:**
* `id`: `Required. The ID of the Taskmaster task that will depend on another.` (CLI: `-i, --id <id>`)
* `dependsOn`: `Required. The ID of the Taskmaster task that must be completed first, the prerequisite.` (CLI: `-d, --depends-on <id>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <path>`)
* **Usage:** Establish the correct order of execution between tasks.
### 19. Remove Dependency (`remove_dependency`)
* **MCP Tool:** `remove_dependency`
* **CLI Command:** `task-master remove-dependency [options]`
* **Description:** `Remove a dependency relationship between two Taskmaster tasks.`
* **Key Parameters/Options:**
* `id`: `Required. The ID of the Taskmaster task you want to remove a prerequisite from.` (CLI: `-i, --id <id>`)
* `dependsOn`: `Required. The ID of the Taskmaster task that should no longer be a prerequisite.` (CLI: `-d, --depends-on <id>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Update task relationships when the order of execution changes.
### 20. Validate Dependencies (`validate_dependencies`)
* **MCP Tool:** `validate_dependencies`
* **CLI Command:** `task-master validate-dependencies [options]`
* **Description:** `Check your Taskmaster tasks for dependency issues (like circular references or links to non-existent tasks) without making changes.`
* **Key Parameters/Options:**
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Audit the integrity of your task dependencies.
### 21. Fix Dependencies (`fix_dependencies`)
* **MCP Tool:** `fix_dependencies`
* **CLI Command:** `task-master fix-dependencies [options]`
* **Description:** `Automatically fix dependency issues (like circular references or links to non-existent tasks) in your Taskmaster tasks.`
* **Key Parameters/Options:**
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Clean up dependency errors automatically.
---
## Analysis & Reporting
### 22. Analyze Project Complexity (`analyze_project_complexity`)
* **MCP Tool:** `analyze_project_complexity`
* **CLI Command:** `task-master analyze-complexity [options]`
* **Description:** `Have Taskmaster analyze your tasks to determine their complexity and suggest which ones need to be broken down further.`
* **Key Parameters/Options:**
* `output`: `Where to save the complexity analysis report (default: 'scripts/task-complexity-report.json').` (CLI: `-o, --output <file>`)
* `threshold`: `The minimum complexity score (1-10) that should trigger a recommendation to expand a task.` (CLI: `-t, --threshold <number>`)
* `research`: `Enable research role for more accurate complexity analysis. Requires appropriate API key.` (CLI: `-r, --research`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Used before breaking down tasks to identify which ones need the most attention.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
### 23. View Complexity Report (`complexity_report`)
* **MCP Tool:** `complexity_report`
* **CLI Command:** `task-master complexity-report [options]`
* **Description:** `Display the task complexity analysis report in a readable format.`
* **Key Parameters/Options:**
* `file`: `Path to the complexity report (default: 'scripts/task-complexity-report.json').` (CLI: `-f, --file <file>`)
* **Usage:** Review and understand the complexity analysis results after running analyze-complexity.
---
## AI-Powered Research
### 25. Research (`research`)
* **MCP Tool:** `research`
* **CLI Command:** `task-master research [options]`
* **Description:** `Perform AI-powered research queries with project context to get fresh, up-to-date information beyond the AI's knowledge cutoff.`
* **Key Parameters/Options:**
* `query`: `Required. Research query/prompt (e.g., "What are the latest best practices for React Query v5?").` (CLI: `[query]` positional or `-q, --query <text>`)
* `taskIds`: `Comma-separated list of task/subtask IDs for context (e.g., "15,16.2,17").` (CLI: `-i, --id <ids>`)
* `filePaths`: `Comma-separated list of file paths for context (e.g., "src/api.js,docs/readme.md").` (CLI: `-f, --files <paths>`)
* `customContext`: `Additional custom context text to include in the research.` (CLI: `-c, --context <text>`)
* `includeProjectTree`: `Include project file tree structure in context (default: false).` (CLI: `--tree`)
* `detailLevel`: `Detail level for the research response: 'low', 'medium', 'high' (default: medium).` (CLI: `--detail <level>`)
* `projectRoot`: `The directory of the project. Must be an absolute path.` (CLI: Determined automatically)
* **Usage:** **This is a POWERFUL tool that agents should use FREQUENTLY** to:
* Get fresh information beyond knowledge cutoff dates
* Research latest best practices, library updates, security patches
* Find implementation examples for specific technologies
* Validate approaches against current industry standards
* Get contextual advice based on project files and tasks
* **When to Consider Using Research:**
* **Before implementing any task** - Research current best practices
* **When encountering new technologies** - Get up-to-date implementation guidance (libraries, apis, etc)
* **For security-related tasks** - Find latest security recommendations
* **When updating dependencies** - Research breaking changes and migration guides
* **For performance optimization** - Get current performance best practices
* **When debugging complex issues** - Research known solutions and workarounds
* **Research + Action Pattern:**
* Use `research` to gather fresh information
* Use `update_subtask` to commit findings with timestamps
* Use `update_task` to incorporate research into task details
* Use `add_task` with research flag for informed task creation
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. The research provides FRESH data beyond the AI's training cutoff, making it invaluable for current best practices and recent developments.
---
## File Management
### 24. Generate Task Files (`generate`)
* **MCP Tool:** `generate`
* **CLI Command:** `task-master generate [options]`
* **Description:** `Create or update individual Markdown files for each task based on your tasks.json.`
* **Key Parameters/Options:**
* `output`: `The directory where Taskmaster should save the task files (default: in a 'tasks' directory).` (CLI: `-o, --output <directory>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Run this after making changes to tasks.json to keep individual task files up to date.
---
## Environment Variables Configuration (Updated)
Taskmaster primarily uses the **`.taskmasterconfig`** file (in project root) for configuration (models, parameters, logging level, etc.), managed via `task-master models --setup`.
Environment variables are used **only** for sensitive API keys related to AI providers and specific overrides like the Ollama base URL:
* **API Keys (Required for corresponding provider):**
* `ANTHROPIC_API_KEY`
* `PERPLEXITY_API_KEY`
* `OPENAI_API_KEY`
* `GOOGLE_API_KEY`
* `MISTRAL_API_KEY`
* `AZURE_OPENAI_API_KEY` (Requires `AZURE_OPENAI_ENDPOINT` too)
* `OPENROUTER_API_KEY`
* `XAI_API_KEY`
* `OLLANA_API_KEY` (Requires `OLLAMA_BASE_URL` too)
* **Endpoints (Optional/Provider Specific inside .taskmasterconfig):**
* `AZURE_OPENAI_ENDPOINT`
* `OLLAMA_BASE_URL` (Default: `http://localhost:11434/api`)
**Set API keys** in your **`.env`** file in the project root (for CLI use) or within the `env` section of your **`.cursor/mcp.json`** file (for MCP/Cursor integration). All other settings (model choice, max tokens, temperature, log level, custom endpoints) are managed in `.taskmasterconfig` via `task-master models` command or `models` MCP tool.
---
For details on how these commands fit into the development process, see the [Development Workflow Guide](mdc:.cursor/rules/dev_workflow.mdc).

View File

@@ -1,408 +0,0 @@
---
description:
globs:
alwaysApply: true
---
# Test Workflow & Development Process
## **Test-Driven Development (TDD) Integration**
### **Core TDD Cycle with Jest**
```bash
# 1. Start development with watch mode
npm run test:watch
# 2. Write failing test first
# Create test file: src/utils/newFeature.test.ts
# Write test that describes expected behavior
# 3. Implement minimum code to make test pass
# 4. Refactor while keeping tests green
# 5. Add edge cases and error scenarios
```
### **TDD Workflow Per Subtask**
```bash
# When starting a new subtask:
task-master set-status --id=4.1 --status=in-progress
# Begin TDD cycle:
npm run test:watch # Keep running during development
# Document TDD progress in subtask:
task-master update-subtask --id=4.1 --prompt="TDD Progress:
- Written 3 failing tests for core functionality
- Implemented basic feature, tests now passing
- Adding edge case tests for error handling"
# Complete subtask with test summary:
task-master update-subtask --id=4.1 --prompt="Implementation complete:
- Feature implemented with 8 unit tests
- Coverage: 95% statements, 88% branches
- All tests passing, TDD cycle complete"
```
## **Testing Commands & Usage**
### **Development Commands**
```bash
# Primary development command - use during coding
npm run test:watch # Watch mode with Jest
npm run test:watch -- --testNamePattern="auth" # Watch specific tests
# Targeted testing during development
npm run test:unit # Run only unit tests
npm run test:unit -- --coverage # Unit tests with coverage
# Integration testing when APIs are ready
npm run test:integration # Run integration tests
npm run test:integration -- --detectOpenHandles # Debug hanging tests
# End-to-end testing for workflows
npm run test:e2e # Run E2E tests
npm run test:e2e -- --timeout=30000 # Extended timeout for E2E
```
### **Quality Assurance Commands**
```bash
# Full test suite with coverage (before commits)
npm run test:coverage # Complete coverage analysis
# All tests (CI/CD pipeline)
npm test # Run all test projects
# Specific test file execution
npm test -- auth.test.ts # Run specific test file
npm test -- --testNamePattern="should handle errors" # Run specific tests
```
## **Test Implementation Patterns**
### **Unit Test Development**
```typescript
// ✅ DO: Follow established patterns from auth.test.ts
describe('FeatureName', () => {
beforeEach(() => {
jest.clearAllMocks();
// Setup mocks with proper typing
});
describe('functionName', () => {
it('should handle normal case', () => {
// Test implementation with specific assertions
});
it('should throw error for invalid input', async () => {
// Error scenario testing
await expect(functionName(invalidInput))
.rejects.toThrow('Specific error message');
});
});
});
```
### **Integration Test Development**
```typescript
// ✅ DO: Use supertest for API endpoint testing
import request from 'supertest';
import { app } from '../../src/app';
describe('POST /api/auth/register', () => {
beforeEach(async () => {
await integrationTestUtils.cleanupTestData();
});
it('should register user successfully', async () => {
const userData = createTestUser();
const response = await request(app)
.post('/api/auth/register')
.send(userData)
.expect(201);
expect(response.body).toMatchObject({
id: expect.any(String),
email: userData.email
});
// Verify database state
const user = await prisma.user.findUnique({
where: { email: userData.email }
});
expect(user).toBeTruthy();
});
});
```
### **E2E Test Development**
```typescript
// ✅ DO: Test complete user workflows
describe('User Authentication Flow', () => {
it('should complete registration → login → protected access', async () => {
// Step 1: Register
const userData = createTestUser();
await request(app)
.post('/api/auth/register')
.send(userData)
.expect(201);
// Step 2: Login
const loginResponse = await request(app)
.post('/api/auth/login')
.send({ email: userData.email, password: userData.password })
.expect(200);
const { token } = loginResponse.body;
// Step 3: Access protected resource
await request(app)
.get('/api/profile')
.set('Authorization', `Bearer ${token}`)
.expect(200);
}, 30000); // Extended timeout for E2E
});
```
## **Mocking & Test Utilities**
### **Established Mocking Patterns**
```typescript
// ✅ DO: Use established bcrypt mocking pattern
jest.mock('bcrypt');
import bcrypt from 'bcrypt';
const mockHash = bcrypt.hash as jest.MockedFunction<typeof bcrypt.hash>;
const mockCompare = bcrypt.compare as jest.MockedFunction<typeof bcrypt.compare>;
// ✅ DO: Use Prisma mocking for unit tests
jest.mock('@prisma/client', () => ({
PrismaClient: jest.fn().mockImplementation(() => ({
user: {
create: jest.fn(),
findUnique: jest.fn(),
},
$connect: jest.fn(),
$disconnect: jest.fn(),
})),
}));
```
### **Test Fixtures Usage**
```typescript
// ✅ DO: Use centralized test fixtures
import { createTestUser, adminUser, invalidUser } from '../fixtures/users';
describe('User Service', () => {
it('should handle admin user creation', async () => {
const userData = createTestUser(adminUser);
// Test implementation
});
it('should reject invalid user data', async () => {
const userData = createTestUser(invalidUser);
// Error testing
});
});
```
## **Coverage Standards & Monitoring**
### **Coverage Thresholds**
- **Global Standards**: 80% lines/functions, 70% branches
- **Critical Code**: 90% utils, 85% middleware
- **New Features**: Must meet or exceed global thresholds
- **Legacy Code**: Gradual improvement with each change
### **Coverage Reporting & Analysis**
```bash
# Generate coverage reports
npm run test:coverage
# View detailed HTML report
open coverage/lcov-report/index.html
# Coverage files generated:
# - coverage/lcov-report/index.html # Detailed HTML report
# - coverage/lcov.info # LCOV format for IDE integration
# - coverage/coverage-final.json # JSON format for tooling
```
### **Coverage Quality Checks**
```typescript
// ✅ DO: Test all code paths
describe('validateInput', () => {
it('should return true for valid input', () => {
expect(validateInput('valid')).toBe(true);
});
it('should return false for various invalid inputs', () => {
expect(validateInput('')).toBe(false); // Empty string
expect(validateInput(null)).toBe(false); // Null value
expect(validateInput(undefined)).toBe(false); // Undefined
});
it('should throw for unexpected input types', () => {
expect(() => validateInput(123)).toThrow('Invalid input type');
});
});
```
## **Testing During Development Phases**
### **Feature Development Phase**
```bash
# 1. Start feature development
task-master set-status --id=X.Y --status=in-progress
# 2. Begin TDD cycle
npm run test:watch
# 3. Document test progress in subtask
task-master update-subtask --id=X.Y --prompt="Test development:
- Created test file with 5 failing tests
- Implemented core functionality
- Tests passing, adding error scenarios"
# 4. Verify coverage before completion
npm run test:coverage
# 5. Update subtask with final test status
task-master update-subtask --id=X.Y --prompt="Testing complete:
- 12 unit tests with full coverage
- All edge cases and error scenarios covered
- Ready for integration testing"
```
### **Integration Testing Phase**
```bash
# After API endpoints are implemented
npm run test:integration
# Update integration test templates
# Replace placeholder tests with real endpoint calls
# Document integration test results
task-master update-subtask --id=X.Y --prompt="Integration tests:
- Updated auth endpoint tests
- Database integration verified
- All HTTP status codes and responses tested"
```
### **Pre-Commit Testing Phase**
```bash
# Before committing code
npm run test:coverage # Verify all tests pass with coverage
npm run test:unit # Quick unit test verification
npm run test:integration # Integration test verification (if applicable)
# Commit pattern for test updates
git add tests/ src/**/*.test.ts
git commit -m "test(task-X): Add comprehensive tests for Feature Y
- Unit tests with 95% coverage (exceeds 90% threshold)
- Integration tests for API endpoints
- Test fixtures for data generation
- Proper mocking patterns established
Task X: Feature Y - Testing complete"
```
## **Error Handling & Debugging**
### **Test Debugging Techniques**
```typescript
// ✅ DO: Use test utilities for debugging
import { testUtils } from '../setup';
it('should debug complex operation', () => {
testUtils.withConsole(() => {
// Console output visible only for this test
console.log('Debug info:', complexData);
service.complexOperation();
});
});
// ✅ DO: Use proper async debugging
it('should handle async operations', async () => {
const promise = service.asyncOperation();
// Test intermediate state
expect(service.isProcessing()).toBe(true);
const result = await promise;
expect(result).toBe('expected');
expect(service.isProcessing()).toBe(false);
});
```
### **Common Test Issues & Solutions**
```bash
# Hanging tests (common with database connections)
npm run test:integration -- --detectOpenHandles
# Memory leaks in tests
npm run test:unit -- --logHeapUsage
# Slow tests identification
npm run test:coverage -- --verbose
# Mock not working properly
# Check: mock is declared before imports
# Check: jest.clearAllMocks() in beforeEach
# Check: TypeScript typing is correct
```
## **Continuous Integration Integration**
### **CI/CD Pipeline Testing**
```yaml
# Example GitHub Actions integration
- name: Run tests
run: |
npm ci
npm run test:coverage
- name: Upload coverage reports
uses: codecov/codecov-action@v3
with:
file: ./coverage/lcov.info
```
### **Pre-commit Hooks**
```bash
# Setup pre-commit testing (recommended)
# In package.json scripts:
"pre-commit": "npm run test:unit && npm run test:integration"
# Husky integration example:
npx husky add .husky/pre-commit "npm run test:unit"
```
## **Test Maintenance & Evolution**
### **Adding Tests for New Features**
1. **Create test file** alongside source code or in `tests/unit/`
2. **Follow established patterns** from `src/utils/auth.test.ts`
3. **Use existing fixtures** from `tests/fixtures/`
4. **Apply proper mocking** patterns for dependencies
5. **Meet coverage thresholds** for the module
### **Updating Integration/E2E Tests**
1. **Update templates** in `tests/integration/` when APIs change
2. **Modify E2E workflows** in `tests/e2e/` for new user journeys
3. **Update test fixtures** for new data requirements
4. **Maintain database cleanup** utilities
### **Test Performance Optimization**
- **Parallel execution**: Jest runs tests in parallel by default
- **Test isolation**: Use proper setup/teardown for independence
- **Mock optimization**: Mock heavy dependencies appropriately
- **Database efficiency**: Use transaction rollbacks where possible
---
**Key References:**
- [Testing Standards](mdc:.cursor/rules/tests.mdc)
- [Git Workflow](mdc:.cursor/rules/git_workflow.mdc)
- [Development Workflow](mdc:.cursor/rules/dev_workflow.mdc)
- [Jest Configuration](mdc:jest.config.js)
- [Auth Test Example](mdc:src/utils/auth.test.ts)

View File

@@ -1,228 +0,0 @@
---
description: Guidelines for integrating AI usage telemetry across Task Master.
globs: scripts/modules/**/*.js,mcp-server/src/**/*.js
alwaysApply: true
---
# AI Usage Telemetry Integration
This document outlines the standard pattern for capturing, propagating, and handling AI usage telemetry data (cost, tokens, model, etc.) across the Task Master stack. This ensures consistent telemetry for both CLI and MCP interactions.
## Overview
Telemetry data is generated within the unified AI service layer ([`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js)) and then passed upwards through the calling functions.
- **Data Source**: [`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js) (specifically its `generateTextService`, `generateObjectService`, etc.) returns an object like `{ mainResult: AI_CALL_OUTPUT, telemetryData: TELEMETRY_OBJECT }`.
- **`telemetryData` Object Structure**:
```json
{
"timestamp": "ISO_STRING_DATE",
"userId": "USER_ID_FROM_CONFIG",
"commandName": "invoking_command_or_tool_name",
"modelUsed": "ai_model_id",
"providerName": "ai_provider_name",
"inputTokens": NUMBER,
"outputTokens": NUMBER,
"totalTokens": NUMBER,
"totalCost": NUMBER, // e.g., 0.012414
"currency": "USD" // e.g., "USD"
}
```
## Integration Pattern by Layer
The key principle is that each layer receives telemetry data from the layer below it (if applicable) and passes it to the layer above it, or handles it for display in the case of the CLI.
### 1. Core Logic Functions (e.g., in `scripts/modules/task-manager/`)
Functions in this layer that invoke AI services are responsible for handling the `telemetryData` they receive from [`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js).
- **Actions**:
1. Call the appropriate AI service function (e.g., `generateObjectService`).
- Pass `commandName` (e.g., `add-task`, `expand-task`) and `outputType` (e.g., `cli` or `mcp`) in the `params` object to the AI service. The `outputType` can be derived from context (e.g., presence of `mcpLog`).
2. The AI service returns an object, e.g., `aiServiceResponse = { mainResult: {/*AI output*/}, telemetryData: {/*telemetry data*/} }`.
3. Extract `aiServiceResponse.mainResult` for the core processing.
4. **Must return an object that includes `aiServiceResponse.telemetryData`**.
Example: `return { operationSpecificData: /*...*/, telemetryData: aiServiceResponse.telemetryData };`
- **CLI Output Handling (If Applicable)**:
- If the core function also handles CLI output (e.g., it has an `outputFormat` parameter that can be `'text'` or `'cli'`):
1. Check if `outputFormat === 'text'` (or `'cli'`).
2. If so, and if `aiServiceResponse.telemetryData` is available, call `displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli')` from [`scripts/modules/ui.js`](mdc:scripts/modules/ui.js).
- This ensures telemetry is displayed directly to CLI users after the main command output.
- **Example Snippet (Core Logic in `scripts/modules/task-manager/someAiAction.js`)**:
```javascript
import { generateObjectService } from '../ai-services-unified.js';
import { displayAiUsageSummary } from '../ui.js';
async function performAiRelatedAction(params, context, outputFormat = 'text') {
const { commandNameFromContext, /* other context vars */ } = context;
let aiServiceResponse = null;
try {
aiServiceResponse = await generateObjectService({
// ... other parameters for AI service ...
commandName: commandNameFromContext || 'default-action-name',
outputType: context.mcpLog ? 'mcp' : 'cli' // Derive outputType
});
const usefulAiOutput = aiServiceResponse.mainResult.object;
// ... do work with usefulAiOutput ...
if (outputFormat === 'text' && aiServiceResponse.telemetryData) {
displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli');
}
return {
actionData: /* results of processing */,
telemetryData: aiServiceResponse.telemetryData
};
} catch (error) {
// ... handle error ...
throw error;
}
}
```
### 2. Direct Function Wrappers (in `mcp-server/src/core/direct-functions/`)
These functions adapt core logic for the MCP server, ensuring structured responses.
- **Actions**:
1. Call the corresponding core logic function.
- Pass necessary context (e.g., `session`, `mcpLog`, `projectRoot`).
- Provide the `commandName` (typically derived from the MCP tool name) and `outputType: 'mcp'` in the context object passed to the core function.
- If the core function supports an `outputFormat` parameter, pass `'json'` to suppress CLI-specific UI.
2. The core logic function returns an object (e.g., `coreResult = { actionData: ..., telemetryData: ... }`).
3. Include `coreResult.telemetryData` as a field within the `data` object of the successful response returned by the direct function.
- **Example Snippet (Direct Function `someAiActionDirect.js`)**:
```javascript
import { performAiRelatedAction } from '../../../../scripts/modules/task-manager/someAiAction.js'; // Core function
import { createLogWrapper } from '../../tools/utils.js'; // MCP Log wrapper
export async function someAiActionDirect(args, log, context = {}) {
const { session } = context;
// ... prepare arguments for core function from args, including args.projectRoot ...
try {
const coreResult = await performAiRelatedAction(
{ /* parameters for core function */ },
{ // Context for core function
session,
mcpLog: createLogWrapper(log),
projectRoot: args.projectRoot,
commandNameFromContext: 'mcp_tool_some_ai_action', // Example command name
outputType: 'mcp'
},
'json' // Request 'json' output format from core function
);
return {
success: true,
data: {
operationSpecificData: coreResult.actionData,
telemetryData: coreResult.telemetryData // Pass telemetry through
}
};
} catch (error) {
// ... error handling, return { success: false, error: ... } ...
}
}
```
### 3. MCP Tools (in `mcp-server/src/tools/`)
These are the exposed endpoints for MCP clients.
- **Actions**:
1. Call the corresponding direct function wrapper.
2. The direct function returns an object structured like `{ success: true, data: { operationSpecificData: ..., telemetryData: ... } }` (or an error object).
3. Pass this entire result object to `handleApiResult(result, log)` from [`mcp-server/src/tools/utils.js`](mdc:mcp-server/src/tools/utils.js).
4. `handleApiResult` ensures that the `data` field from the direct function's response (which correctly includes `telemetryData`) is part of the final MCP response.
- **Example Snippet (MCP Tool `some_ai_action.js`)**:
```javascript
import { someAiActionDirect } from '../core/task-master-core.js';
import { handleApiResult, withNormalizedProjectRoot } from './utils.js';
// ... zod for parameters ...
export function registerSomeAiActionTool(server) {
server.addTool({
name: "some_ai_action",
// ... description, parameters ...
execute: withNormalizedProjectRoot(async (args, { log, session }) => {
try {
const resultFromDirectFunction = await someAiActionDirect(
{ /* args including projectRoot */ },
log,
{ session }
);
return handleApiResult(resultFromDirectFunction, log); // This passes the nested telemetryData through
} catch (error) {
// ... error handling ...
}
})
});
}
```
### 4. CLI Commands (`scripts/modules/commands.js`)
These define the command-line interface.
- **Actions**:
1. Call the appropriate core logic function.
2. Pass `outputFormat: 'text'` (or ensure the core function defaults to text-based output for CLI).
3. The core logic function (as per Section 1) is responsible for calling `displayAiUsageSummary` if telemetry data is available and it's in CLI mode.
4. The command action itself **should not** call `displayAiUsageSummary` if the core logic function already handles this. This avoids duplicate display.
- **Example Snippet (CLI Command in `commands.js`)**:
```javascript
// In scripts/modules/commands.js
import { performAiRelatedAction } from './task-manager/someAiAction.js'; // Core function
programInstance
.command('some-cli-ai-action')
// ... .option() ...
.action(async (options) => {
try {
const projectRoot = findProjectRoot() || '.'; // Example root finding
// ... prepare parameters for core function from command options ...
await performAiRelatedAction(
{ /* parameters for core function */ },
{ // Context for core function
projectRoot,
commandNameFromContext: 'some-cli-ai-action',
outputType: 'cli'
},
'text' // Explicitly request text output format for CLI
);
// Core function handles displayAiUsageSummary internally for 'text' outputFormat
} catch (error) {
// ... error handling ...
}
});
```
## Summary Flow
The telemetry data flows as follows:
1. **[`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js)**: Generates `telemetryData` and returns `{ mainResult, telemetryData }`.
2. **Core Logic Function**:
* Receives `{ mainResult, telemetryData }`.
* Uses `mainResult`.
* If CLI (`outputFormat: 'text'`), calls `displayAiUsageSummary(telemetryData)`.
* Returns `{ operationSpecificData, telemetryData }`.
3. **Direct Function Wrapper**:
* Receives `{ operationSpecificData, telemetryData }` from core logic.
* Returns `{ success: true, data: { operationSpecificData, telemetryData } }`.
4. **MCP Tool**:
* Receives direct function response.
* `handleApiResult` ensures the final MCP response to the client is `{ success: true, data: { operationSpecificData, telemetryData } }`.
5. **CLI Command**:
* Calls core logic with `outputFormat: 'text'`. Display is handled by core logic.
This pattern ensures telemetry is captured and appropriately handled/exposed across all interaction modes.

View File

@@ -5,8 +5,6 @@ globs: "**/*.test.js,tests/**/*"
# Testing Guidelines for Task Master CLI
*Note:* Never use asynchronous operations in tests. Always mock tests properly based on the way the tested functions are defined and used. Do not arbitrarily create tests. Based them on the low-level details and execution of the underlying code being tested.
## Test Organization Structure
- **Unit Tests** (See [`architecture.mdc`](mdc:.cursor/rules/architecture.mdc) for module breakdown)
@@ -90,122 +88,6 @@ describe('Feature or Function Name', () => {
});
```
## Commander.js Command Testing Best Practices
When testing CLI commands built with Commander.js, several special considerations must be made to avoid common pitfalls:
- **Direct Action Handler Testing**
- ✅ **DO**: Test the command action handlers directly rather than trying to mock the entire Commander.js chain
- ✅ **DO**: Create simplified test-specific implementations of command handlers that match the original behavior
- ✅ **DO**: Explicitly handle all options, including defaults and shorthand flags (e.g., `-p` for `--prompt`)
- ✅ **DO**: Include null/undefined checks in test implementations for parameters that might be optional
- ✅ **DO**: Use fixtures from `tests/fixtures/` for consistent sample data across tests
```javascript
// ✅ DO: Create a simplified test version of the command handler
const testAddTaskAction = async (options) => {
options = options || {}; // Ensure options aren't undefined
// Validate parameters
const isManualCreation = options.title && options.description;
const prompt = options.prompt || options.p; // Handle shorthand flags
if (!prompt && !isManualCreation) {
throw new Error('Expected error message');
}
// Call the mocked task manager
return mockTaskManager.addTask(/* parameters */);
};
test('should handle required parameters correctly', async () => {
// Call the test implementation directly
await expect(async () => {
await testAddTaskAction({ file: 'tasks.json' });
}).rejects.toThrow('Expected error message');
});
```
- **Commander Chain Mocking (If Necessary)**
- ✅ **DO**: Mock ALL chainable methods (`option`, `argument`, `action`, `on`, etc.)
- ✅ **DO**: Return `this` (or the mock object) from all chainable method mocks
- ✅ **DO**: Remember to mock not only the initial object but also all objects returned by methods
- ✅ **DO**: Implement a mechanism to capture the action handler for direct testing
```javascript
// If you must mock the Commander.js chain:
const mockCommand = {
command: jest.fn().mockReturnThis(),
description: jest.fn().mockReturnThis(),
option: jest.fn().mockReturnThis(),
argument: jest.fn().mockReturnThis(), // Don't forget this one
action: jest.fn(fn => {
actionHandler = fn; // Capture the handler for testing
return mockCommand;
}),
on: jest.fn().mockReturnThis() // Don't forget this one
};
```
- **Parameter Handling**
- ✅ **DO**: Check for both main flag and shorthand flags (e.g., `prompt` and `p`)
- ✅ **DO**: Handle parameters like Commander would (comma-separated lists, etc.)
- ✅ **DO**: Set proper default values as defined in the command
- ✅ **DO**: Validate that required parameters are actually required in tests
```javascript
// Parse dependencies like Commander would
const dependencies = options.dependencies
? options.dependencies.split(',').map(id => id.trim())
: [];
```
- **Environment and Session Handling**
- ✅ **DO**: Properly mock session objects when required by functions
- ✅ **DO**: Reset environment variables between tests if modified
- ✅ **DO**: Use a consistent pattern for environment-dependent tests
```javascript
// Session parameter mock pattern
const sessionMock = { session: process.env };
// In test:
expect(mockAddTask).toHaveBeenCalledWith(
expect.any(String),
'Test prompt',
[],
'medium',
sessionMock,
false,
null,
null
);
```
- **Common Pitfalls to Avoid**
- ❌ **DON'T**: Try to use the real action implementation without proper mocking
- ❌ **DON'T**: Mock Commander partially - either mock it completely or test the action directly
- ❌ **DON'T**: Forget to handle optional parameters that may be undefined
- ❌ **DON'T**: Neglect to test shorthand flag functionality (e.g., `-p`, `-r`)
- ❌ **DON'T**: Create circular dependencies in your test mocks
- ❌ **DON'T**: Access variables before initialization in your test implementations
- ❌ **DON'T**: Include actual command execution in unit tests
- ❌ **DON'T**: Overwrite the same file path in multiple tests
```javascript
// ❌ DON'T: Create circular references in mocks
const badMock = {
method: jest.fn().mockImplementation(() => badMock.method())
};
// ❌ DON'T: Access uninitialized variables
const badImplementation = () => {
const result = uninitialized;
let uninitialized = 'value';
return result;
};
```
## Jest Module Mocking Best Practices
- **Mock Hoisting Behavior**
@@ -283,97 +165,107 @@ When testing ES modules (`"type": "module"` in package.json), traditional mockin
- Imported functions may not use your mocked dependencies even with proper jest.mock() setup
- ES module exports are read-only properties (cannot be reassigned during tests)
- **Mocking Modules Statically Imported**
- For modules imported with standard `import` statements at the top level:
- Use `jest.mock('path/to/module', factory)` **before** any imports.
- Jest hoists these mocks.
- Ensure the factory function returns the mocked structure correctly.
- **Mocking Dependencies for Dynamically Imported Modules**
- **Problem**: Standard `jest.mock()` often fails for dependencies of modules loaded later using dynamic `import('path/to/module')`. The mocks aren't applied correctly when the dynamic import resolves.
- **Solution**: Use `jest.unstable_mockModule(modulePath, factory)` **before** the dynamic `import()` call.
- **Mocking Entire Modules**
```javascript
// 1. Define mock function instances
const mockExistsSync = jest.fn();
const mockReadFileSync = jest.fn();
// ... other mocks
// Mock the entire module with custom implementation
jest.mock('../../scripts/modules/task-manager.js', () => {
// Get original implementation for functions you want to preserve
const originalModule = jest.requireActual('../../scripts/modules/task-manager.js');
// 2. Mock the dependency module *before* the dynamic import
jest.unstable_mockModule('fs', () => ({
__esModule: true, // Important for ES module mocks
// Mock named exports
existsSync: mockExistsSync,
readFileSync: mockReadFileSync,
// Mock default export if necessary
// default: { ... }
}));
// 3. Dynamically import the module under test (e.g., in beforeAll or test case)
let moduleUnderTest;
beforeAll(async () => {
// Ensure mocks are reset if needed before import
mockExistsSync.mockReset();
mockReadFileSync.mockReset();
// ... reset other mocks ...
// Import *after* unstable_mockModule is called
moduleUnderTest = await import('../../scripts/modules/module-using-fs.js');
// Return mix of original and mocked functionality
return {
...originalModule,
generateTaskFiles: jest.fn() // Replace specific functions
};
});
// 4. Now tests can use moduleUnderTest, and its 'fs' calls will hit the mocks
test('should use mocked fs.readFileSync', () => {
mockReadFileSync.mockReturnValue('mock data');
moduleUnderTest.readFileAndProcess();
expect(mockReadFileSync).toHaveBeenCalled();
// ... other assertions
});
```
- ✅ **DO**: Call `jest.unstable_mockModule()` before `await import()`.
- ✅ **DO**: Include `__esModule: true` in the mock factory for ES modules.
- ✅ **DO**: Mock named and default exports as needed within the factory.
- ✅ **DO**: Reset mock functions (`mockFn.mockReset()`) before the dynamic import if they might have been called previously.
// Import after mocks
import * as taskManager from '../../scripts/modules/task-manager.js';
- **Mocking Entire Modules (Static Import)**
```javascript
// Mock the entire module with custom implementation for static imports
// ... (existing example remains valid) ...
// Now you can use the mock directly
const { generateTaskFiles } = taskManager;
```
- **Direct Implementation Testing**
- Instead of calling the actual function which may have module-scope reference issues:
```javascript
// ... (existing example remains valid) ...
test('should perform expected actions', () => {
// Setup mocks for this specific test
mockReadJSON.mockImplementationOnce(() => sampleData);
// Manually simulate the function's behavior
const data = mockReadJSON('path/file.json');
mockValidateAndFixDependencies(data, 'path/file.json');
// Skip calling the actual function and verify mocks directly
expect(mockReadJSON).toHaveBeenCalledWith('path/file.json');
expect(mockValidateAndFixDependencies).toHaveBeenCalledWith(data, 'path/file.json');
});
```
- **Avoiding Module Property Assignment**
```javascript
// ... (existing example remains valid) ...
// ❌ DON'T: This causes "Cannot assign to read only property" errors
const utils = await import('../../scripts/modules/utils.js');
utils.readJSON = mockReadJSON; // Error: read-only property
// ✅ DO: Use the module factory pattern in jest.mock()
jest.mock('../../scripts/modules/utils.js', () => ({
readJSON: mockReadJSONFunc,
writeJSON: mockWriteJSONFunc
}));
```
- **Handling Mock Verification Failures**
- If verification like `expect(mockFn).toHaveBeenCalled()` fails:
1. Check that your mock setup (`jest.mock` or `jest.unstable_mockModule`) is correctly placed **before** imports (static or dynamic).
2. Ensure you're using the right mock instance and it's properly passed to the module.
3. Verify your test invokes behavior that *should* call the mock.
4. Use `jest.clearAllMocks()` or specific `mockFn.mockReset()` in `beforeEach` to prevent state leakage between tests.
5. **Check Console Assertions**: If verifying `console.log`, `console.warn`, or `console.error` calls, ensure your assertion matches the *actual* arguments passed. If the code logs a single formatted string, assert against that single string (using `expect.stringContaining` or exact match), not multiple `expect.stringContaining` arguments.
1. Check that your mock setup is before imports
2. Ensure you're using the right mock instance
3. Verify your test invokes behavior that would call the mock
4. Use `jest.clearAllMocks()` in beforeEach to reset mock state
5. Consider implementing a simpler test that directly verifies mock behavior
- **Full Example Pattern**
```javascript
// Example: Code logs console.error(`Error: ${message}. Details: ${details}`)
// ❌ DON'T: Assert multiple arguments if only one is logged
// expect(console.error).toHaveBeenCalledWith(
// expect.stringContaining('Error:'),
// expect.stringContaining('Details:')
// );
// ✅ DO: Assert the single string argument
expect(console.error).toHaveBeenCalledWith(
expect.stringContaining('Error: Specific message. Details: More details')
);
// or for exact match:
expect(console.error).toHaveBeenCalledWith(
'Error: Specific message. Details: More details'
);
// 1. Define mock implementations
const mockReadJSON = jest.fn();
const mockValidateAndFixDependencies = jest.fn();
// 2. Mock modules
jest.mock('../../scripts/modules/utils.js', () => ({
readJSON: mockReadJSON,
// Include other functions as needed
}));
jest.mock('../../scripts/modules/dependency-manager.js', () => ({
validateAndFixDependencies: mockValidateAndFixDependencies
}));
// 3. Import after mocks
import * as taskManager from '../../scripts/modules/task-manager.js';
describe('generateTaskFiles function', () => {
beforeEach(() => {
jest.clearAllMocks();
});
test('should generate task files', () => {
// 4. Setup test-specific mock behavior
const sampleData = { tasks: [{ id: 1, title: 'Test' }] };
mockReadJSON.mockReturnValueOnce(sampleData);
// 5. Create direct implementation test
// Instead of calling: taskManager.generateTaskFiles('path', 'dir')
// Simulate reading data
const data = mockReadJSON('path');
expect(mockReadJSON).toHaveBeenCalledWith('path');
// Simulate other operations the function would perform
mockValidateAndFixDependencies(data, 'path');
expect(mockValidateAndFixDependencies).toHaveBeenCalledWith(data, 'path');
});
});
```
6. Consider implementing a simpler test that *only* verifies the mock behavior in isolation.
## Mocking Guidelines
@@ -660,102 +552,6 @@ npm test -- -t "pattern to match"
});
```
## Testing AI Service Integrations
- **DO NOT import real AI service clients**
- ❌ DON'T: Import actual AI clients from their libraries
- ✅ DO: Create fully mocked versions that return predictable responses
```javascript
// ❌ DON'T: Import and instantiate real AI clients
import { Anthropic } from '@anthropic-ai/sdk';
const anthropic = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY });
// ✅ DO: Mock the entire module with controlled behavior
jest.mock('@anthropic-ai/sdk', () => ({
Anthropic: jest.fn().mockImplementation(() => ({
messages: {
create: jest.fn().mockResolvedValue({
content: [{ type: 'text', text: 'Mocked AI response' }]
})
}
}))
}));
```
- **DO NOT rely on environment variables for API keys**
- ❌ DON'T: Assume environment variables are set in tests
- ✅ DO: Set mock environment variables in test setup
```javascript
// In tests/setup.js or at the top of test file
process.env.ANTHROPIC_API_KEY = 'test-mock-api-key-for-tests';
process.env.PERPLEXITY_API_KEY = 'test-mock-perplexity-key-for-tests';
```
- **DO NOT use real AI client initialization logic**
- ❌ DON'T: Use code that attempts to initialize or validate real AI clients
- ✅ DO: Create test-specific paths that bypass client initialization
```javascript
// ❌ DON'T: Test functions that require valid AI client initialization
// This will fail without proper API keys or network access
test('should use AI client', async () => {
const result = await functionThatInitializesAIClient();
expect(result).toBeDefined();
});
// ✅ DO: Test with bypassed initialization or manual task paths
test('should handle manual task creation without AI', () => {
// Using a path that doesn't require AI client initialization
const result = addTaskDirect({
title: 'Manual Task',
description: 'Test Description'
}, mockLogger);
expect(result.success).toBe(true);
});
```
## Testing Asynchronous Code
- **DO NOT rely on asynchronous operations in tests**
- ❌ DON'T: Use real async/await or Promise resolution in tests
- ✅ DO: Make all mocks return synchronous values when possible
```javascript
// ❌ DON'T: Use real async functions that might fail unpredictably
test('should handle async operation', async () => {
const result = await realAsyncFunction(); // Can time out or fail for external reasons
expect(result).toBe(expectedValue);
});
// ✅ DO: Make async operations synchronous in tests
test('should handle operation', () => {
mockAsyncFunction.mockReturnValue({ success: true, data: 'test' });
const result = functionUnderTest();
expect(result).toEqual({ success: true, data: 'test' });
});
```
- **DO NOT test exact error messages**
- ❌ DON'T: Assert on exact error message text that might change
- ✅ DO: Test for error presence and general properties
```javascript
// ❌ DON'T: Test for exact error message text
expect(result.error).toBe('Could not connect to API: Network error');
// ✅ DO: Test for general error properties or message patterns
expect(result.success).toBe(false);
expect(result.error).toContain('Could not connect');
// Or even better:
expect(result).toMatchObject({
success: false,
error: expect.stringContaining('connect')
});
```
## Reliable Testing Techniques
- **Create Simplified Test Functions**
@@ -768,125 +564,99 @@ npm test -- -t "pattern to match"
const setTaskStatus = async (taskId, newStatus) => {
const tasksPath = 'tasks/tasks.json';
const data = await readJSON(tasksPath);
// [implementation]
// Update task status logic
await writeJSON(tasksPath, data);
return { success: true };
return data;
};
// Test-friendly version (easier to test)
const updateTaskStatus = (tasks, taskId, newStatus) => {
// Pure logic without side effects
const updatedTasks = [...tasks];
const taskIndex = findTaskById(updatedTasks, taskId);
if (taskIndex === -1) return { success: false, error: 'Task not found' };
updatedTasks[taskIndex].status = newStatus;
return { success: true, tasks: updatedTasks };
// Test-friendly simplified function (easy to test)
const testSetTaskStatus = (tasksData, taskIdInput, newStatus) => {
// Same core logic without file operations
// Update task status logic on provided tasksData object
return tasksData; // Return updated data for assertions
};
```
- **Avoid Real File System Operations**
- Never write to real files during tests
- Create test-specific versions of file operation functions
- Mock all file system operations including read, write, exists, etc.
- Verify function behavior using the in-memory data structures
```javascript
// Mock file operations
const mockReadJSON = jest.fn();
const mockWriteJSON = jest.fn();
jest.mock('../../scripts/modules/utils.js', () => ({
readJSON: mockReadJSON,
writeJSON: mockWriteJSON,
}));
test('should update task status correctly', () => {
// Setup mock data
const testData = JSON.parse(JSON.stringify(sampleTasks));
mockReadJSON.mockReturnValue(testData);
// Call the function that would normally modify files
const result = testSetTaskStatus(testData, '1', 'done');
// Assert on the in-memory data structure
expect(result.tasks[0].status).toBe('done');
});
```
- **Data Isolation Between Tests**
- Always create fresh copies of test data for each test
- Use `JSON.parse(JSON.stringify(original))` for deep cloning
- Reset all mocks before each test with `jest.clearAllMocks()`
- Avoid state that persists between tests
```javascript
beforeEach(() => {
jest.clearAllMocks();
// Deep clone the test data
testTasksData = JSON.parse(JSON.stringify(sampleTasks));
});
```
- **Test All Path Variations**
- Regular tasks and subtasks
- Single items and multiple items
- Success paths and error paths
- Edge cases (empty data, invalid inputs, etc.)
```javascript
// Multiple test cases covering different scenarios
test('should update regular task status', () => {
/* test implementation */
});
test('should update subtask status', () => {
/* test implementation */
});
test('should update multiple tasks when given comma-separated IDs', () => {
/* test implementation */
});
test('should throw error for non-existent task ID', () => {
/* test implementation */
});
```
- **Stabilize Tests With Predictable Input/Output**
- Use consistent, predictable test fixtures
- Avoid random values or time-dependent data
- Make tests deterministic for reliable CI/CD
- Control all variables that might affect test outcomes
```javascript
// Use a specific known date instead of current date
const fixedDate = new Date('2023-01-01T12:00:00Z');
jest.spyOn(global, 'Date').mockImplementation(() => fixedDate);
```
See [tests/README.md](mdc:tests/README.md) for more details on the testing approach.
Refer to [jest.config.js](mdc:jest.config.js) for Jest configuration options.
## Variable Hoisting and Module Initialization Issues
When testing ES modules or working with complex module imports, you may encounter variable hoisting and initialization issues. These can be particularly tricky to debug and often appear as "Cannot access 'X' before initialization" errors.
- **Understanding Module Initialization Order**
- ✅ **DO**: Declare and initialize global variables at the top of modules
- ✅ **DO**: Use proper function declarations to avoid hoisting issues
- ✅ **DO**: Initialize variables before they are referenced, especially in imported modules
- ✅ **DO**: Be aware that imports are hoisted to the top of the file
```javascript
// ✅ DO: Define global state variables at the top of the module
let silentMode = false; // Declare and initialize first
const CONFIG = { /* configuration */ };
function isSilentMode() {
return silentMode; // Reference variable after it's initialized
}
function log(level, message) {
if (isSilentMode()) return; // Use the function instead of accessing variable directly
// ...
}
```
- **Testing Modules with Initialization-Dependent Functions**
- ✅ **DO**: Create test-specific implementations that initialize all variables correctly
- ✅ **DO**: Use factory functions in mocks to ensure proper initialization order
- ✅ **DO**: Be careful with how you mock or stub functions that depend on module state
```javascript
// ✅ DO: Test-specific implementation that avoids initialization issues
const testLog = (level, ...args) => {
// Local implementation with proper initialization
const isSilent = false; // Explicit initialization
if (isSilent) return;
// Test implementation...
};
```
- **Common Hoisting-Related Errors to Avoid**
- ❌ **DON'T**: Reference variables before their declaration in module scope
- ❌ **DON'T**: Create circular dependencies between modules
- ❌ **DON'T**: Rely on variable initialization order across module boundaries
- ❌ **DON'T**: Define functions that use hoisted variables before they're initialized
```javascript
// ❌ DON'T: Create reference-before-initialization patterns
function badFunction() {
if (silentMode) { /* ... */ } // ReferenceError if silentMode is declared later
}
let silentMode = false;
// ❌ DON'T: Create cross-module references that depend on initialization order
// module-a.js
import { getSetting } from './module-b.js';
export const config = { value: getSetting() };
// module-b.js
import { config } from './module-a.js';
export function getSetting() {
return config.value; // Circular dependency causing initialization issues
}
```
- **Dynamic Imports as a Solution**
- ✅ **DO**: Use dynamic imports (`import()`) to avoid initialization order issues
- ✅ **DO**: Structure modules to avoid circular dependencies that cause initialization issues
- ✅ **DO**: Consider factory functions for modules with complex state
```javascript
// ✅ DO: Use dynamic imports to avoid initialization issues
async function getTaskManager() {
return import('./task-manager.js');
}
async function someFunction() {
const taskManager = await getTaskManager();
return taskManager.someMethod();
}
```
- **Testing Approach for Modules with Initialization Issues**
- ✅ **DO**: Create self-contained test implementations rather than using real implementations
- ✅ **DO**: Mock dependencies at module boundaries instead of trying to mock deep dependencies
- ✅ **DO**: Isolate module-specific state in tests
```javascript
// ✅ DO: Create isolated test implementation instead of reusing module code
test('should log messages when not in silent mode', () => {
// Local test implementation instead of importing from module
const testLog = (level, message) => {
if (false) return; // Always non-silent for this test
mockConsole(level, message);
};
testLog('info', 'test message');
expect(mockConsole).toHaveBeenCalledWith('info', 'test message');
});
```

View File

@@ -150,91 +150,4 @@ alwaysApply: false
));
```
## Enhanced Display Patterns
### **Token Breakdown Display**
- Use detailed, granular token breakdowns for AI-powered commands
- Display context sources with individual token counts
- Show both token count and character count for transparency
```javascript
// ✅ DO: Display detailed token breakdown
function displayDetailedTokenBreakdown(tokenBreakdown, systemTokens, userTokens) {
const sections = [];
if (tokenBreakdown.tasks?.length > 0) {
const taskDetails = tokenBreakdown.tasks.map(task =>
`${task.type === 'subtask' ? ' ' : ''}${task.id}: ${task.tokens.toLocaleString()}`
).join('\n');
sections.push(`Tasks (${tokenBreakdown.tasks.reduce((sum, t) => sum + t.tokens, 0).toLocaleString()}):\n${taskDetails}`);
}
const content = sections.join('\n\n');
console.log(boxen(content, {
title: chalk.cyan('Token Usage'),
padding: { top: 1, bottom: 1, left: 2, right: 2 },
borderStyle: 'round',
borderColor: 'cyan'
}));
}
```
### **Code Block Syntax Highlighting**
- Use `cli-highlight` library for syntax highlighting in terminal output
- Process code blocks in AI responses for better readability
```javascript
// ✅ DO: Enhance code blocks with syntax highlighting
import { highlight } from 'cli-highlight';
function processCodeBlocks(text) {
return text.replace(/```(\w+)?\n([\s\S]*?)```/g, (match, language, code) => {
try {
const highlighted = highlight(code.trim(), {
language: language || 'javascript',
theme: 'default'
});
return `\n${highlighted}\n`;
} catch (error) {
return `\n${code.trim()}\n`;
}
});
}
```
### **Multi-Section Result Display**
- Use separate boxes for headers, content, and metadata
- Maintain consistent styling across different result types
```javascript
// ✅ DO: Use structured result display
function displayResults(result, query, detailLevel) {
// Header with query info
const header = boxen(
chalk.green.bold('Research Results') + '\n\n' +
chalk.gray('Query: ') + chalk.white(query) + '\n' +
chalk.gray('Detail Level: ') + chalk.cyan(detailLevel),
{
padding: { top: 1, bottom: 1, left: 2, right: 2 },
margin: { top: 1, bottom: 0 },
borderStyle: 'round',
borderColor: 'green'
}
);
console.log(header);
// Process and display main content
const processedResult = processCodeBlocks(result);
const contentBox = boxen(processedResult, {
padding: { top: 1, bottom: 1, left: 2, right: 2 },
margin: { top: 0, bottom: 1 },
borderStyle: 'single',
borderColor: 'gray'
});
console.log(contentBox);
console.log(chalk.green('✓ Operation complete'));
}
```
Refer to [`ui.js`](mdc:scripts/modules/ui.js) for implementation examples, [`context_gathering.mdc`](mdc:.cursor/rules/context_gathering.mdc) for context display patterns, and [`new_features.mdc`](mdc:.cursor/rules/new_features.mdc) for integration guidelines.
Refer to [`ui.js`](mdc:scripts/modules/ui.js) for implementation examples and [`new_features.mdc`](mdc:.cursor/rules/new_features.mdc) for integration guidelines.

View File

@@ -3,6 +3,7 @@ description: Guidelines for implementing utility functions
globs: scripts/modules/utils.js, mcp-server/src/**/*
alwaysApply: false
---
# Utility Function Guidelines
## General Principles
@@ -43,12 +44,6 @@ alwaysApply: false
}
```
- **Location**:
- **Core CLI Utilities**: Place utilities used primarily by the core `task-master` CLI logic and command modules (`scripts/modules/*`) into [`scripts/modules/utils.js`](mdc:scripts/modules/utils.js).
- **MCP Server Utilities**: Place utilities specifically designed to support the MCP server implementation into the appropriate subdirectories within `mcp-server/src/`.
- Path/Core Logic Helpers: [`mcp-server/src/core/utils/`](mdc:mcp-server/src/core/utils) (e.g., `path-utils.js`).
- Tool Execution/Response Helpers: [`mcp-server/src/tools/utils.js`](mdc:mcp-server/src/tools/utils.js).
## Documentation Standards
- **JSDoc Format**:
@@ -78,61 +73,36 @@ alwaysApply: false
}
```
## Configuration Management (via `config-manager.js`)
## Configuration Management
Taskmaster configuration (excluding API keys) is primarily managed through the `.taskmasterconfig` file located in the project root and accessed via getters in [`scripts/modules/config-manager.js`](mdc:scripts/modules/config-manager.js).
- **Environment Variables**:
- ✅ DO: Provide default values for all configuration
- ✅ DO: Use environment variables for customization
- ✅ DO: Document available configuration options
- ❌ DON'T: Hardcode values that should be configurable
- **`.taskmasterconfig` File**:
- ✅ DO: Use this JSON file to store settings like AI model selections (main, research, fallback), parameters (temperature, maxTokens), logging level, default priority/subtasks, etc.
- ✅ DO: Manage this file using the `task-master models --setup` CLI command or the `models` MCP tool.
- ✅ DO: Rely on [`config-manager.js`](mdc:scripts/modules/config-manager.js) to load this file (using the correct project root passed from MCP or found via CLI utils), merge with defaults, and provide validated settings.
- ❌ DON'T: Store API keys in this file.
- ❌ DON'T: Manually edit this file unless necessary.
```javascript
// ✅ DO: Set up configuration with defaults and environment overrides
const CONFIG = {
model: process.env.MODEL || 'claude-3-7-sonnet-20250219',
maxTokens: parseInt(process.env.MAX_TOKENS || '4000'),
temperature: parseFloat(process.env.TEMPERATURE || '0.7'),
debug: process.env.DEBUG === "true",
logLevel: process.env.LOG_LEVEL || "info",
defaultSubtasks: parseInt(process.env.DEFAULT_SUBTASKS || "3"),
defaultPriority: process.env.DEFAULT_PRIORITY || "medium",
projectName: process.env.PROJECT_NAME || "Task Master",
projectVersion: "1.5.0" // Version should be hardcoded
};
```
- **Configuration Getters (`config-manager.js`)**:
- ✅ DO: Import and use specific getters from `config-manager.js` (e.g., `getMainProvider()`, `getLogLevel()`, `getMainMaxTokens()`) to access configuration values *needed for application logic* (like `getDefaultSubtasks`).
- ✅ DO: Pass the `explicitRoot` parameter to getters if calling from MCP direct functions to ensure the correct project's config is loaded.
- ❌ DON'T: Call AI-specific getters (like `getMainModelId`, `getMainMaxTokens`) from core logic functions (`scripts/modules/task-manager/*`). Instead, pass the `role` to the unified AI service.
- ❌ DON'T: Access configuration values directly from environment variables (except API keys).
- **API Key Handling (`utils.js` & `ai-services-unified.js`)**:
- ✅ DO: Store API keys **only** in `.env` (for CLI, loaded by `dotenv` in `scripts/dev.js`) or `.cursor/mcp.json` (for MCP, accessed via `session.env`).
- ✅ DO: Use `isApiKeySet(providerName, session)` from `config-manager.js` to check if a provider's key is available *before* potentially attempting an AI call if needed, but note the unified service performs its own internal check.
- ✅ DO: Understand that the unified service layer (`ai-services-unified.js`) internally resolves API keys using `resolveEnvVariable(key, session)` from `utils.js`.
- **Error Handling**:
- ✅ DO: Handle potential `ConfigurationError` if the `.taskmasterconfig` file is missing or invalid when accessed via `getConfig` (e.g., in `commands.js` or direct functions).
## Logging Utilities (in `scripts/modules/utils.js`)
## Logging Utilities
- **Log Levels**:
- ✅ DO: Support multiple log levels (debug, info, warn, error)
- ✅ DO: Use appropriate icons for different log levels
- ✅ DO: Respect the configured log level
- ❌ DON'T: Add direct console.log calls outside the logging utility
- **Note on Passed Loggers**: When a logger object (like the FastMCP `log` object) is passed *as a parameter* (e.g., as `mcpLog`) into core Task Master functions, the receiving function often expects specific methods (`.info`, `.warn`, `.error`, etc.) to be directly callable on that object (e.g., `mcpLog[level](mdc:...)`). If the passed logger doesn't have this exact structure, a wrapper object may be needed. See the **Handling Logging Context (`mcpLog`)** section in [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc) for the standard pattern used in direct functions.
- **Logger Wrapper Pattern**:
- ✅ DO: Use the logger wrapper pattern when passing loggers to prevent `mcpLog[level] is not a function` errors:
```javascript
// Standard logWrapper pattern to wrap FastMCP's log object
const logWrapper = {
info: (message, ...args) => log.info(message, ...args),
warn: (message, ...args) => log.warn(message, ...args),
error: (message, ...args) => log.error(message, ...args),
debug: (message, ...args) => log.debug && log.debug(message, ...args),
success: (message, ...args) => log.info(message, ...args) // Map success to info
};
// Pass this wrapper as mcpLog to ensure consistent method availability
// This also ensures output format is set to 'json' in many core functions
const options = { mcpLog: logWrapper, session };
```
- ✅ DO: Implement this pattern in any direct function that calls core functions expecting `mcpLog`
- ✅ DO: Use this solution in conjunction with silent mode for complete output control
- ❌ DON'T: Pass the FastMCP `log` object directly as `mcpLog` to core functions
- **Important**: This pattern has successfully fixed multiple issues in MCP tools (e.g., `update-task`, `update-subtask`) where using or omitting `mcpLog` incorrectly led to runtime errors or JSON parsing failures.
- For complete implementation details, see the **Handling Logging Context (`mcpLog`)** section in [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc).
```javascript
// ✅ DO: Implement a proper logging utility
@@ -159,124 +129,18 @@ Taskmaster configuration (excluding API keys) is primarily managed through the `
}
```
## Silent Mode Utilities (in `scripts/modules/utils.js`)
- **Silent Mode Control**:
- ✅ DO: Use the exported silent mode functions rather than accessing global variables
- ✅ DO: Always use `isSilentMode()` to check the current silent mode state
- ✅ DO: Ensure silent mode is disabled in a `finally` block to prevent it from staying enabled
- ❌ DON'T: Access the global `silentMode` variable directly
- ❌ DON'T: Forget to disable silent mode after enabling it
```javascript
// ✅ DO: Use the silent mode control functions properly
// Example of proper implementation in utils.js:
// Global silent mode flag (private to the module)
let silentMode = false;
// Enable silent mode
function enableSilentMode() {
silentMode = true;
}
// Disable silent mode
function disableSilentMode() {
silentMode = false;
}
// Check if silent mode is enabled
function isSilentMode() {
return silentMode;
}
// Example of proper usage in another module:
import { enableSilentMode, disableSilentMode, isSilentMode } from './utils.js';
// Check current status
if (!isSilentMode()) {
console.log('Silent mode is not enabled');
}
// Use try/finally pattern to ensure silent mode is disabled
try {
enableSilentMode();
// Do something that should suppress console output
performOperation();
} finally {
disableSilentMode();
}
```
- **Integration with Logging**:
- ✅ DO: Make the `log` function respect silent mode
```javascript
function log(level, ...args) {
// Skip logging if silent mode is enabled
if (isSilentMode()) {
return;
}
// Rest of logging logic...
}
```
- **Common Patterns for Silent Mode**:
- ✅ DO: In **direct functions** (`mcp-server/src/core/direct-functions/*`) that call **core functions** (`scripts/modules/*`), ensure console output from the core function is suppressed to avoid breaking MCP JSON responses.
- **Preferred Method**: Update the core function to accept an `outputFormat` parameter (e.g., `outputFormat = 'text'`) and make it check `outputFormat === 'text'` before displaying any UI elements (banners, spinners, boxes, direct `console.log`s). Pass `'json'` from the direct function.
- **Necessary Fallback/Guarantee**: If the core function *cannot* be modified or its output suppression via `outputFormat` is unreliable, **wrap the core function call within the direct function** using `enableSilentMode()` and `disableSilentMode()` in a `try/finally` block. This acts as a safety net.
```javascript
// Example in a direct function
export async function someOperationDirect(args, log) {
let result;
const tasksPath = findTasksJsonPath(args, log); // Get path first
// Option 1: Core function handles 'json' format (Preferred)
try {
result = await coreFunction(tasksPath, ...otherArgs, 'json'); // Pass 'json'
return { success: true, data: result, fromCache: false };
} catch (error) {
// Handle error...
}
// Option 2: Core function output unreliable (Fallback/Guarantee)
try {
enableSilentMode(); // Enable before call
result = await coreFunction(tasksPath, ...otherArgs); // Call without format param
} catch (error) {
// Handle error...
log.error(`Failed: ${error.message}`);
return { success: false, error: { /* ... */ } };
} finally {
disableSilentMode(); // ALWAYS disable in finally
}
return { success: true, data: result, fromCache: false }; // Assuming success if no error caught
}
```
- ✅ DO: For functions that accept a silent mode parameter but also need to check global state (less common):
```javascript
// Check both the passed parameter and global silent mode
const isSilent = options.silentMode || (typeof options.silentMode === 'undefined' && isSilentMode());
```
## File Operations (in `scripts/modules/utils.js`)
## File Operations
- **Error Handling**:
- ✅ DO: Use try/catch blocks for all file operations
- ✅ DO: Return null or a default value on failure
- ✅ DO: Log detailed error information using the `log` utility
- ❌ DON'T: Allow exceptions to propagate unhandled from simple file reads/writes
- ✅ DO: Log detailed error information
- ❌ DON'T: Allow exceptions to propagate unhandled
```javascript
// ✅ DO: Handle file operation errors properly in core utils
// ✅ DO: Handle file operation errors properly
function writeJSON(filepath, data) {
try {
// Ensure directory exists (example)
const dir = path.dirname(filepath);
if (!fs.existsSync(dir)) {
fs.mkdirSync(dir, { recursive: true });
}
fs.writeFileSync(filepath, JSON.stringify(data, null, 2));
} catch (error) {
log('error', `Error writing JSON file ${filepath}:`, error.message);
@@ -287,7 +151,7 @@ Taskmaster configuration (excluding API keys) is primarily managed through the `
}
```
## Task-Specific Utilities (in `scripts/modules/utils.js`)
## Task-Specific Utilities
- **Task ID Formatting**:
- ✅ DO: Create utilities for consistent ID handling
@@ -360,7 +224,7 @@ Taskmaster configuration (excluding API keys) is primarily managed through the `
}
```
## Cycle Detection (in `scripts/modules/utils.js`)
## Cycle Detection
- **Graph Algorithms**:
- ✅ DO: Implement cycle detection using graph traversal
@@ -409,101 +273,84 @@ Taskmaster configuration (excluding API keys) is primarily managed through the `
}
```
## MCP Server Core Utilities (`mcp-server/src/core/utils/`)
## MCP Server Utilities (`mcp-server/src/tools/utils.js`)
### Project Root and Task File Path Detection (`path-utils.js`)
- **Purpose**: These utilities specifically support the MCP server tools, handling communication patterns and data formatting for MCP clients. Refer to [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc) for usage patterns.
- **Purpose**: This module ([`mcp-server/src/core/utils/path-utils.js`](mdc:mcp-server/src/core/utils/path-utils.js)) provides the mechanism for locating the user's `tasks.json` file, used by direct functions.
- **`findTasksJsonPath(args, log)`**:
- ✅ **DO**: Call this function from within **direct function wrappers** (e.g., `listTasksDirect` in `mcp-server/src/core/direct-functions/`) to get the absolute path to the relevant `tasks.json`.
- Pass the *entire `args` object* received by the MCP tool (which should include `projectRoot` derived from the session) and the `log` object.
- Implements a **simplified precedence system** for finding the `tasks.json` path:
1. Explicit `projectRoot` passed in `args` (Expected from MCP tools).
2. Cached `lastFoundProjectRoot` (CLI fallback).
3. Search upwards from `process.cwd()` (CLI fallback).
- Throws a specific error if the `tasks.json` file cannot be located.
- Updates the `lastFoundProjectRoot` cache on success.
- **`PROJECT_MARKERS`**: An exported array of common file/directory names used to identify a likely project root during the CLI fallback search.
- **`getPackagePath()`**: Utility to find the installation path of the `task-master-ai` package itself (potentially removable).
-(See also: [`tests.mdc`](mdc:.cursor/rules/tests.mdc) for testing these utilities)
## MCP Server Tool Utilities (`mcp-server/src/tools/utils.js`)
- **`getProjectRoot(projectRootRaw, log)`**:
- Normalizes a potentially relative project root path into an absolute path.
- Defaults to `process.cwd()` if `projectRootRaw` is not provided.
- Primarily used *internally* by `executeMCPToolAction` and `executeTaskMasterCommand`. Tools usually don't need to call this directly.
These utilities specifically support the implementation and execution of MCP tools.
- **`normalizeProjectRoot(rawPath, log)`**:
- **Purpose**: Takes a raw project root path (potentially URI encoded, with `file://` prefix, Windows slashes) and returns a normalized, absolute path suitable for the server's OS.
- **Logic**: Decodes URI, strips `file://`, handles Windows drive prefix (`/C:/`), replaces `\` with `/`, uses `path.resolve()`.
- **Usage**: Used internally by `withNormalizedProjectRoot` HOF.
- **`getRawProjectRootFromSession(session, log)`**:
- **Purpose**: Extracts the *raw* project root URI string from the session object (`session.roots[0].uri` or `session.roots.roots[0].uri`) without performing normalization.
- **Usage**: Used internally by `withNormalizedProjectRoot` HOF as a fallback if `args.projectRoot` isn't provided.
- **`withNormalizedProjectRoot(executeFn)`**:
- **Purpose**: A Higher-Order Function (HOF) designed to wrap a tool's `execute` method.
- **Logic**:
1. Determines the raw project root (from `args.projectRoot` or `getRawProjectRootFromSession`).
2. Normalizes the raw path using `normalizeProjectRoot`.
3. Injects the normalized, absolute path back into the `args` object as `args.projectRoot`.
4. Calls the original `executeFn` with the updated `args`.
- **Usage**: Should wrap the `execute` function of *every* MCP tool that needs a reliable, normalized project root path.
- **Example**:
```javascript
// In mcp-server/src/tools/your-tool.js
import { withNormalizedProjectRoot } from './utils.js';
export function registerYourTool(server) {
server.addTool({
// ... name, description, parameters ...
execute: withNormalizedProjectRoot(async (args, context) => {
// args.projectRoot is now normalized here
const { projectRoot /*, other args */ } = args;
// ... rest of tool logic using normalized projectRoot ...
})
});
}
```
- **`executeMCPToolAction({ actionFn, args, log, actionName, processResult })`**:
- ✅ **DO**: Use this as the main wrapper inside an MCP tool's `execute` method when calling a direct function wrapper.
- Handles standard workflow: logs action start, normalizes `projectRoot`, calls the `actionFn` (e.g., `listTasksDirect`), processes the result (using `handleApiResult`), logs success/error, and returns a formatted MCP response (`createContentResponse`/`createErrorResponse`).
- Simplifies tool implementation significantly by handling boilerplate.
- Accepts an optional `processResult` function to customize data filtering/transformation before sending the response (defaults to `processMCPResponseData`).
- **`handleApiResult(result, log, errorPrefix, processFunction)`**:
- **Purpose**: Standardizes the formatting of responses returned by direct functions (`{ success, data/error, fromCache }`) into the MCP response format.
- **Usage**: Call this at the end of the tool's `execute` method, passing the result from the direct function call.
- Takes the standard `{ success, data/error }` object returned by direct function wrappers (like `listTasksDirect`).
- Checks the `success` flag.
- If successful, processes the `data` using `processFunction` (defaults to `processMCPResponseData`).
- Returns a formatted MCP response object using `createContentResponse` or `createErrorResponse`.
- Typically called *internally* by `executeMCPToolAction`.
- **`createContentResponse(content)` / `createErrorResponse(errorMessage)`**:
- **Purpose**: Helper functions to create the basic MCP response structure for success or error messages.
- **Usage**: Used internally by `handleApiResult` and potentially directly for simple responses.
- **`executeTaskMasterCommand(command, log, args, projectRootRaw)`**:
- Executes a Task Master command using `child_process.spawnSync`.
- Tries the global `task-master` command first, then falls back to `node scripts/dev.js`.
- Handles project root normalization internally.
- Returns `{ success, stdout, stderr }` or `{ success: false, error }`.
- ❌ **DON'T**: Use this as the primary method for MCP tools. Prefer `executeMCPToolAction` with direct function calls. Use only as a fallback for commands not yet refactored or those requiring CLI execution.
- **`createLogWrapper(log)`**:
- **Purpose**: Creates a logger object wrapper with standard methods (`info`, `warn`, `error`, `debug`, `success`) mapping to the passed MCP `log` object's methods. Ensures compatibility when passing loggers to core functions.
- **Usage**: Used within direct functions before passing the `log` object down to core logic that expects the standard method names.
- **`processMCPResponseData(taskOrData, fieldsToRemove = ['details', 'testStrategy'])`**:
- Filters task data before sending it to the MCP client.
- By default, removes the `details` and `testStrategy` fields from task objects and their subtasks to reduce payload size.
- Can handle single task objects or data structures containing a `tasks` array (like from `listTasks`).
- This is the default processor used by `executeMCPToolAction`.
```javascript
// Example usage (typically done inside executeMCPToolAction):
const rawResult = { success: true, data: { tasks: [ { id: 1, title: '...', details: '...', subtasks: [...] } ] } };
const filteredData = processMCPResponseData(rawResult.data);
// filteredData.tasks[0] will NOT have the 'details' field.
```
- **`createContentResponse(content)`**:
- ✅ **DO**: Use this (usually via `handleApiResult` or `executeMCPToolAction`) to format successful MCP responses.
- Wraps the `content` (stringifies objects to JSON) in the standard FastMCP `{ content: [{ type: "text", text: ... }] }` structure.
- **`createErrorResponse(errorMessage)`**:
- ✅ **DO**: Use this (usually via `handleApiResult` or `executeMCPToolAction`) to format error responses for MCP.
- Wraps the `errorMessage` in the standard FastMCP error structure, including `isError: true`.
- **`getCachedOrExecute({ cacheKey, actionFn, log })`**:
- **Purpose**: Utility for implementing caching within direct functions. Checks cache for `cacheKey`; if miss, executes `actionFn`, caches successful result, and returns.
- **Usage**: Wrap the core logic execution within a direct function call.
- ✅ **DO**: Use this utility *inside direct function wrappers* (like `listTasksDirect` in `task-master-core.js`) to implement caching for MCP operations.
- Checks the `ContextManager` cache using `cacheKey`.
- If a hit occurs, returns the cached result directly.
- If a miss occurs, it executes the provided `actionFn` (which should be an async function returning `{ success, data/error }`).
- If `actionFn` succeeds, its result is stored in the cache under `cacheKey`.
- Returns the result (either cached or fresh) wrapped in the standard structure `{ success, data/error, fromCache: boolean }`.
- **`processMCPResponseData(taskOrData, fieldsToRemove)`**:
- **Purpose**: Utility to filter potentially sensitive or large fields (like `details`, `testStrategy`) from task objects before sending the response back via MCP.
- **Usage**: Passed as the default `processFunction` to `handleApiResult`.
- **`executeMCPToolAction({ actionFn, args, log, actionName, processResult })`**:
- Update: While this function *can* technically coordinate caching if provided a `cacheKeyGenerator`, the current preferred pattern involves implementing caching *within* the `actionFn` (the direct wrapper) using `getCachedOrExecute`. `executeMCPToolAction` primarily orchestrates the call to `actionFn` and handles processing its result (including the `fromCache` flag) via `handleApiResult`.
- **`getProjectRootFromSession(session, log)`**:
- **Purpose**: Legacy function to extract *and normalize* the project root from the session. Replaced by the HOF pattern but potentially still used.
- **Recommendation**: Prefer using the `withNormalizedProjectRoot` HOF in tools instead of calling this directly.
- **`executeTaskMasterCommand(...)`**:
- **Purpose**: Executes `task-master` CLI command as a fallback.
- **Recommendation**: Deprecated for most uses; prefer direct function calls.
- **`handleApiResult(result, log, errorPrefix, processFunction)`**:
- Update: Now expects the `result` object to potentially contain a `fromCache` boolean flag. If present, this flag is included in the final response payload generated by `createContentResponse` (e.g., `{ fromCache: true, data: ... }`).
## Export Organization
- **Grouping Related Functions**:
- ✅ DO: Keep utilities relevant to their location (e.g., core CLI utils in `scripts/modules/utils.js`, MCP path utils in `mcp-server/src/core/utils/path-utils.js`, MCP tool utils in `mcp-server/src/tools/utils.js`).
- ✅ DO: Keep utilities relevant to their location (e.g., core utils in `scripts/modules/utils.js`, MCP utils in `mcp-server/src/tools/utils.js`).
- ✅ DO: Export all utility functions in a single statement per file.
- ✅ DO: Group related exports together.
- ✅ DO: Export configuration constants (from `scripts/modules/utils.js`).
- ✅ DO: Export configuration constants.
- ❌ DON'T: Use default exports.
- ❌ DON'T: Create circular dependencies (See [`architecture.mdc`](mdc:.cursor/rules/architecture.mdc)).
- ❌ DON'T: Create circular dependencies between utility files or between utilities and the modules that use them (See [`architecture.mdc`](mdc:.cursor/rules/architecture.mdc)).
```javascript
// Example export from scripts/modules/utils.js
// ✅ DO: Organize exports logically
export {
// Configuration
CONFIG,
@@ -521,83 +368,15 @@ export {
truncate,
// Task utilities
// ... (taskExists, formatTaskId, findTaskById, etc.)
readComplexityReport,
findTaskInComplexityReport,
taskExists,
formatTaskId,
findTaskById,
// Graph algorithms
findCycles,
};
// Example export from mcp-server/src/core/utils/path-utils.js
export {
findTasksJsonPath,
getPackagePath,
PROJECT_MARKERS,
lastFoundProjectRoot // Exporting for potential direct use/reset if needed
};
// Example export from mcp-server/src/tools/utils.js
export {
getProjectRoot,
getProjectRootFromSession,
handleApiResult,
executeTaskMasterCommand,
processMCPResponseData,
createContentResponse,
createErrorResponse,
getCachedOrExecute
};
```
## Context Gathering Utilities
### **ContextGatherer** (`scripts/modules/utils/contextGatherer.js`)
- **Multi-Source Context Extraction**:
- ✅ DO: Use for AI-powered commands that need project context
- ✅ DO: Support tasks, files, custom text, and project tree context
- ✅ DO: Implement detailed token counting with `gpt-tokens` library
- ✅ DO: Provide multiple output formats (research, chat, system-prompt)
```javascript
// ✅ DO: Use ContextGatherer for consistent context extraction
import { ContextGatherer } from '../utils/contextGatherer.js';
const gatherer = new ContextGatherer(projectRoot, tasksPath);
const result = await gatherer.gather({
tasks: ['15', '16.2'],
files: ['src/api.js'],
customContext: 'Additional context',
includeProjectTree: true,
format: 'research',
includeTokenCounts: true
});
```
### **FuzzyTaskSearch** (`scripts/modules/utils/fuzzyTaskSearch.js`)
- **Intelligent Task Discovery**:
- ✅ DO: Use for automatic task relevance detection
- ✅ DO: Configure search parameters based on use case context
- ✅ DO: Implement purpose-based categorization for better matching
- ✅ DO: Sort results by relevance score and task ID
```javascript
// ✅ DO: Use FuzzyTaskSearch for intelligent task discovery
import { FuzzyTaskSearch } from '../utils/fuzzyTaskSearch.js';
const fuzzySearch = new FuzzyTaskSearch(tasksData.tasks, 'research');
const searchResults = fuzzySearch.findRelevantTasks(query, {
maxResults: 8,
includeRecent: true,
includeCategoryMatches: true
});
const taskIds = fuzzySearch.getTaskIds(searchResults);
```
- **Integration Guidelines**:
- ✅ DO: Use fuzzy search to supplement user-provided task IDs
- ✅ DO: Display discovered task IDs to users for transparency
- ✅ DO: Sort discovered task IDs numerically for better readability
- ❌ DON'T: Replace explicit user task selections with fuzzy results
Refer to [`context_gathering.mdc`](mdc:.cursor/rules/context_gathering.mdc) for detailed implementation patterns, [`mcp.mdc`](mdc:.cursor/rules/mcp.mdc) and [`architecture.mdc`](mdc:.cursor/rules/architecture.mdc) for more context on MCP server architecture and integration.
Refer to [`utils.js`](mdc:scripts/modules/utils.js) for implementation examples and [`new_features.mdc`](mdc:.cursor/rules/new_features.mdc) for integration guidelines. Use [`commands.mdc`](mdc:.cursor/rules/commands.mdc) for CLI integration details.

View File

@@ -1,15 +1,20 @@
# API Keys (Required for using in any role i.e. main/research/fallback -- see `task-master models`)
ANTHROPIC_API_KEY=YOUR_ANTHROPIC_KEY_HERE
PERPLEXITY_API_KEY=YOUR_PERPLEXITY_KEY_HERE
OPENAI_API_KEY=YOUR_OPENAI_KEY_HERE
GOOGLE_API_KEY=YOUR_GOOGLE_KEY_HERE
MISTRAL_API_KEY=YOUR_MISTRAL_KEY_HERE
OPENROUTER_API_KEY=YOUR_OPENROUTER_KEY_HERE
XAI_API_KEY=YOUR_XAI_KEY_HERE
AZURE_OPENAI_API_KEY=YOUR_AZURE_KEY_HERE
# API Keys (Required)
ANTHROPIC_API_KEY=your_anthropic_api_key_here # Format: sk-ant-api03-...
PERPLEXITY_API_KEY=your_perplexity_api_key_here # Format: pplx-...
# Google Vertex AI Configuration
VERTEX_PROJECT_ID=your-gcp-project-id
VERTEX_LOCATION=us-central1
# Optional: Path to service account credentials JSON file (alternative to API key)
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account-credentials.json
# Model Configuration
MODEL=claude-3-7-sonnet-20250219 # Recommended models: claude-3-7-sonnet-20250219, claude-3-opus-20240229
PERPLEXITY_MODEL=sonar-pro # Perplexity model for research-backed subtasks
MAX_TOKENS=64000 # Maximum tokens for model responses
TEMPERATURE=0.4 # Temperature for model responses (0.0-1.0)
# Logging Configuration
DEBUG=false # Enable debug logging (true/false)
LOG_LEVEL=info # Log level (debug, info, warn, error)
# Task Generation Settings
DEFAULT_SUBTASKS=4 # Default number of subtasks when expanding
DEFAULT_PRIORITY=medium # Default priority for generated tasks (high, medium, low)
# Project Metadata (Optional)
PROJECT_NAME=Your Project Name # Override default project name in tasks.json

View File

@@ -1,39 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: 'bug: '
labels: bug
assignees: ''
---
### Description
Detailed description of the problem, including steps to reproduce the issue.
### Steps to Reproduce
1. Step-by-step instructions to reproduce the issue
2. Include command examples or UI interactions
### Expected Behavior
Describe clearly what the expected outcome or behavior should be.
### Actual Behavior
Describe clearly what the actual outcome or behavior is.
### Screenshots or Logs
Provide screenshots, logs, or error messages if applicable.
### Environment
- Task Master version:
- Node.js version:
- Operating system:
- IDE (if applicable):
### Additional Context
Any additional information or context that might help diagnose the issue.

View File

@@ -1,51 +0,0 @@
---
name: Enhancements & feature requests
about: Suggest an idea for this project
title: 'feat: '
labels: enhancement
assignees: ''
---
> "Direct quote or clear summary of user request or need or user story."
### Motivation
Detailed explanation of why this feature is important. Describe the problem it solves or the benefit it provides.
### Proposed Solution
Clearly describe the proposed feature, including:
- High-level overview of the feature
- Relevant technologies or integrations
- How it fits into the existing workflow or architecture
### High-Level Workflow
1. Step-by-step description of how the feature will be implemented
2. Include necessary intermediate milestones
### Key Elements
- Bullet-point list of technical or UX/UI enhancements
- Mention specific integrations or APIs
- Highlight changes needed in existing data models or commands
### Example Workflow
Provide a clear, concrete example demonstrating the feature:
```shell
$ task-master [action]
→ Expected response/output
```
### Implementation Considerations
- Dependencies on external components or APIs
- Backward compatibility requirements
- Potential performance impacts or resource usage
### Out of Scope (Future Considerations)
Clearly list any features or improvements not included but relevant for future iterations.

View File

@@ -1,31 +0,0 @@
---
name: Feedback
about: Give us specific feedback on the product/approach/tech
title: 'feedback: '
labels: feedback
assignees: ''
---
### Feedback Summary
Provide a clear summary or direct quote from user feedback.
### User Context
Explain the user's context or scenario in which this feedback was provided.
### User Impact
Describe how this feedback affects the user experience or workflow.
### Suggestions
Provide any initial thoughts, potential solutions, or improvements based on the feedback.
### Relevant Screenshots or Examples
Attach screenshots, logs, or examples that illustrate the feedback.
### Additional Notes
Any additional context or related information.

View File

@@ -1,95 +0,0 @@
name: CI
on:
push:
branches:
- main
- next
pull_request:
branches:
- main
- next
permissions:
contents: read
jobs:
setup:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- uses: actions/setup-node@v4
with:
node-version: 20
cache: 'npm'
- name: Install Dependencies
id: install
run: npm ci
timeout-minutes: 2
- name: Cache node_modules
uses: actions/cache@v4
with:
path: node_modules
key: ${{ runner.os }}-node-modules-${{ hashFiles('**/package-lock.json') }}
format-check:
needs: setup
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-node@v4
with:
node-version: 20
- name: Restore node_modules
uses: actions/cache@v4
with:
path: node_modules
key: ${{ runner.os }}-node-modules-${{ hashFiles('**/package-lock.json') }}
- name: Format Check
run: npm run format-check
env:
FORCE_COLOR: 1
test:
needs: setup
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-node@v4
with:
node-version: 20
- name: Restore node_modules
uses: actions/cache@v4
with:
path: node_modules
key: ${{ runner.os }}-node-modules-${{ hashFiles('**/package-lock.json') }}
- name: Run Tests
run: |
npm run test:coverage -- --coverageThreshold '{"global":{"branches":0,"functions":0,"lines":0,"statements":0}}' --detectOpenHandles --forceExit
env:
NODE_ENV: test
CI: true
FORCE_COLOR: 1
timeout-minutes: 10
- name: Upload Test Results
if: always()
uses: actions/upload-artifact@v4
with:
name: test-results
path: |
test-results
coverage
junit.xml
retention-days: 30

View File

@@ -1,62 +0,0 @@
name: Pre-Release (RC)
on:
workflow_dispatch: # Allows manual triggering from GitHub UI/API
concurrency: pre-release-${{ github.ref }}
jobs:
rc:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- uses: actions/setup-node@v4
with:
node-version: 20
cache: 'npm'
- name: Cache node_modules
uses: actions/cache@v4
with:
path: |
node_modules
*/*/node_modules
key: ${{ runner.os }}-node-${{ hashFiles('**/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-
- name: Install dependencies
run: npm ci
timeout-minutes: 2
- name: Enter RC mode
run: |
npx changeset pre exit || true
npx changeset pre enter rc
- name: Version RC packages
run: npx changeset version
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
NPM_TOKEN: ${{ secrets.NPM_TOKEN }}
- name: Create Release Candidate Pull Request or Publish Release Candidate to npm
uses: changesets/action@v1
with:
publish: npm run release
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
NPM_TOKEN: ${{ secrets.NPM_TOKEN }}
- name: Exit RC mode
run: npx changeset pre exit
- name: Commit & Push changes
uses: actions-js/push@master
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
branch: ${{ github.ref }}
message: 'chore: rc version bump'

View File

@@ -3,9 +3,6 @@ on:
push:
branches:
- main
concurrency: ${{ github.workflow }}-${{ github.ref }}
jobs:
release:
runs-on: ubuntu-latest
@@ -17,24 +14,9 @@ jobs:
- uses: actions/setup-node@v4
with:
node-version: 20
cache: 'npm'
- name: Cache node_modules
uses: actions/cache@v4
with:
path: |
node_modules
*/*/node_modules
key: ${{ runner.os }}-node-${{ hashFiles('**/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-
- name: Install Dependencies
run: npm ci
timeout-minutes: 2
- name: Exit pre-release mode (safety check)
run: npx changeset pre exit || true
run: npm install
- name: Create Release Pull Request or Publish to npm
uses: changesets/action@v1

View File

@@ -1,40 +0,0 @@
name: Update models.md from supported-models.json
on:
push:
branches:
- main
- next
paths:
- 'scripts/modules/supported-models.json'
- 'docs/scripts/models-json-to-markdown.js'
jobs:
update_markdown:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: 20
- name: Run transformation script
run: node docs/scripts/models-json-to-markdown.js
- name: Format Markdown with Prettier
run: npx prettier --write docs/models.md
- name: Stage docs/models.md
run: git add docs/models.md
- name: Commit & Push docs/models.md
uses: actions-js/push@master
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
branch: ${{ github.ref_name }}
message: 'docs: Auto-update and format models.md'
author_name: 'github-actions[bot]'
author_email: 'github-actions[bot]@users.noreply.github.com'

37
.gitignore vendored
View File

@@ -9,9 +9,6 @@ jspm_packages/
.env.test.local
.env.production.local
# Cursor configuration -- might have ENV variables. Included by default
# .cursor/mcp.json
# Logs
logs
*.log
@@ -21,24 +18,9 @@ yarn-error.log*
lerna-debug.log*
# Coverage directory used by tools like istanbul
coverage/
coverage
*.lcov
# Jest cache
.jest/
# Test temporary files and directories
tests/temp/
tests/e2e/_runs/
tests/e2e/log/
tests/**/*.log
tests/**/coverage/
# Test database files (if any)
tests/**/*.db
tests/**/*.sqlite
tests/**/*.sqlite3
# Optional npm cache directory
.npm
@@ -74,20 +56,3 @@ dist
*.debug
init-debug.log
dev-debug.log
# NPMRC
.npmrc
# Added by Claude Task Master
# Editor directories and files
.idea
.vscode
*.suo
*.ntvs*
*.njsproj
*.sln
*.sw?
# OS specific
# Task files
tasks.json
tasks/

1
.nvmrc
View File

@@ -1 +0,0 @@
22

View File

@@ -1,37 +0,0 @@
{
"models": {
"main": {
"provider": "anthropic",
"modelId": "claude-sonnet-4-20250514",
"maxTokens": 64000,
"temperature": 0.2
},
"research": {
"provider": "perplexity",
"modelId": "sonar-pro",
"maxTokens": 8700,
"temperature": 0.1
},
"fallback": {
"provider": "anthropic",
"modelId": "claude-3-5-sonnet-20241022",
"maxTokens": 64000,
"temperature": 0.2
}
},
"global": {
"logLevel": "info",
"debug": false,
"defaultSubtasks": 5,
"defaultPriority": "medium",
"projectName": "Taskmaster",
"ollamaBaseURL": "http://localhost:11434/api",
"azureBaseURL": "https://your-endpoint.azure.com/"
},
"account": {
"userId": "1234567890",
"email": "",
"mode": "byok",
"telemetryEnabled": true
}
}

View File

@@ -1,3 +0,0 @@
{
"recommendations": ["esbenp.prettier-vscode"]
}

View File

@@ -1,470 +1,5 @@
# task-master-ai
## 0.15.0
### Minor Changes
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`09add37`](https://github.com/eyaltoledano/claude-task-master/commit/09add37423d70b809d5c28f3cde9fccd5a7e64e7) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Added comprehensive Ollama model validation and interactive setup support
- **Interactive Setup Enhancement**: Added "Custom Ollama model" option to `task-master models --setup`, matching the existing OpenRouter functionality
- **Live Model Validation**: When setting Ollama models, Taskmaster now validates against the local Ollama instance by querying `/api/tags` endpoint
- **Configurable Endpoints**: Uses the `ollamaBaseUrl` from `.taskmasterconfig` (with role-specific `baseUrl` overrides supported)
- **Robust Error Handling**:
- Detects when Ollama server is not running and provides clear error messages
- Validates model existence and lists available alternatives when model not found
- Graceful fallback behavior for connection issues
- **Full Platform Support**: Both MCP server tools and CLI commands support the new validation
- **Improved User Experience**: Clear feedback during model validation with informative success/error messages
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`4c83526`](https://github.com/eyaltoledano/claude-task-master/commit/4c835264ac6c1f74896cddabc3b3c69a5c435417) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds and updates supported AI models with costs:
- Added new OpenRouter models: GPT-4.1 series, O3, Codex Mini, Llama 4 Maverick, Llama 4 Scout, Qwen3-235b
- Added Mistral models: Devstral Small, Mistral Nemo
- Updated Ollama models with latest variants: Devstral, Qwen3, Mistral-small3.1, Llama3.3
- Updated Gemini model to latest 2.5 Flash preview version
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`70f4054`](https://github.com/eyaltoledano/claude-task-master/commit/70f4054f268f9f8257870e64c24070263d4e2966) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Add `--research` flag to parse-prd command, enabling enhanced task generation from PRD files. When used, Taskmaster leverages the research model to:
- Research current technologies and best practices relevant to the project
- Identify technical challenges and security concerns not explicitly mentioned in the PRD
- Include specific library recommendations with version numbers
- Provide more detailed implementation guidance based on industry standards
- Create more accurate dependency relationships between tasks
This results in higher quality, more actionable tasks with minimal additional effort.
_NOTE_ That this is an experimental feature. Research models don't typically do great at structured output. You may find some failures when using research mode, so please share your feedback so we can improve this.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`5e9bc28`](https://github.com/eyaltoledano/claude-task-master/commit/5e9bc28abea36ec7cd25489af7fcc6cbea51038b) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - This change significantly enhances the `add-task` command's intelligence. When you add a new task, Taskmaster now automatically: - Analyzes your existing tasks to find those most relevant to your new task's description. - Provides the AI with detailed context from these relevant tasks.
This results in newly created tasks being more accurately placed within your project's dependency structure, saving you time and any need to update tasks just for dependencies, all without significantly increasing AI costs. You'll get smarter, more connected tasks right from the start.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`34c769b`](https://github.com/eyaltoledano/claude-task-master/commit/34c769bcd0faf65ddec3b95de2ba152a8be3ec5c) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Enhance analyze-complexity to support analyzing specific task IDs. - You can now analyze individual tasks or selected task groups by using the new `--id` option with comma-separated IDs, or `--from` and `--to` options to specify a range of tasks. - The feature intelligently merges analysis results with existing reports, allowing incremental analysis while preserving previous results.
- [#558](https://github.com/eyaltoledano/claude-task-master/pull/558) [`86d8f00`](https://github.com/eyaltoledano/claude-task-master/commit/86d8f00af809887ee0ba0ba7157cc555e0d07c38) Thanks [@ShreyPaharia](https://github.com/ShreyPaharia)! - Add next task to set task status response
Status: DONE
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`04af16d`](https://github.com/eyaltoledano/claude-task-master/commit/04af16de27295452e134b17b3c7d0f44bbb84c29) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Add move command to enable moving tasks and subtasks within the task hierarchy. This new command supports moving standalone tasks to become subtasks, subtasks to become standalone tasks, and moving subtasks between different parents. The implementation handles circular dependencies, validation, and proper updating of parent-child relationships.
**Usage:**
- CLI command: `task-master move --from=<id> --to=<id>`
- MCP tool: `move_task` with parameters:
- `from`: ID of task/subtask to move (e.g., "5" or "5.2")
- `to`: ID of destination (e.g., "7" or "7.3")
- `file` (optional): Custom path to tasks.json
**Example scenarios:**
- Move task to become subtask: `--from="5" --to="7"`
- Move subtask to standalone task: `--from="5.2" --to="7"`
- Move subtask to different parent: `--from="5.2" --to="7.3"`
- Reorder subtask within same parent: `--from="5.2" --to="5.4"`
- Move multiple tasks at once: `--from="10,11,12" --to="16,17,18"`
- Move task to new ID: `--from="5" --to="25"` (creates a new task with ID 25)
**Multiple Task Support:**
The command supports moving multiple tasks simultaneously by providing comma-separated lists for both `--from` and `--to` parameters. The number of source and destination IDs must match. This is particularly useful for resolving merge conflicts in task files when multiple team members have created tasks on different branches.
**Validation Features:**
- Allows moving tasks to new, non-existent IDs (automatically creates placeholders)
- Prevents moving to existing task IDs that already contain content (to avoid overwriting)
- Validates source tasks exist before attempting to move them
- Ensures proper parent-child relationships are maintained
### Patch Changes
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`231e569`](https://github.com/eyaltoledano/claude-task-master/commit/231e569e84804a2e5ba1f9da1a985d0851b7e949) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adjusts default main model model to Claude Sonnet 4. Adjusts default fallback to Claude Sonney 3.7"
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`b371808`](https://github.com/eyaltoledano/claude-task-master/commit/b371808524f2c2986f4940d78fcef32c125d01f2) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds llms-install.md to the root to enable AI agents to programmatically install the Taskmaster MCP server. This is specifically being introduced for the Cline MCP marketplace and will be adjusted over time for other MCP clients as needed.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`a59dd03`](https://github.com/eyaltoledano/claude-task-master/commit/a59dd037cfebb46d38bc44dd216c7c23933be641) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds AGENTS.md to power Claude Code integration more natively based on Anthropic's best practice and Claude-specific MCP client behaviours. Also adds in advanced workflows that tie Taskmaster commands together into one Claude workflow."
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`e0e1155`](https://github.com/eyaltoledano/claude-task-master/commit/e0e115526089bf41d5d60929956edf5601ff3e23) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Fixes issue with force/append flag combinations for parse-prd.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`34df2c8`](https://github.com/eyaltoledano/claude-task-master/commit/34df2c8bbddc0e157c981d32502bbe6b9468202e) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - You can now add tasks to a newly initialized project without having to parse a prd. This will automatically create the missing tasks.json file and create the first task. Lets you vibe if you want to vibe."
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`d2e6431`](https://github.com/eyaltoledano/claude-task-master/commit/d2e64318e2f4bfc3457792e310cc4ff9210bba30) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Fixes an issue where the research fallback would attempt to make API calls without checking for a valid API key first. This ensures proper error handling when the main task generation and first fallback both fail. Closes #421 #519.
## 0.15.0-rc.0
### Minor Changes
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`09add37`](https://github.com/eyaltoledano/claude-task-master/commit/09add37423d70b809d5c28f3cde9fccd5a7e64e7) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Added comprehensive Ollama model validation and interactive setup support
- **Interactive Setup Enhancement**: Added "Custom Ollama model" option to `task-master models --setup`, matching the existing OpenRouter functionality
- **Live Model Validation**: When setting Ollama models, Taskmaster now validates against the local Ollama instance by querying `/api/tags` endpoint
- **Configurable Endpoints**: Uses the `ollamaBaseUrl` from `.taskmasterconfig` (with role-specific `baseUrl` overrides supported)
- **Robust Error Handling**:
- Detects when Ollama server is not running and provides clear error messages
- Validates model existence and lists available alternatives when model not found
- Graceful fallback behavior for connection issues
- **Full Platform Support**: Both MCP server tools and CLI commands support the new validation
- **Improved User Experience**: Clear feedback during model validation with informative success/error messages
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`4c83526`](https://github.com/eyaltoledano/claude-task-master/commit/4c835264ac6c1f74896cddabc3b3c69a5c435417) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds and updates supported AI models with costs:
- Added new OpenRouter models: GPT-4.1 series, O3, Codex Mini, Llama 4 Maverick, Llama 4 Scout, Qwen3-235b
- Added Mistral models: Devstral Small, Mistral Nemo
- Updated Ollama models with latest variants: Devstral, Qwen3, Mistral-small3.1, Llama3.3
- Updated Gemini model to latest 2.5 Flash preview version
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`70f4054`](https://github.com/eyaltoledano/claude-task-master/commit/70f4054f268f9f8257870e64c24070263d4e2966) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Add `--research` flag to parse-prd command, enabling enhanced task generation from PRD files. When used, Taskmaster leverages the research model to:
- Research current technologies and best practices relevant to the project
- Identify technical challenges and security concerns not explicitly mentioned in the PRD
- Include specific library recommendations with version numbers
- Provide more detailed implementation guidance based on industry standards
- Create more accurate dependency relationships between tasks
This results in higher quality, more actionable tasks with minimal additional effort.
_NOTE_ That this is an experimental feature. Research models don't typically do great at structured output. You may find some failures when using research mode, so please share your feedback so we can improve this.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`5e9bc28`](https://github.com/eyaltoledano/claude-task-master/commit/5e9bc28abea36ec7cd25489af7fcc6cbea51038b) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - This change significantly enhances the `add-task` command's intelligence. When you add a new task, Taskmaster now automatically: - Analyzes your existing tasks to find those most relevant to your new task's description. - Provides the AI with detailed context from these relevant tasks.
This results in newly created tasks being more accurately placed within your project's dependency structure, saving you time and any need to update tasks just for dependencies, all without significantly increasing AI costs. You'll get smarter, more connected tasks right from the start.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`34c769b`](https://github.com/eyaltoledano/claude-task-master/commit/34c769bcd0faf65ddec3b95de2ba152a8be3ec5c) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Enhance analyze-complexity to support analyzing specific task IDs. - You can now analyze individual tasks or selected task groups by using the new `--id` option with comma-separated IDs, or `--from` and `--to` options to specify a range of tasks. - The feature intelligently merges analysis results with existing reports, allowing incremental analysis while preserving previous results.
- [#558](https://github.com/eyaltoledano/claude-task-master/pull/558) [`86d8f00`](https://github.com/eyaltoledano/claude-task-master/commit/86d8f00af809887ee0ba0ba7157cc555e0d07c38) Thanks [@ShreyPaharia](https://github.com/ShreyPaharia)! - Add next task to set task status response
Status: DONE
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`04af16d`](https://github.com/eyaltoledano/claude-task-master/commit/04af16de27295452e134b17b3c7d0f44bbb84c29) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Add move command to enable moving tasks and subtasks within the task hierarchy. This new command supports moving standalone tasks to become subtasks, subtasks to become standalone tasks, and moving subtasks between different parents. The implementation handles circular dependencies, validation, and proper updating of parent-child relationships.
**Usage:**
- CLI command: `task-master move --from=<id> --to=<id>`
- MCP tool: `move_task` with parameters:
- `from`: ID of task/subtask to move (e.g., "5" or "5.2")
- `to`: ID of destination (e.g., "7" or "7.3")
- `file` (optional): Custom path to tasks.json
**Example scenarios:**
- Move task to become subtask: `--from="5" --to="7"`
- Move subtask to standalone task: `--from="5.2" --to="7"`
- Move subtask to different parent: `--from="5.2" --to="7.3"`
- Reorder subtask within same parent: `--from="5.2" --to="5.4"`
- Move multiple tasks at once: `--from="10,11,12" --to="16,17,18"`
- Move task to new ID: `--from="5" --to="25"` (creates a new task with ID 25)
**Multiple Task Support:**
The command supports moving multiple tasks simultaneously by providing comma-separated lists for both `--from` and `--to` parameters. The number of source and destination IDs must match. This is particularly useful for resolving merge conflicts in task files when multiple team members have created tasks on different branches.
**Validation Features:**
- Allows moving tasks to new, non-existent IDs (automatically creates placeholders)
- Prevents moving to existing task IDs that already contain content (to avoid overwriting)
- Validates source tasks exist before attempting to move them
- Ensures proper parent-child relationships are maintained
### Patch Changes
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`231e569`](https://github.com/eyaltoledano/claude-task-master/commit/231e569e84804a2e5ba1f9da1a985d0851b7e949) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adjusts default main model model to Claude Sonnet 4. Adjusts default fallback to Claude Sonney 3.7"
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`b371808`](https://github.com/eyaltoledano/claude-task-master/commit/b371808524f2c2986f4940d78fcef32c125d01f2) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds llms-install.md to the root to enable AI agents to programmatically install the Taskmaster MCP server. This is specifically being introduced for the Cline MCP marketplace and will be adjusted over time for other MCP clients as needed.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`a59dd03`](https://github.com/eyaltoledano/claude-task-master/commit/a59dd037cfebb46d38bc44dd216c7c23933be641) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds AGENTS.md to power Claude Code integration more natively based on Anthropic's best practice and Claude-specific MCP client behaviours. Also adds in advanced workflows that tie Taskmaster commands together into one Claude workflow."
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`e0e1155`](https://github.com/eyaltoledano/claude-task-master/commit/e0e115526089bf41d5d60929956edf5601ff3e23) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Fixes issue with force/append flag combinations for parse-prd.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`34df2c8`](https://github.com/eyaltoledano/claude-task-master/commit/34df2c8bbddc0e157c981d32502bbe6b9468202e) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - You can now add tasks to a newly initialized project without having to parse a prd. This will automatically create the missing tasks.json file and create the first task. Lets you vibe if you want to vibe."
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`d2e6431`](https://github.com/eyaltoledano/claude-task-master/commit/d2e64318e2f4bfc3457792e310cc4ff9210bba30) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Fixes an issue where the research fallback would attempt to make API calls without checking for a valid API key first. This ensures proper error handling when the main task generation and first fallback both fail. Closes #421 #519.
## 0.14.0
### Minor Changes
- [#521](https://github.com/eyaltoledano/claude-task-master/pull/521) [`ed17cb0`](https://github.com/eyaltoledano/claude-task-master/commit/ed17cb0e0a04dedde6c616f68f24f3660f68dd04) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - .taskmasterconfig now supports a baseUrl field per model role (main, research, fallback), allowing endpoint overrides for any provider.
- [#536](https://github.com/eyaltoledano/claude-task-master/pull/536) [`f4a83ec`](https://github.com/eyaltoledano/claude-task-master/commit/f4a83ec047b057196833e3a9b861d4bceaec805d) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Add Ollama as a supported AI provider.
- You can now add it by running `task-master models --setup` and selecting it.
- Ollama is a local model provider, so no API key is required.
- Ollama models are available at `http://localhost:11434/api` by default.
- You can change the default URL by setting the `OLLAMA_BASE_URL` environment variable or by adding a `baseUrl` property to the `ollama` model role in `.taskmasterconfig`.
- If you want to use a custom API key, you can set it in the `OLLAMA_API_KEY` environment variable.
- [#528](https://github.com/eyaltoledano/claude-task-master/pull/528) [`58b417a`](https://github.com/eyaltoledano/claude-task-master/commit/58b417a8ce697e655f749ca4d759b1c20014c523) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Display task complexity scores in task lists, next task, and task details views.
### Patch Changes
- [#402](https://github.com/eyaltoledano/claude-task-master/pull/402) [`01963af`](https://github.com/eyaltoledano/claude-task-master/commit/01963af2cb6f77f43b2ad8a6e4a838ec205412bc) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Resolve all issues related to MCP
- [#478](https://github.com/eyaltoledano/claude-task-master/pull/478) [`4117f71`](https://github.com/eyaltoledano/claude-task-master/commit/4117f71c18ee4d321a9c91308d00d5d69bfac61e) Thanks [@joedanz](https://github.com/joedanz)! - Fix CLI --force flag for parse-prd command
Previously, the --force flag was not respected when running `parse-prd`, causing the command to prompt for confirmation or fail even when --force was provided. This patch ensures that the flag is correctly passed and handled, allowing users to overwrite existing tasks.json files as intended.
- Fixes #477
- [#511](https://github.com/eyaltoledano/claude-task-master/pull/511) [`17294ff`](https://github.com/eyaltoledano/claude-task-master/commit/17294ff25918d64278674e558698a1a9ad785098) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Task Master no longer tells you to update when you're already up to date
- [#442](https://github.com/eyaltoledano/claude-task-master/pull/442) [`2b3ae8b`](https://github.com/eyaltoledano/claude-task-master/commit/2b3ae8bf89dc471c4ce92f3a12ded57f61faa449) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds costs information to AI commands using input/output tokens and model costs.
- [#402](https://github.com/eyaltoledano/claude-task-master/pull/402) [`01963af`](https://github.com/eyaltoledano/claude-task-master/commit/01963af2cb6f77f43b2ad8a6e4a838ec205412bc) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix ERR_MODULE_NOT_FOUND when trying to run MCP Server
- [#402](https://github.com/eyaltoledano/claude-task-master/pull/402) [`01963af`](https://github.com/eyaltoledano/claude-task-master/commit/01963af2cb6f77f43b2ad8a6e4a838ec205412bc) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Add src directory to exports
- [#523](https://github.com/eyaltoledano/claude-task-master/pull/523) [`da317f2`](https://github.com/eyaltoledano/claude-task-master/commit/da317f2607ca34db1be78c19954996f634c40923) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix the error handling of task status settings
- [#527](https://github.com/eyaltoledano/claude-task-master/pull/527) [`a8dabf4`](https://github.com/eyaltoledano/claude-task-master/commit/a8dabf44856713f488960224ee838761716bba26) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Remove caching layer from MCP direct functions for task listing, next task, and complexity report
- Fixes issues users where having where they were getting stale data
- [#417](https://github.com/eyaltoledano/claude-task-master/pull/417) [`a1f8d52`](https://github.com/eyaltoledano/claude-task-master/commit/a1f8d52474fdbdf48e17a63e3f567a6d63010d9f) Thanks [@ksylvan](https://github.com/ksylvan)! - Fix for issue #409 LOG_LEVEL Pydantic validation error
- [#442](https://github.com/eyaltoledano/claude-task-master/pull/442) [`0288311`](https://github.com/eyaltoledano/claude-task-master/commit/0288311965ae2a343ebee4a0c710dde94d2ae7e7) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Small fixes - `next` command no longer incorrectly suggests that subtasks be broken down into subtasks in the CLI - fixes the `append` flag so it properly works in the CLI
- [#501](https://github.com/eyaltoledano/claude-task-master/pull/501) [`0a61184`](https://github.com/eyaltoledano/claude-task-master/commit/0a611843b56a856ef0a479dc34078326e05ac3a8) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix initial .env.example to work out of the box
- Closes #419
- [#435](https://github.com/eyaltoledano/claude-task-master/pull/435) [`a96215a`](https://github.com/eyaltoledano/claude-task-master/commit/a96215a359b25061fd3b3f3c7b10e8ac0390c062) Thanks [@lebsral](https://github.com/lebsral)! - Fix default fallback model and maxTokens in Taskmaster initialization
- [#517](https://github.com/eyaltoledano/claude-task-master/pull/517) [`e96734a`](https://github.com/eyaltoledano/claude-task-master/commit/e96734a6cc6fec7731de72eb46b182a6e3743d02) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix bug when updating tasks on the MCP server (#412)
- [#496](https://github.com/eyaltoledano/claude-task-master/pull/496) [`efce374`](https://github.com/eyaltoledano/claude-task-master/commit/efce37469bc58eceef46763ba32df1ed45242211) Thanks [@joedanz](https://github.com/joedanz)! - Fix duplicate output on CLI help screen
- Prevent the Task Master CLI from printing the help screen more than once when using `-h` or `--help`.
- Removed redundant manual event handlers and guards for help output; now only the Commander `.helpInformation` override is used for custom help.
- Simplified logic so that help is only shown once for both "no arguments" and help flag flows.
- Ensures a clean, branded help experience with no repeated content.
- Fixes #339
## 0.14.0-rc.1
### Minor Changes
- [#536](https://github.com/eyaltoledano/claude-task-master/pull/536) [`f4a83ec`](https://github.com/eyaltoledano/claude-task-master/commit/f4a83ec047b057196833e3a9b861d4bceaec805d) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Add Ollama as a supported AI provider.
- You can now add it by running `task-master models --setup` and selecting it.
- Ollama is a local model provider, so no API key is required.
- Ollama models are available at `http://localhost:11434/api` by default.
- You can change the default URL by setting the `OLLAMA_BASE_URL` environment variable or by adding a `baseUrl` property to the `ollama` model role in `.taskmasterconfig`.
- If you want to use a custom API key, you can set it in the `OLLAMA_API_KEY` environment variable.
### Patch Changes
- [#442](https://github.com/eyaltoledano/claude-task-master/pull/442) [`2b3ae8b`](https://github.com/eyaltoledano/claude-task-master/commit/2b3ae8bf89dc471c4ce92f3a12ded57f61faa449) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds costs information to AI commands using input/output tokens and model costs.
- [#442](https://github.com/eyaltoledano/claude-task-master/pull/442) [`0288311`](https://github.com/eyaltoledano/claude-task-master/commit/0288311965ae2a343ebee4a0c710dde94d2ae7e7) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Small fixes - `next` command no longer incorrectly suggests that subtasks be broken down into subtasks in the CLI - fixes the `append` flag so it properly works in the CLI
## 0.14.0-rc.0
### Minor Changes
- [#521](https://github.com/eyaltoledano/claude-task-master/pull/521) [`ed17cb0`](https://github.com/eyaltoledano/claude-task-master/commit/ed17cb0e0a04dedde6c616f68f24f3660f68dd04) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - .taskmasterconfig now supports a baseUrl field per model role (main, research, fallback), allowing endpoint overrides for any provider.
- [#528](https://github.com/eyaltoledano/claude-task-master/pull/528) [`58b417a`](https://github.com/eyaltoledano/claude-task-master/commit/58b417a8ce697e655f749ca4d759b1c20014c523) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Display task complexity scores in task lists, next task, and task details views.
### Patch Changes
- [#478](https://github.com/eyaltoledano/claude-task-master/pull/478) [`4117f71`](https://github.com/eyaltoledano/claude-task-master/commit/4117f71c18ee4d321a9c91308d00d5d69bfac61e) Thanks [@joedanz](https://github.com/joedanz)! - Fix CLI --force flag for parse-prd command
Previously, the --force flag was not respected when running `parse-prd`, causing the command to prompt for confirmation or fail even when --force was provided. This patch ensures that the flag is correctly passed and handled, allowing users to overwrite existing tasks.json files as intended.
- Fixes #477
- [#511](https://github.com/eyaltoledano/claude-task-master/pull/511) [`17294ff`](https://github.com/eyaltoledano/claude-task-master/commit/17294ff25918d64278674e558698a1a9ad785098) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Task Master no longer tells you to update when you're already up to date
- [#523](https://github.com/eyaltoledano/claude-task-master/pull/523) [`da317f2`](https://github.com/eyaltoledano/claude-task-master/commit/da317f2607ca34db1be78c19954996f634c40923) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix the error handling of task status settings
- [#527](https://github.com/eyaltoledano/claude-task-master/pull/527) [`a8dabf4`](https://github.com/eyaltoledano/claude-task-master/commit/a8dabf44856713f488960224ee838761716bba26) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Remove caching layer from MCP direct functions for task listing, next task, and complexity report
- Fixes issues users where having where they were getting stale data
- [#417](https://github.com/eyaltoledano/claude-task-master/pull/417) [`a1f8d52`](https://github.com/eyaltoledano/claude-task-master/commit/a1f8d52474fdbdf48e17a63e3f567a6d63010d9f) Thanks [@ksylvan](https://github.com/ksylvan)! - Fix for issue #409 LOG_LEVEL Pydantic validation error
- [#501](https://github.com/eyaltoledano/claude-task-master/pull/501) [`0a61184`](https://github.com/eyaltoledano/claude-task-master/commit/0a611843b56a856ef0a479dc34078326e05ac3a8) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix initial .env.example to work out of the box
- Closes #419
- [#435](https://github.com/eyaltoledano/claude-task-master/pull/435) [`a96215a`](https://github.com/eyaltoledano/claude-task-master/commit/a96215a359b25061fd3b3f3c7b10e8ac0390c062) Thanks [@lebsral](https://github.com/lebsral)! - Fix default fallback model and maxTokens in Taskmaster initialization
- [#517](https://github.com/eyaltoledano/claude-task-master/pull/517) [`e96734a`](https://github.com/eyaltoledano/claude-task-master/commit/e96734a6cc6fec7731de72eb46b182a6e3743d02) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix bug when updating tasks on the MCP server (#412)
- [#496](https://github.com/eyaltoledano/claude-task-master/pull/496) [`efce374`](https://github.com/eyaltoledano/claude-task-master/commit/efce37469bc58eceef46763ba32df1ed45242211) Thanks [@joedanz](https://github.com/joedanz)! - Fix duplicate output on CLI help screen
- Prevent the Task Master CLI from printing the help screen more than once when using `-h` or `--help`.
- Removed redundant manual event handlers and guards for help output; now only the Commander `.helpInformation` override is used for custom help.
- Simplified logic so that help is only shown once for both "no arguments" and help flag flows.
- Ensures a clean, branded help experience with no repeated content.
- Fixes #339
## 0.13.1
### Patch Changes
- [#399](https://github.com/eyaltoledano/claude-task-master/pull/399) [`734a4fd`](https://github.com/eyaltoledano/claude-task-master/commit/734a4fdcfc89c2e089255618cf940561ad13a3c8) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix ERR_MODULE_NOT_FOUND when trying to run MCP Server
## 0.13.0
### Minor Changes
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`ef782ff`](https://github.com/eyaltoledano/claude-task-master/commit/ef782ff5bd4ceb3ed0dc9ea82087aae5f79ac933) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - feat(expand): Enhance `expand` and `expand-all` commands
- Integrate `task-complexity-report.json` to automatically determine the number of subtasks and use tailored prompts for expansion based on prior analysis. You no longer need to try copy-pasting the recommended prompt. If it exists, it will use it for you. You can just run `task-master update --id=[id of task] --research` and it will use that prompt automatically. No extra prompt needed.
- Change default behavior to _append_ new subtasks to existing ones. Use the `--force` flag to clear existing subtasks before expanding. This is helpful if you need to add more subtasks to a task but you want to do it by the batch from a given prompt. Use force if you want to start fresh with a task's subtasks.
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`87d97bb`](https://github.com/eyaltoledano/claude-task-master/commit/87d97bba00d84e905756d46ef96b2d5b984e0f38) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds support for the OpenRouter AI provider. Users can now configure models available through OpenRouter (requiring an `OPENROUTER_API_KEY`) via the `task-master models` command, granting access to a wide range of additional LLMs. - IMPORTANT FYI ABOUT OPENROUTER: Taskmaster relies on AI SDK, which itself relies on tool use. It looks like **free** models sometimes do not include tool use. For example, Gemini 2.5 pro (free) failed via OpenRouter (no tool use) but worked fine on the paid version of the model. Custom model support for Open Router is considered experimental and likely will not be further improved for some time.
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`1ab836f`](https://github.com/eyaltoledano/claude-task-master/commit/1ab836f191cb8969153593a9a0bd47fc9aa4a831) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds model management and new configuration file .taskmasterconfig which houses the models used for main, research and fallback. Adds models command and setter flags. Adds a --setup flag with an interactive setup. We should be calling this during init. Shows a table of active and available models when models is called without flags. Includes SWE scores and token costs, which are manually entered into the supported_models.json, the new place where models are defined for support. Config-manager.js is the core module responsible for managing the new config."
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`c8722b0`](https://github.com/eyaltoledano/claude-task-master/commit/c8722b0a7a443a73b95d1bcd4a0b68e0fce2a1cd) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds custom model ID support for Ollama and OpenRouter providers.
- Adds the `--ollama` and `--openrouter` flags to `task-master models --set-<role>` command to set models for those providers outside of the support models list.
- Updated `task-master models --setup` interactive mode with options to explicitly enter custom Ollama or OpenRouter model IDs.
- Implemented live validation against OpenRouter API (`/api/v1/models`) when setting a custom OpenRouter model ID (via flag or setup).
- Refined logic to prioritize explicit provider flags/choices over internal model list lookups in case of ID conflicts.
- Added warnings when setting custom/unvalidated models.
- We obviously don't recommend going with a custom, unproven model. If you do and find performance is good, please let us know so we can add it to the list of supported models.
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`2517bc1`](https://github.com/eyaltoledano/claude-task-master/commit/2517bc112c9a497110f3286ca4bfb4130c9addcb) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Integrate OpenAI as a new AI provider. - Enhance `models` command/tool to display API key status. - Implement model-specific `maxTokens` override based on `supported-models.json` to save you if you use an incorrect max token value.
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`9a48278`](https://github.com/eyaltoledano/claude-task-master/commit/9a482789f7894f57f655fb8d30ba68542bd0df63) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Tweaks Perplexity AI calls for research mode to max out input tokens and get day-fresh information - Forces temp at 0.1 for highly deterministic output, no variations - Adds a system prompt to further improve the output - Correctly uses the maximum input tokens (8,719, used 8,700) for perplexity - Specificies to use a high degree of research across the web - Specifies to use information that is as fresh as today; this support stuff like capturing brand new announcements like new GPT models and being able to query for those in research. 🔥
### Patch Changes
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`842eaf7`](https://github.com/eyaltoledano/claude-task-master/commit/842eaf722498ddf7307800b4cdcef4ac4fd7e5b0) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - - Add support for Google Gemini models via Vercel AI SDK integration.
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`ed79d4f`](https://github.com/eyaltoledano/claude-task-master/commit/ed79d4f4735dfab4124fa189214c0bd5e23a6860) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Add xAI provider and Grok models support
- [#378](https://github.com/eyaltoledano/claude-task-master/pull/378) [`ad89253`](https://github.com/eyaltoledano/claude-task-master/commit/ad89253e313a395637aa48b9f92cc39b1ef94ad8) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Better support for file paths on Windows, Linux & WSL.
- Standardizes handling of different path formats (URI encoded, Windows, Linux, WSL).
- Ensures tools receive a clean, absolute path suitable for the server OS.
- Simplifies tool implementation by centralizing normalization logic.
- [#285](https://github.com/eyaltoledano/claude-task-master/pull/285) [`2acba94`](https://github.com/eyaltoledano/claude-task-master/commit/2acba945c0afee9460d8af18814c87e80f747e9f) Thanks [@neno-is-ooo](https://github.com/neno-is-ooo)! - Add integration for Roo Code
- [#378](https://github.com/eyaltoledano/claude-task-master/pull/378) [`d63964a`](https://github.com/eyaltoledano/claude-task-master/commit/d63964a10eed9be17856757661ff817ad6bacfdc) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Improved update-subtask - Now it has context about the parent task details - It also has context about the subtask before it and the subtask after it (if they exist) - Not passing all subtasks to stay token efficient
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`5f504fa`](https://github.com/eyaltoledano/claude-task-master/commit/5f504fafb8bdaa0043c2d20dee8bbb8ec2040d85) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Improve and adjust `init` command for robustness and updated dependencies.
- **Update Initialization Dependencies:** Ensure newly initialized projects (`task-master init`) include all required AI SDK dependencies (`@ai-sdk/*`, `ai`, provider wrappers) in their `package.json` for out-of-the-box AI feature compatibility. Remove unnecessary dependencies (e.g., `uuid`) from the init template.
- **Silence `npm install` during `init`:** Prevent `npm install` output from interfering with non-interactive/MCP initialization by suppressing its stdio in silent mode.
- **Improve Conditional Model Setup:** Reliably skip interactive `models --setup` during non-interactive `init` runs (e.g., `init -y` or MCP) by checking `isSilentMode()` instead of passing flags.
- **Refactor `init.js`:** Remove internal `isInteractive` flag logic.
- **Update `init` Instructions:** Tweak the "Getting Started" text displayed after `init`.
- **Fix MCP Server Launch:** Update `.cursor/mcp.json` template to use `node ./mcp-server/server.js` instead of `npx task-master-mcp`.
- **Update Default Model:** Change the default main model in the `.taskmasterconfig` template.
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`96aeeff`](https://github.com/eyaltoledano/claude-task-master/commit/96aeeffc195372722c6a07370540e235bfe0e4d8) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Fixes an issue with add-task which did not use the manually defined properties and still needlessly hit the AI endpoint.
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`5aea93d`](https://github.com/eyaltoledano/claude-task-master/commit/5aea93d4c0490c242d7d7042a210611977848e0a) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Fixes an issue that prevented remove-subtask with comma separated tasks/subtasks from being deleted (only the first ID was being deleted). Closes #140
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`66ac9ab`](https://github.com/eyaltoledano/claude-task-master/commit/66ac9ab9f66d006da518d6e8a3244e708af2764d) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Improves next command to be subtask-aware - The logic for determining the "next task" (findNextTask function, used by task-master next and the next_task MCP tool) has been significantly improved. Previously, it only considered top-level tasks, making its recommendation less useful when a parent task containing subtasks was already marked 'in-progress'. - The updated logic now prioritizes finding the next available subtask within any 'in-progress' parent task, considering subtask dependencies and priority. - If no suitable subtask is found within active parent tasks, it falls back to recommending the next eligible top-level task based on the original criteria (status, dependencies, priority).
This change makes the next command much more relevant and helpful during the implementation phase of complex tasks.
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`ca7b045`](https://github.com/eyaltoledano/claude-task-master/commit/ca7b0457f1dc65fd9484e92527d9fd6d69db758d) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Add `--status` flag to `show` command to filter displayed subtasks.
- [#328](https://github.com/eyaltoledano/claude-task-master/pull/328) [`5a2371b`](https://github.com/eyaltoledano/claude-task-master/commit/5a2371b7cc0c76f5e95d43921c1e8cc8081bf14e) Thanks [@knoxgraeme](https://github.com/knoxgraeme)! - Fix --task to --num-tasks in ui + related tests - issue #324
- [#240](https://github.com/eyaltoledano/claude-task-master/pull/240) [`6cb213e`](https://github.com/eyaltoledano/claude-task-master/commit/6cb213ebbd51116ae0688e35b575d09443d17c3b) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds a 'models' CLI and MCP command to get the current model configuration, available models, and gives the ability to set main/research/fallback models." - In the CLI, `task-master models` shows the current models config. Using the `--setup` flag launches an interactive set up that allows you to easily select the models you want to use for each of the three roles. Use `q` during the interactive setup to cancel the setup. - In the MCP, responses are simplified in RESTful format (instead of the full CLI output). The agent can use the `models` tool with different arguments, including `listAvailableModels` to get available models. Run without arguments, it will return the current configuration. Arguments are available to set the model for each of the three roles. This allows you to manage Taskmaster AI providers and models directly from either the CLI or MCP or both. - Updated the CLI help menu when you run `task-master` to include missing commands and .taskmasterconfig information. - Adds `--research` flag to `add-task` so you can hit up Perplexity right from the add-task flow, rather than having to add a task and then update it.
## 0.12.1
### Patch Changes
- [#307](https://github.com/eyaltoledano/claude-task-master/pull/307) [`2829194`](https://github.com/eyaltoledano/claude-task-master/commit/2829194d3c1dd5373d3bf40275cf4f63b12d49a7) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix add_dependency tool crashing the MCP Server
## 0.12.0
### Minor Changes
- [#253](https://github.com/eyaltoledano/claude-task-master/pull/253) [`b2ccd60`](https://github.com/eyaltoledano/claude-task-master/commit/b2ccd605264e47a61451b4c012030ee29011bb40) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Add `npx task-master-ai` that runs mcp instead of using `task-master-mcp``
- [#267](https://github.com/eyaltoledano/claude-task-master/pull/267) [`c17d912`](https://github.com/eyaltoledano/claude-task-master/commit/c17d912237e6caaa2445e934fc48cd4841abf056) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Improve PRD parsing prompt with structured analysis and clearer task generation guidelines. We are testing a new prompt - please provide feedback on your experience.
### Patch Changes
- [#243](https://github.com/eyaltoledano/claude-task-master/pull/243) [`454a1d9`](https://github.com/eyaltoledano/claude-task-master/commit/454a1d9d37439c702656eedc0702c2f7a4451517) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - - Fixes shebang issue not allowing task-master to run on certain windows operating systems
- Resolves #241 #211 #184 #193
- [#268](https://github.com/eyaltoledano/claude-task-master/pull/268) [`3e872f8`](https://github.com/eyaltoledano/claude-task-master/commit/3e872f8afbb46cd3978f3852b858c233450b9f33) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix remove-task command to handle multiple comma-separated task IDs
- [#239](https://github.com/eyaltoledano/claude-task-master/pull/239) [`6599cb0`](https://github.com/eyaltoledano/claude-task-master/commit/6599cb0bf9eccecab528207836e9d45b8536e5c2) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Updates the parameter descriptions for update, update-task and update-subtask to ensure the MCP server correctly reaches for the right update command based on what is being updated -- all tasks, one task, or a subtask.
- [#272](https://github.com/eyaltoledano/claude-task-master/pull/272) [`3aee9bc`](https://github.com/eyaltoledano/claude-task-master/commit/3aee9bc840eb8f31230bd1b761ed156b261cabc4) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Enhance the `parsePRD` to include `--append` flag. This flag allows users to append the parsed PRD to an existing file, making it easier to manage multiple PRD files without overwriting existing content.
- [#264](https://github.com/eyaltoledano/claude-task-master/pull/264) [`ff8e75c`](https://github.com/eyaltoledano/claude-task-master/commit/ff8e75cded91fb677903040002626f7a82fd5f88) Thanks [@joedanz](https://github.com/joedanz)! - Add quotes around numeric env vars in mcp.json (Windsurf, etc.)
- [#248](https://github.com/eyaltoledano/claude-task-master/pull/248) [`d99fa00`](https://github.com/eyaltoledano/claude-task-master/commit/d99fa00980fc61695195949b33dcda7781006f90) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - - Fix `task-master init` polluting codebase with new packages inside `package.json` and modifying project `README`
- Now only initializes with cursor rules, windsurf rules, mcp.json, scripts/example_prd.txt, .gitignore modifications, and `README-task-master.md`
- [#266](https://github.com/eyaltoledano/claude-task-master/pull/266) [`41b979c`](https://github.com/eyaltoledano/claude-task-master/commit/41b979c23963483e54331015a86e7c5079f657e4) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fixed a bug that prevented the task-master from running in a Linux container
- [#265](https://github.com/eyaltoledano/claude-task-master/pull/265) [`0eb16d5`](https://github.com/eyaltoledano/claude-task-master/commit/0eb16d5ecbb8402d1318ca9509e9d4087b27fb25) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Remove the need for project name, description, and version. Since we no longer create a package.json for you
## 0.11.0
### Minor Changes
- [#71](https://github.com/eyaltoledano/claude-task-master/pull/71) [`7141062`](https://github.com/eyaltoledano/claude-task-master/commit/71410629ba187776d92a31ea0729b2ff341b5e38) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - - **Easier Ways to Use Taskmaster (CLI & MCP):**
- You can now use Taskmaster either by installing it as a standard command-line tool (`task-master`) or as an MCP server directly within integrated development tools like Cursor (using its built-in features). **This makes Taskmaster accessible regardless of your preferred workflow.**
- Setting up a new project is simpler in integrated tools, thanks to the new `initialize_project` capability.
- **Complete MCP Implementation:**
- NOTE: Many MCP clients charge on a per tool basis. In that regard, the most cost-efficient way to use Taskmaster is through the CLI directly. Otherwise, the MCP offers the smoothest and most recommended user experience.
- All MCP tools now follow a standardized output format that mimicks RESTful API responses. They are lean JSON responses that are context-efficient. This is a net improvement over the last version which sent the whole CLI output directly, which needlessly wasted tokens.
- Added a `remove-task` command to permanently delete tasks you no longer need.
- Many new MCP tools are available for managing tasks (updating details, adding/removing subtasks, generating task files, setting status, finding the next task, breaking down complex tasks, handling dependencies, analyzing complexity, etc.), usable both from the command line and integrated tools. **(See the `taskmaster.mdc` reference guide and improved readme for a full list).**
- **Better Task Tracking:**
- Added a "cancelled" status option for tasks, providing more ways to categorize work.
- **Smoother Experience in Integrated Tools:**
- Long-running operations (like breaking down tasks or analysis) now run in the background **via an Async Operation Manager** with progress updates, so you know what's happening without waiting and can check status later.
- **Improved Documentation:**
- Added a comprehensive reference guide (`taskmaster.mdc`) detailing all commands and tools with examples, usage tips, and troubleshooting info. This is mostly for use by the AI but can be useful for human users as well.
- Updated the main README with clearer instructions and added a new tutorial/examples guide.
- Added documentation listing supported integrated tools (like Cursor).
- **Increased Stability & Reliability:**
- Using Taskmaster within integrated tools (like Cursor) is now **more stable and the recommended approach.**
- Added automated testing (CI) to catch issues earlier, leading to a more reliable tool.
- Fixed release process issues to ensure users get the correct package versions when installing or updating via npm.
- **Better Command-Line Experience:**
- Fixed bugs in the `expand-all` command that could cause **NaN errors or JSON formatting issues (especially when using `--research`).**
- Fixed issues with parameter validation in the `analyze-complexity` command (specifically related to the `threshold` parameter).
- Made the `add-task` command more consistent by adding standard flags like `--title`, `--description` for manual task creation so you don't have to use `--prompt` and can quickly drop new ideas and stay in your flow.
- Improved error messages for incorrect commands or flags, making them easier to understand.
- Added confirmation warnings before permanently deleting tasks (`remove-task`) to prevent mistakes. There's a known bug for deleting multiple tasks with comma-separated values. It'll be fixed next release.
- Renamed some background tool names used by integrated tools (e.g., `list-tasks` is now `get_tasks`) to be more intuitive if seen in logs or AI interactions.
- Smoother project start: **Improved the guidance provided to AI assistants immediately after setup** (related to `init` and `parse-prd` steps). This ensures the AI doesn't go on a tangent deciding its own workflow, and follows the exact process outlined in the Taskmaster workflow.
- **Clearer Error Messages:**
- When generating subtasks fails, error messages are now clearer, **including specific task IDs and potential suggestions.**
- AI fallback from Claude to Perplexity now also works the other way around. If Perplexity is down, will switch to Claude.
- **Simplified Setup & Configuration:**
- Made it clearer how to configure API keys depending on whether you're using the command-line tool (`.env` file) or an integrated tool (`.cursor/mcp.json` file).
- Taskmaster is now better at automatically finding your project files, especially in integrated tools, reducing the need for manual path settings.
- Fixed an issue that could prevent Taskmaster from working correctly immediately after initialization in integrated tools (related to how the MCP server was invoked). This should solve the issue most users were experiencing with the last release (0.10.x)
- Updated setup templates with clearer examples for API keys.
- \*\*For advanced users setting up the MCP server manually, the command is now `npx -y task-master-ai task-master-mcp`.
- **Enhanced Performance & AI:**
- Updated underlying AI model settings:
- **Increased Context Window:** Can now handle larger projects/tasks due to an increased Claude context window (64k -> 128k tokens).
- **Reduced AI randomness:** More consistent and predictable AI outputs (temperature 0.4 -> 0.2).
- **Updated default AI models:** Uses newer models like `claude-3-7-sonnet-20250219` and Perplexity `sonar-pro` by default.
- **More granular breakdown:** Increased the default number of subtasks generated by `expand` to 5 (from 4).
- **Consistent defaults:** Set the default priority for new tasks consistently to "medium".
- Improved performance when viewing task details in integrated tools by sending less redundant data.
- **Documentation Clarity:**
- Clarified in documentation that Markdown files (`.md`) can be used for Product Requirements Documents (`parse_prd`).
- Improved the description for the `numTasks` option in `parse_prd` for better guidance.
- **Improved Visuals (CLI):**
- Enhanced the look and feel of progress bars and status updates in the command line.
- Added a helpful color-coded progress bar to the task details view (`show` command) to visualize subtask completion.
- Made progress bars show a breakdown of task statuses (e.g., how many are pending vs. done).
- Made status counts clearer with text labels next to icons.
- Prevented progress bars from messing up the display on smaller terminal windows.
- Adjusted how progress is calculated for 'deferred' and 'cancelled' tasks in the progress bar, while still showing their distinct status visually.
- **Fixes for Integrated Tools:**
- Fixed how progress updates are sent to integrated tools, ensuring they display correctly.
- Fixed internal issues that could cause errors or invalid JSON responses when using Taskmaster with integrated tools.
## 0.10.1
### Patch Changes

View File

@@ -1,335 +0,0 @@
# Contributing to Task Master
Thank you for your interest in contributing to Task Master! We're excited to work with you and appreciate your help in making this project better. 🚀
## 🤝 Our Collaborative Approach
We're a **PR-friendly team** that values collaboration:
-**We review PRs quickly** - Usually within hours, not days
-**We're super reactive** - Expect fast feedback and engagement
-**We sometimes take over PRs** - If your contribution is valuable but needs cleanup, we might jump in to help finish it
-**We're open to all contributions** - From bug fixes to major features
**We don't mind AI-generated code**, but we do expect you to:
-**Review and understand** what the AI generated
-**Test the code thoroughly** before submitting
-**Ensure it's well-written** and follows our patterns
-**Don't submit "AI slop"** - untested, unreviewed AI output
> **Why this matters**: We spend significant time reviewing PRs. Help us help you by submitting quality contributions that save everyone time!
## 🚀 Quick Start for Contributors
### 1. Fork and Clone
```bash
git clone https://github.com/YOUR_USERNAME/claude-task-master.git
cd claude-task-master
npm install
```
### 2. Create a Feature Branch
**Important**: Always target the `next` branch, not `main`:
```bash
git checkout next
git pull origin next
git checkout -b feature/your-feature-name
```
### 3. Make Your Changes
Follow our development guidelines below.
### 4. Test Everything Yourself
**Before submitting your PR**, ensure:
```bash
# Run all tests
npm test
# Check formatting
npm run format-check
# Fix formatting if needed
npm run format
```
### 5. Create a Changeset
**Required for most changes**:
```bash
npm run changeset
```
See the [Changeset Guidelines](#changeset-guidelines) below for details.
### 6. Submit Your PR
- Target the `next` branch
- Write a clear description
- Reference any related issues
## 📋 Development Guidelines
### Branch Strategy
- **`main`**: Production-ready code
- **`next`**: Development branch - **target this for PRs**
- **Feature branches**: `feature/description` or `fix/description`
### Code Quality Standards
1. **Write tests** for new functionality
2. **Follow existing patterns** in the codebase
3. **Add JSDoc comments** for functions
4. **Keep functions focused** and single-purpose
### Testing Requirements
Your PR **must pass all CI checks**:
-**Unit tests**: `npm test`
-**Format check**: `npm run format-check`
**Test your changes locally first** - this saves review time and shows you care about quality.
## 📦 Changeset Guidelines
We use [Changesets](https://github.com/changesets/changesets) to manage versioning and generate changelogs.
### When to Create a Changeset
**Always create a changeset for**:
- ✅ New features
- ✅ Bug fixes
- ✅ Breaking changes
- ✅ Performance improvements
- ✅ User-facing documentation updates
- ✅ Dependency updates that affect functionality
**Skip changesets for**:
- ❌ Internal documentation only
- ❌ Test-only changes
- ❌ Code formatting/linting
- ❌ Development tooling that doesn't affect users
### How to Create a Changeset
1. **After making your changes**:
```bash
npm run changeset
```
2. **Choose the bump type**:
- **Major**: Breaking changes
- **Minor**: New features
- **Patch**: Bug fixes, docs, performance improvements
3. **Write a clear summary**:
```
Add support for custom AI models in MCP configuration
```
4. **Commit the changeset file** with your changes:
```bash
git add .changeset/*.md
git commit -m "feat: add custom AI model support"
```
### Changeset vs Git Commit Messages
- **Changeset summary**: User-facing, goes in CHANGELOG.md
- **Git commit**: Developer-facing, explains the technical change
Example:
```bash
# Changeset summary (user-facing)
"Add support for custom Ollama models"
# Git commit message (developer-facing)
"feat(models): implement custom Ollama model validation
- Add model validation for custom Ollama endpoints
- Update configuration schema to support custom models
- Add tests for new validation logic"
```
## 🔧 Development Setup
### Prerequisites
- Node.js 14+
- npm or yarn
### Environment Setup
1. **Copy environment template**:
```bash
cp .env.example .env
```
2. **Add your API keys** (for testing AI features):
```bash
ANTHROPIC_API_KEY=your_key_here
OPENAI_API_KEY=your_key_here
# Add others as needed
```
### Running Tests
```bash
# Run all tests
npm test
# Run tests in watch mode
npm run test:watch
# Run with coverage
npm run test:coverage
# Run E2E tests
npm run test:e2e
```
### Code Formatting
We use Prettier for consistent formatting:
```bash
# Check formatting
npm run format-check
# Fix formatting
npm run format
```
## 📝 PR Guidelines
### Before Submitting
- [ ] **Target the `next` branch**
- [ ] **Test everything locally**
- [ ] **Run the full test suite**
- [ ] **Check code formatting**
- [ ] **Create a changeset** (if needed)
- [ ] **Re-read your changes** - ensure they're clean and well-thought-out
### PR Description Template
```markdown
## Description
Brief description of what this PR does.
## Type of Change
- [ ] Bug fix
- [ ] New feature
- [ ] Breaking change
- [ ] Documentation update
## Testing
- [ ] I have tested this locally
- [ ] All existing tests pass
- [ ] I have added tests for new functionality
## Changeset
- [ ] I have created a changeset (or this change doesn't need one)
## Additional Notes
Any additional context or notes for reviewers.
```
### What We Look For
✅ **Good PRs**:
- Clear, focused changes
- Comprehensive testing
- Good commit messages
- Proper changeset (when needed)
- Self-reviewed code
❌ **Avoid**:
- Massive PRs that change everything
- Untested code
- Formatting issues
- Missing changesets for user-facing changes
- AI-generated code that wasn't reviewed
## 🏗️ Project Structure
```
claude-task-master/
├── bin/ # CLI executables
├── mcp-server/ # MCP server implementation
├── scripts/ # Core task management logic
├── src/ # Shared utilities and providers and well refactored code (we are slowly moving everything here)
├── tests/ # Test files
├── docs/ # Documentation
└── .cursor/ # Cursor IDE rules and configuration
└── assets/ # Assets like rules and configuration for all IDEs
```
### Key Areas for Contribution
- **CLI Commands**: `scripts/modules/commands.js`
- **MCP Tools**: `mcp-server/src/tools/`
- **Core Logic**: `scripts/modules/task-manager/`
- **AI Providers**: `src/ai-providers/`
- **Tests**: `tests/`
## 🐛 Reporting Issues
### Bug Reports
Include:
- Task Master version
- Node.js version
- Operating system
- Steps to reproduce
- Expected vs actual behavior
- Error messages/logs
### Feature Requests
Include:
- Clear description of the feature
- Use case/motivation
- Proposed implementation (if you have ideas)
- Willingness to contribute
## 💬 Getting Help
- **Discord**: [Join our community](https://discord.gg/taskmasterai)
- **Issues**: [GitHub Issues](https://github.com/eyaltoledano/claude-task-master/issues)
- **Discussions**: [GitHub Discussions](https://github.com/eyaltoledano/claude-task-master/discussions)
## 📄 License
By contributing, you agree that your contributions will be licensed under the same license as the project (MIT with Commons Clause).
---
**Thank you for contributing to Task Master!** 🎉
Your contributions help make AI-driven development more accessible and efficient for everyone.

90
LICENSE.md Normal file
View File

@@ -0,0 +1,90 @@
# Dual License
This project is licensed under two separate licenses:
1. [Business Source License 1.1](#business-source-license-11) (BSL 1.1) for commercial use of Task Master itself
2. [Apache License 2.0](#apache-license-20) for all other uses
## Business Source License 1.1
Terms: https://mariadb.com/bsl11/
Licensed Work: Task Master AI
Additional Use Grant: You may use Task Master AI to create and commercialize your own projects and products.
Change Date: 2025-03-30
Change License: None
The Licensed Work is subject to the Business Source License 1.1. If you are interested in using the Licensed Work in a way that competes directly with Task Master, please contact the licensors.
### Licensor
- Eyal Toledano (GitHub: @eyaltoledano)
- Ralph (GitHub: @Crunchyman-ralph)
### Commercial Use Restrictions
This license explicitly restricts certain commercial uses of Task Master AI to the Licensors listed above. Restricted commercial uses include:
1. Creating commercial products or services that directly compete with Task Master AI
2. Selling Task Master AI itself as a service
3. Offering Task Master AI's functionality as a commercial managed service
4. Reselling or redistributing Task Master AI for a fee
### Explicitly Permitted Uses
The following uses are explicitly allowed under this license:
1. Using Task Master AI to create and commercialize your own projects
2. Using Task Master AI in commercial environments for internal development
3. Building and selling products or services that were created using Task Master AI
4. Using Task Master AI for commercial development as long as you're not selling Task Master AI itself
### Additional Terms
1. The right to commercialize Task Master AI itself is exclusively reserved for the Licensors
2. No party may create commercial products that directly compete with Task Master AI without explicit written permission
3. Forks of this repository are subject to the same restrictions regarding direct competition
4. Contributors agree that their contributions will be subject to this same dual licensing structure
## Apache License 2.0
For all uses other than those restricted above. See [APACHE-LICENSE](./APACHE-LICENSE) for the full license text.
### Permitted Use Definition
You may use Task Master AI for any purpose, including commercial purposes, as long as you are not:
1. Creating a direct competitor to Task Master AI
2. Selling Task Master AI itself as a service
3. Redistributing Task Master AI for a fee
### Requirements for Use
1. You must include appropriate copyright notices
2. You must state significant changes made to the software
3. You must preserve all license notices
## Questions and Commercial Licensing
For questions about licensing or to inquire about commercial use that may compete with Task Master, please contact:
- Eyal Toledano (GitHub: @eyaltoledano)
- Ralph (GitHub: @Crunchyman-ralph)
## Examples
### ✅ Allowed Uses
- Using Task Master to create a commercial SaaS product
- Using Task Master in your company for development
- Creating and selling products that were built using Task Master
- Using Task Master to generate code for commercial projects
- Offering consulting services where you use Task Master
### ❌ Restricted Uses
- Creating a competing AI task management tool
- Selling access to Task Master as a service
- Creating a hosted version of Task Master
- Reselling Task Master's functionality

View File

@@ -13,22 +13,25 @@ A task management system for AI-driven development with Claude, designed to work
## Configuration
Taskmaster uses two primary configuration methods:
The script can be configured through environment variables in a `.env` file at the root of the project:
1. **`.taskmasterconfig` File (Project Root)**
### Required Configuration
- Stores most settings: AI model selections (main, research, fallback), parameters (max tokens, temperature), logging level, default priority/subtasks, project name.
- **Created and managed using `task-master models --setup` CLI command or the `models` MCP tool.**
- Do not edit manually unless you know what you are doing.
- `ANTHROPIC_API_KEY`: Your Anthropic API key for Claude
2. **Environment Variables (`.env` file or MCP `env` block)**
- Used **only** for sensitive **API Keys** (e.g., `ANTHROPIC_API_KEY`, `PERPLEXITY_API_KEY`, etc.) and specific endpoints (like `OLLAMA_BASE_URL`).
- **For CLI:** Place keys in a `.env` file in your project root.
- **For MCP/Cursor:** Place keys in the `env` section of your `.cursor/mcp.json` (or other MCP config according to the AI IDE or client you use) file under the `taskmaster-ai` server definition.
### Optional Configuration
**Important:** Settings like model choices, max tokens, temperature, and log level are **no longer configured via environment variables.** Use the `task-master models` command or tool.
See the [Configuration Guide](docs/configuration.md) for full details.
- `MODEL`: Specify which Claude model to use (default: "claude-3-7-sonnet-20250219")
- `MAX_TOKENS`: Maximum tokens for model responses (default: 4000)
- `TEMPERATURE`: Temperature for model responses (default: 0.7)
- `PERPLEXITY_API_KEY`: Your Perplexity API key for research-backed subtask generation
- `PERPLEXITY_MODEL`: Specify which Perplexity model to use (default: "sonar-medium-online")
- `DEBUG`: Enable debug logging (default: false)
- `LOG_LEVEL`: Log level - debug, info, warn, error (default: info)
- `DEFAULT_SUBTASKS`: Default number of subtasks when expanding (default: 3)
- `DEFAULT_PRIORITY`: Default priority for generated tasks (default: medium)
- `PROJECT_NAME`: Override default project name in tasks.json
- `PROJECT_VERSION`: Override default version in tasks.json
## Installation
@@ -47,24 +50,14 @@ npm install task-master-ai
task-master init
# If installed locally
npx task-master init
npx task-master-init
```
This will prompt you for project details and set up a new project with the necessary files and structure.
### Important Notes
1. **ES Modules Configuration:**
- This project uses ES Modules (ESM) instead of CommonJS.
- This is set via `"type": "module"` in your package.json.
- Use `import/export` syntax instead of `require()`.
- Files should use `.js` or `.mjs` extensions.
- To use a CommonJS module, either:
- Rename it with `.cjs` extension
- Use `await import()` for dynamic imports
- If you need CommonJS throughout your project, remove `"type": "module"` from package.json, but Task Master scripts expect ESM.
1. This package uses ES modules. Your package.json should include `"type": "module"`.
2. The Anthropic SDK version should be 0.39.0 or higher.
## Quick Start with Global Commands
@@ -143,7 +136,7 @@ To enable enhanced task management capabilities directly within Cursor using the
4. Configure with the following details:
- Name: "Task Master"
- Type: "Command"
- Command: "npx -y task-master-ai"
- Command: "npx -y --package task-master-ai task-master-mcp"
5. Save the settings
Once configured, you can interact with Task Master's task management commands directly through Cursor's interface, providing a more integrated experience.

765
README.md
View File

@@ -1,145 +1,58 @@
# Task Master [![GitHub stars](https://img.shields.io/github/stars/eyaltoledano/claude-task-master?style=social)](https://github.com/eyaltoledano/claude-task-master/stargazers)
# Task Master
[![CI](https://github.com/eyaltoledano/claude-task-master/actions/workflows/ci.yml/badge.svg)](https://github.com/eyaltoledano/claude-task-master/actions/workflows/ci.yml) [![npm version](https://badge.fury.io/js/task-master-ai.svg)](https://badge.fury.io/js/task-master-ai) [![Discord](https://dcbadge.limes.pink/api/server/https://discord.gg/taskmasterai?style=flat)](https://discord.gg/taskmasterai) [![License: MIT with Commons Clause](https://img.shields.io/badge/license-MIT%20with%20Commons%20Clause-blue.svg)](LICENSE)
### By [@eyaltoledano](https://x.com/eyaltoledano) & [@RalphEcom](https://x.com/RalphEcom)
[![Twitter Follow](https://img.shields.io/twitter/follow/eyaltoledano?style=flat)](https://x.com/eyaltoledano)
[![Twitter Follow](https://img.shields.io/twitter/follow/RalphEcom?style=flat)](https://x.com/RalphEcom)
### by [@eyaltoledano](https://x.com/eyaltoledano)
A task management system for AI-driven development with Claude, designed to work seamlessly with Cursor AI.
## Licensing
Task Master is licensed under the MIT License with Commons Clause. This means you can:
**Allowed**:
- Use Task Master for any purpose (personal, commercial, academic)
- Modify the code
- Distribute copies
- Create and sell products built using Task Master
**Not Allowed**:
- Sell Task Master itself
- Offer Task Master as a hosted service
- Create competing products based on Task Master
See the [LICENSE](LICENSE) file for the complete license text.
## Requirements
Taskmaster utilizes AI across several commands, and those require a separate API key. You can use a variety of models from different AI providers provided you add your API keys. For example, if you want to use Claude 3.7, you'll need an Anthropic API key.
You can define 3 types of models to be used: the main model, the research model, and the fallback model (in case either the main or research fail). Whatever model you use, its provider API key must be present in either mcp.json or .env.
At least one (1) of the following is required:
- Node.js 14.0.0 or higher
- Anthropic API key (Claude API)
- OpenAI API key
- Google Gemini API key
- Perplexity API key (for research model)
- xAI API Key (for research or main model)
- OpenRouter API Key (for research or main model)
- Anthropic SDK version 0.39.0 or higher
- OpenAI SDK (for Perplexity API integration, optional)
Using the research model is optional but highly recommended. You will need at least ONE API key. Adding all API keys enables you to seamlessly switch between model providers at will.
## Configuration
## Quick Start
The script can be configured through environment variables in a `.env` file at the root of the project:
### Option 1: MCP (Recommended)
### Required Configuration
MCP (Model Control Protocol) lets you run Task Master directly from your editor.
- `ANTHROPIC_API_KEY`: Your Anthropic API key for Claude
#### 1. Add your MCP config at the following path depending on your editor
### Optional Configuration
| Editor | Scope | Linux/macOS Path | Windows Path | Key |
| ------------ | ------- | ------------------------------------- | ------------------------------------------------- | ------------ |
| **Cursor** | Global | `~/.cursor/mcp.json` | `%USERPROFILE%\.cursor\mcp.json` | `mcpServers` |
| | Project | `<project_folder>/.cursor/mcp.json` | `<project_folder>\.cursor\mcp.json` | `mcpServers` |
| **Windsurf** | Global | `~/.codeium/windsurf/mcp_config.json` | `%USERPROFILE%\.codeium\windsurf\mcp_config.json` | `mcpServers` |
| **VSCode** | Project | `<project_folder>/.vscode/mcp.json` | `<project_folder>\.vscode\mcp.json` | `servers` |
- `MODEL`: Specify which Claude model to use (default: "claude-3-7-sonnet-20250219")
- `MAX_TOKENS`: Maximum tokens for model responses (default: 4000)
- `TEMPERATURE`: Temperature for model responses (default: 0.7)
- `PERPLEXITY_API_KEY`: Your Perplexity API key for research-backed subtask generation
- `PERPLEXITY_MODEL`: Specify which Perplexity model to use (default: "sonar-medium-online")
- `DEBUG`: Enable debug logging (default: false)
- `LOG_LEVEL`: Log level - debug, info, warn, error (default: info)
- `DEFAULT_SUBTASKS`: Default number of subtasks when expanding (default: 3)
- `DEFAULT_PRIORITY`: Default priority for generated tasks (default: medium)
- `PROJECT_NAME`: Override default project name in tasks.json
- `PROJECT_VERSION`: Override default version in tasks.json
##### Cursor & Windsurf (`mcpServers`)
```jsonc
{
"mcpServers": {
"taskmaster-ai": {
"command": "npx",
"args": ["-y", "--package=task-master-ai", "task-master-ai"],
"env": {
"ANTHROPIC_API_KEY": "YOUR_ANTHROPIC_API_KEY_HERE",
"PERPLEXITY_API_KEY": "YOUR_PERPLEXITY_API_KEY_HERE",
"OPENAI_API_KEY": "YOUR_OPENAI_KEY_HERE",
"GOOGLE_API_KEY": "YOUR_GOOGLE_KEY_HERE",
"MISTRAL_API_KEY": "YOUR_MISTRAL_KEY_HERE",
"OPENROUTER_API_KEY": "YOUR_OPENROUTER_KEY_HERE",
"XAI_API_KEY": "YOUR_XAI_KEY_HERE",
"AZURE_OPENAI_API_KEY": "YOUR_AZURE_KEY_HERE",
"OLLAMA_API_KEY": "YOUR_OLLAMA_API_KEY_HERE"
}
}
}
}
```
> 🔑 Replace `YOUR_…_KEY_HERE` with your real API keys. You can remove keys you don't use.
##### VSCode (`servers` + `type`)
```jsonc
{
"servers": {
"taskmaster-ai": {
"command": "npx",
"args": ["-y", "--package=task-master-ai", "task-master-ai"],
"env": {
"ANTHROPIC_API_KEY": "YOUR_ANTHROPIC_API_KEY_HERE",
"PERPLEXITY_API_KEY": "YOUR_PERPLEXITY_API_KEY_HERE",
"OPENAI_API_KEY": "YOUR_OPENAI_KEY_HERE",
"GOOGLE_API_KEY": "YOUR_GOOGLE_KEY_HERE",
"MISTRAL_API_KEY": "YOUR_MISTRAL_KEY_HERE",
"OPENROUTER_API_KEY": "YOUR_OPENROUTER_KEY_HERE",
"XAI_API_KEY": "YOUR_XAI_KEY_HERE",
"AZURE_OPENAI_API_KEY": "YOUR_AZURE_KEY_HERE"
},
"type": "stdio"
}
}
}
```
> 🔑 Replace `YOUR_…_KEY_HERE` with your real API keys. You can remove keys you don't use.
#### 2. (Cursor-only) Enable Taskmaster MCP
Open Cursor Settings (Ctrl+Shift+J) ➡ Click on MCP tab on the left ➡ Enable task-master-ai with the toggle
#### 3. (Optional) Configure the models you want to use
In your editors AI chat pane, say:
```txt
Change the main, research and fallback models to <model_name>, <model_name> and <model_name> respectively.
```
[Table of available models](docs/models.md)
#### 4. Initialize Task Master
In your editors AI chat pane, say:
```txt
Initialize taskmaster-ai in my project
```
#### 5. Make sure you have a PRD in `<project_folder>/scripts/prd.txt`
An example of a PRD is located into `<project_folder>/scripts/example_prd.txt`.
**Always start with a detailed PRD.**
The more detailed your PRD, the better the generated tasks will be.
#### 6. Common Commands
Use your AI assistant to:
- Parse requirements: `Can you parse my PRD at scripts/prd.txt?`
- Plan next step: `Whats the next task I should work on?`
- Implement a task: `Can you help me implement task 3?`
- View multiple tasks: `Can you show me tasks 1, 3, and 5?`
- Expand a task: `Can you help me expand task 4?`
- **Research fresh information**: `Research the latest best practices for implementing JWT authentication with Node.js`
- **Research with context**: `Research React Query v5 migration strategies for our current API implementation in src/api.js`
[More examples on how to use Task Master in chat](docs/examples.md)
### Option 2: Using Command Line
#### Installation
## Installation
```bash
# Install globally
@@ -149,19 +62,26 @@ npm install -g task-master-ai
npm install task-master-ai
```
#### Initialize a new project
### Initialize a new project
```bash
# If installed globally
task-master init
# If installed locally
npx task-master init
npx task-master-init
```
This will prompt you for project details and set up a new project with the necessary files and structure.
#### Common Commands
### Important Notes
1. This package uses ES modules. Your package.json should include `"type": "module"`.
2. The Anthropic SDK version should be 0.39.0 or higher.
## Quick Start with Global Commands
After installing the package globally, you can use these CLI commands from any directory:
```bash
# Initialize a new project
@@ -176,26 +96,10 @@ task-master list
# Show the next task to work on
task-master next
# Show specific task(s) - supports comma-separated IDs
task-master show 1,3,5
# Research fresh information with project context
task-master research "What are the latest best practices for JWT authentication?"
# Generate task files
task-master generate
```
## Documentation
For more detailed information, check out the documentation in the `docs` directory:
- [Configuration Guide](docs/configuration.md) - Set up environment variables and customize Task Master
- [Tutorial](docs/tutorial.md) - Step-by-step guide to getting started with Task Master
- [Command Reference](docs/command-reference.md) - Complete list of all available commands
- [Task Structure](docs/task-structure.md) - Understanding the task format and features
- [Example Interactions](docs/examples.md) - Common Cursor AI interaction examples
## Troubleshooting
### If `task-master init` doesn't respond:
@@ -214,31 +118,562 @@ cd claude-task-master
node scripts/init.js
```
## Contributors
## Task Structure
<a href="https://github.com/eyaltoledano/claude-task-master/graphs/contributors">
<img src="https://contrib.rocks/image?repo=eyaltoledano/claude-task-master" alt="Task Master project contributors" />
</a>
Tasks in tasks.json have the following structure:
## Star History
- `id`: Unique identifier for the task (Example: `1`)
- `title`: Brief, descriptive title of the task (Example: `"Initialize Repo"`)
- `description`: Concise description of what the task involves (Example: `"Create a new repository, set up initial structure."`)
- `status`: Current state of the task (Example: `"pending"`, `"done"`, `"deferred"`)
- `dependencies`: IDs of tasks that must be completed before this task (Example: `[1, 2]`)
- Dependencies are displayed with status indicators (✅ for completed, ⏱️ for pending)
- This helps quickly identify which prerequisite tasks are blocking work
- `priority`: Importance level of the task (Example: `"high"`, `"medium"`, `"low"`)
- `details`: In-depth implementation instructions (Example: `"Use GitHub client ID/secret, handle callback, set session token."`)
- `testStrategy`: Verification approach (Example: `"Deploy and call endpoint to confirm 'Hello World' response."`)
- `subtasks`: List of smaller, more specific tasks that make up the main task (Example: `[{"id": 1, "title": "Configure OAuth", ...}]`)
[![Star History Chart](https://api.star-history.com/svg?repos=eyaltoledano/claude-task-master&type=Timeline)](https://www.star-history.com/#eyaltoledano/claude-task-master&Timeline)
## Integrating with Cursor AI
## Licensing
Claude Task Master is designed to work seamlessly with [Cursor AI](https://www.cursor.so/), providing a structured workflow for AI-driven development.
Task Master is licensed under the MIT License with Commons Clause. This means you can:
### Setup with Cursor
**Allowed**:
1. After initializing your project, open it in Cursor
2. The `.cursor/rules/dev_workflow.mdc` file is automatically loaded by Cursor, providing the AI with knowledge about the task management system
3. Place your PRD document in the `scripts/` directory (e.g., `scripts/prd.txt`)
4. Open Cursor's AI chat and switch to Agent mode
- Use Task Master for any purpose (personal, commercial, academic)
- Modify the code
- Distribute copies
- Create and sell products built using Task Master
### Setting up MCP in Cursor
**Not Allowed**:
To enable enhanced task management capabilities directly within Cursor using the Model Control Protocol (MCP):
- Sell Task Master itself
- Offer Task Master as a hosted service
- Create competing products based on Task Master
1. Go to Cursor settings
2. Navigate to the MCP section
3. Click on "Add New MCP Server"
4. Configure with the following details:
- Name: "Task Master"
- Type: "Command"
- Command: "npx -y --package task-master-ai task-master-mcp"
5. Save the settings
See the [LICENSE](LICENSE) file for the complete license text and [licensing details](docs/licensing.md) for more information.
Once configured, you can interact with Task Master's task management commands directly through Cursor's interface, providing a more integrated experience.
### Initial Task Generation
In Cursor's AI chat, instruct the agent to generate tasks from your PRD:
```
Please use the task-master parse-prd command to generate tasks from my PRD. The PRD is located at scripts/prd.txt.
```
The agent will execute:
```bash
task-master parse-prd scripts/prd.txt
```
This will:
- Parse your PRD document
- Generate a structured `tasks.json` file with tasks, dependencies, priorities, and test strategies
- The agent will understand this process due to the Cursor rules
### Generate Individual Task Files
Next, ask the agent to generate individual task files:
```
Please generate individual task files from tasks.json
```
The agent will execute:
```bash
task-master generate
```
This creates individual task files in the `tasks/` directory (e.g., `task_001.txt`, `task_002.txt`), making it easier to reference specific tasks.
## AI-Driven Development Workflow
The Cursor agent is pre-configured (via the rules file) to follow this workflow:
### 1. Task Discovery and Selection
Ask the agent to list available tasks:
```
What tasks are available to work on next?
```
The agent will:
- Run `task-master list` to see all tasks
- Run `task-master next` to determine the next task to work on
- Analyze dependencies to determine which tasks are ready to be worked on
- Prioritize tasks based on priority level and ID order
- Suggest the next task(s) to implement
### 2. Task Implementation
When implementing a task, the agent will:
- Reference the task's details section for implementation specifics
- Consider dependencies on previous tasks
- Follow the project's coding standards
- Create appropriate tests based on the task's testStrategy
You can ask:
```
Let's implement task 3. What does it involve?
```
### 3. Task Verification
Before marking a task as complete, verify it according to:
- The task's specified testStrategy
- Any automated tests in the codebase
- Manual verification if required
### 4. Task Completion
When a task is completed, tell the agent:
```
Task 3 is now complete. Please update its status.
```
The agent will execute:
```bash
task-master set-status --id=3 --status=done
```
### 5. Handling Implementation Drift
If during implementation, you discover that:
- The current approach differs significantly from what was planned
- Future tasks need to be modified due to current implementation choices
- New dependencies or requirements have emerged
Tell the agent:
```
We've changed our approach. We're now using Express instead of Fastify. Please update all future tasks to reflect this change.
```
The agent will execute:
```bash
task-master update --from=4 --prompt="Now we are using Express instead of Fastify."
```
This will rewrite or re-scope subsequent tasks in tasks.json while preserving completed work.
### 6. Breaking Down Complex Tasks
For complex tasks that need more granularity:
```
Task 5 seems complex. Can you break it down into subtasks?
```
The agent will execute:
```bash
task-master expand --id=5 --num=3
```
You can provide additional context:
```
Please break down task 5 with a focus on security considerations.
```
The agent will execute:
```bash
task-master expand --id=5 --prompt="Focus on security aspects"
```
You can also expand all pending tasks:
```
Please break down all pending tasks into subtasks.
```
The agent will execute:
```bash
task-master expand --all
```
For research-backed subtask generation using Perplexity AI:
```
Please break down task 5 using research-backed generation.
```
The agent will execute:
```bash
task-master expand --id=5 --research
```
## Command Reference
Here's a comprehensive reference of all available commands:
### Parse PRD
```bash
# Parse a PRD file and generate tasks
task-master parse-prd <prd-file.txt>
# Limit the number of tasks generated
task-master parse-prd <prd-file.txt> --num-tasks=10
```
### List Tasks
```bash
# List all tasks
task-master list
# List tasks with a specific status
task-master list --status=<status>
# List tasks with subtasks
task-master list --with-subtasks
# List tasks with a specific status and include subtasks
task-master list --status=<status> --with-subtasks
```
### Show Next Task
```bash
# Show the next task to work on based on dependencies and status
task-master next
```
### Show Specific Task
```bash
# Show details of a specific task
task-master show <id>
# or
task-master show --id=<id>
# View a specific subtask (e.g., subtask 2 of task 1)
task-master show 1.2
```
### Update Tasks
```bash
# Update tasks from a specific ID and provide context
task-master update --from=<id> --prompt="<prompt>"
```
### Update a Specific Task
```bash
# Update a single task by ID with new information
task-master update-task --id=<id> --prompt="<prompt>"
# Use research-backed updates with Perplexity AI
task-master update-task --id=<id> --prompt="<prompt>" --research
```
### Update a Subtask
```bash
# Append additional information to a specific subtask
task-master update-subtask --id=<parentId.subtaskId> --prompt="<prompt>"
# Example: Add details about API rate limiting to subtask 2 of task 5
task-master update-subtask --id=5.2 --prompt="Add rate limiting of 100 requests per minute"
# Use research-backed updates with Perplexity AI
task-master update-subtask --id=<parentId.subtaskId> --prompt="<prompt>" --research
```
Unlike the `update-task` command which replaces task information, the `update-subtask` command _appends_ new information to the existing subtask details, marking it with a timestamp. This is useful for iteratively enhancing subtasks while preserving the original content.
### Generate Task Files
```bash
# Generate individual task files from tasks.json
task-master generate
```
### Set Task Status
```bash
# Set status of a single task
task-master set-status --id=<id> --status=<status>
# Set status for multiple tasks
task-master set-status --id=1,2,3 --status=<status>
# Set status for subtasks
task-master set-status --id=1.1,1.2 --status=<status>
```
When marking a task as "done", all of its subtasks will automatically be marked as "done" as well.
### Expand Tasks
```bash
# Expand a specific task with subtasks
task-master expand --id=<id> --num=<number>
# Expand with additional context
task-master expand --id=<id> --prompt="<context>"
# Expand all pending tasks
task-master expand --all
# Force regeneration of subtasks for tasks that already have them
task-master expand --all --force
# Research-backed subtask generation for a specific task
task-master expand --id=<id> --research
# Research-backed generation for all tasks
task-master expand --all --research
```
### Clear Subtasks
```bash
# Clear subtasks from a specific task
task-master clear-subtasks --id=<id>
# Clear subtasks from multiple tasks
task-master clear-subtasks --id=1,2,3
# Clear subtasks from all tasks
task-master clear-subtasks --all
```
### Analyze Task Complexity
```bash
# Analyze complexity of all tasks
task-master analyze-complexity
# Save report to a custom location
task-master analyze-complexity --output=my-report.json
# Use a specific LLM model
task-master analyze-complexity --model=claude-3-opus-20240229
# Set a custom complexity threshold (1-10)
task-master analyze-complexity --threshold=6
# Use an alternative tasks file
task-master analyze-complexity --file=custom-tasks.json
# Use Perplexity AI for research-backed complexity analysis
task-master analyze-complexity --research
```
### View Complexity Report
```bash
# Display the task complexity analysis report
task-master complexity-report
# View a report at a custom location
task-master complexity-report --file=my-report.json
```
### Managing Task Dependencies
```bash
# Add a dependency to a task
task-master add-dependency --id=<id> --depends-on=<id>
# Remove a dependency from a task
task-master remove-dependency --id=<id> --depends-on=<id>
# Validate dependencies without fixing them
task-master validate-dependencies
# Find and fix invalid dependencies automatically
task-master fix-dependencies
```
### Add a New Task
```bash
# Add a new task using AI
task-master add-task --prompt="Description of the new task"
# Add a task with dependencies
task-master add-task --prompt="Description" --dependencies=1,2,3
# Add a task with priority
task-master add-task --prompt="Description" --priority=high
```
## Feature Details
### Analyzing Task Complexity
The `analyze-complexity` command:
- Analyzes each task using AI to assess its complexity on a scale of 1-10
- Recommends optimal number of subtasks based on configured DEFAULT_SUBTASKS
- Generates tailored prompts for expanding each task
- Creates a comprehensive JSON report with ready-to-use commands
- Saves the report to scripts/task-complexity-report.json by default
The generated report contains:
- Complexity analysis for each task (scored 1-10)
- Recommended number of subtasks based on complexity
- AI-generated expansion prompts customized for each task
- Ready-to-run expansion commands directly within each task analysis
### Viewing Complexity Report
The `complexity-report` command:
- Displays a formatted, easy-to-read version of the complexity analysis report
- Shows tasks organized by complexity score (highest to lowest)
- Provides complexity distribution statistics (low, medium, high)
- Highlights tasks recommended for expansion based on threshold score
- Includes ready-to-use expansion commands for each complex task
- If no report exists, offers to generate one on the spot
### Smart Task Expansion
The `expand` command automatically checks for and uses the complexity report:
When a complexity report exists:
- Tasks are automatically expanded using the recommended subtask count and prompts
- When expanding all tasks, they're processed in order of complexity (highest first)
- Research-backed generation is preserved from the complexity analysis
- You can still override recommendations with explicit command-line options
Example workflow:
```bash
# Generate the complexity analysis report with research capabilities
task-master analyze-complexity --research
# Review the report in a readable format
task-master complexity-report
# Expand tasks using the optimized recommendations
task-master expand --id=8
# or expand all tasks
task-master expand --all
```
### Finding the Next Task
The `next` command:
- Identifies tasks that are pending/in-progress and have all dependencies satisfied
- Prioritizes tasks by priority level, dependency count, and task ID
- Displays comprehensive information about the selected task:
- Basic task details (ID, title, priority, dependencies)
- Implementation details
- Subtasks (if they exist)
- Provides contextual suggested actions:
- Command to mark the task as in-progress
- Command to mark the task as done
- Commands for working with subtasks
### Viewing Specific Task Details
The `show` command:
- Displays comprehensive details about a specific task or subtask
- Shows task status, priority, dependencies, and detailed implementation notes
- For parent tasks, displays all subtasks and their status
- For subtasks, shows parent task relationship
- Provides contextual action suggestions based on the task's state
- Works with both regular tasks and subtasks (using the format taskId.subtaskId)
## Best Practices for AI-Driven Development
1. **Start with a detailed PRD**: The more detailed your PRD, the better the generated tasks will be.
2. **Review generated tasks**: After parsing the PRD, review the tasks to ensure they make sense and have appropriate dependencies.
3. **Analyze task complexity**: Use the complexity analysis feature to identify which tasks should be broken down further.
4. **Follow the dependency chain**: Always respect task dependencies - the Cursor agent will help with this.
5. **Update as you go**: If your implementation diverges from the plan, use the update command to keep future tasks aligned with your current approach.
6. **Break down complex tasks**: Use the expand command to break down complex tasks into manageable subtasks.
7. **Regenerate task files**: After any updates to tasks.json, regenerate the task files to keep them in sync.
8. **Communicate context to the agent**: When asking the Cursor agent to help with a task, provide context about what you're trying to achieve.
9. **Validate dependencies**: Periodically run the validate-dependencies command to check for invalid or circular dependencies.
## Example Cursor AI Interactions
### Starting a new project
```
I've just initialized a new project with Claude Task Master. I have a PRD at scripts/prd.txt.
Can you help me parse it and set up the initial tasks?
```
### Working on tasks
```
What's the next task I should work on? Please consider dependencies and priorities.
```
### Implementing a specific task
```
I'd like to implement task 4. Can you help me understand what needs to be done and how to approach it?
```
### Managing subtasks
```
I need to regenerate the subtasks for task 3 with a different approach. Can you help me clear and regenerate them?
```
### Handling changes
```
We've decided to use MongoDB instead of PostgreSQL. Can you update all future tasks to reflect this change?
```
### Completing work
```
I've finished implementing the authentication system described in task 2. All tests are passing.
Please mark it as complete and tell me what I should work on next.
```
### Analyzing complexity
```
Can you analyze the complexity of our tasks to help me understand which ones need to be broken down further?
```
### Viewing complexity report
```
Can you show me the complexity report in a more readable format?
```

View File

@@ -198,7 +198,7 @@ alwaysApply: true
- **MAX_TOKENS** (Default: `"4000"`): Maximum tokens for responses (Example: `MAX_TOKENS=8000`)
- **TEMPERATURE** (Default: `"0.7"`): Temperature for model responses (Example: `TEMPERATURE=0.5`)
- **DEBUG** (Default: `"false"`): Enable debug logging (Example: `DEBUG=true`)
- **TASKMASTER_LOG_LEVEL** (Default: `"info"`): Console output level (Example: `TASKMASTER_LOG_LEVEL=debug`)
- **LOG_LEVEL** (Default: `"info"`): Console output level (Example: `LOG_LEVEL=debug`)
- **DEFAULT_SUBTASKS** (Default: `"3"`): Default subtask count (Example: `DEFAULT_SUBTASKS=5`)
- **DEFAULT_PRIORITY** (Default: `"medium"`): Default priority (Example: `DEFAULT_PRIORITY=high`)
- **PROJECT_NAME** (Default: `"MCP SaaS MVP"`): Project name in metadata (Example: `PROJECT_NAME=My Awesome Project`)

View File

@@ -1,413 +0,0 @@
# Task Master AI - Claude Code Integration Guide
## Essential Commands
### Core Workflow Commands
```bash
# Project Setup
task-master init # Initialize Task Master in current project
task-master parse-prd scripts/prd.txt # Generate tasks from PRD document
task-master models --setup # Configure AI models interactively
# Daily Development Workflow
task-master list # Show all tasks with status
task-master next # Get next available task to work on
task-master show <id> # View detailed task information (e.g., task-master show 1.2)
task-master set-status --id=<id> --status=done # Mark task complete
# Task Management
task-master add-task --prompt="description" --research # Add new task with AI assistance
task-master expand --id=<id> --research --force # Break task into subtasks
task-master update-task --id=<id> --prompt="changes" # Update specific task
task-master update --from=<id> --prompt="changes" # Update multiple tasks from ID onwards
task-master update-subtask --id=<id> --prompt="notes" # Add implementation notes to subtask
# Analysis & Planning
task-master analyze-complexity --research # Analyze task complexity
task-master complexity-report # View complexity analysis
task-master expand --all --research # Expand all eligible tasks
# Dependencies & Organization
task-master add-dependency --id=<id> --depends-on=<id> # Add task dependency
task-master move --from=<id> --to=<id> # Reorganize task hierarchy
task-master validate-dependencies # Check for dependency issues
task-master generate # Update task markdown files (usually auto-called)
```
## Key Files & Project Structure
### Core Files
- `tasks/tasks.json` - Main task data file (auto-managed)
- `.taskmasterconfig` - AI model configuration (use `task-master models` to modify)
- `scripts/prd.txt` - Product Requirements Document for parsing
- `tasks/*.txt` - Individual task files (auto-generated from tasks.json)
- `.env` - API keys for CLI usage
### Claude Code Integration Files
- `CLAUDE.md` - Auto-loaded context for Claude Code (this file)
- `.claude/settings.json` - Claude Code tool allowlist and preferences
- `.claude/commands/` - Custom slash commands for repeated workflows
- `.mcp.json` - MCP server configuration (project-specific)
### Directory Structure
```
project/
├── tasks/
│ ├── tasks.json # Main task database
│ ├── task-1.md # Individual task files
│ └── task-2.md
├── scripts/
│ ├── prd.txt # Product requirements
│ └── task-complexity-report.json
├── .claude/
│ ├── settings.json # Claude Code configuration
│ └── commands/ # Custom slash commands
├── .taskmasterconfig # AI models & settings
├── .env # API keys
├── .mcp.json # MCP configuration
└── CLAUDE.md # This file - auto-loaded by Claude Code
```
## MCP Integration
Task Master provides an MCP server that Claude Code can connect to. Configure in `.mcp.json`:
```json
{
"mcpServers": {
"task-master-ai": {
"command": "npx",
"args": ["-y", "--package=task-master-ai", "task-master-ai"],
"env": {
"ANTHROPIC_API_KEY": "your_key_here",
"PERPLEXITY_API_KEY": "your_key_here",
"OPENAI_API_KEY": "OPENAI_API_KEY_HERE",
"GOOGLE_API_KEY": "GOOGLE_API_KEY_HERE",
"XAI_API_KEY": "XAI_API_KEY_HERE",
"OPENROUTER_API_KEY": "OPENROUTER_API_KEY_HERE",
"MISTRAL_API_KEY": "MISTRAL_API_KEY_HERE",
"AZURE_OPENAI_API_KEY": "AZURE_OPENAI_API_KEY_HERE",
"OLLAMA_API_KEY": "OLLAMA_API_KEY_HERE"
}
}
}
}
```
### Essential MCP Tools
```javascript
help; // = shows available taskmaster commands
// Project setup
initialize_project; // = task-master init
parse_prd; // = task-master parse-prd
// Daily workflow
get_tasks; // = task-master list
next_task; // = task-master next
get_task; // = task-master show <id>
set_task_status; // = task-master set-status
// Task management
add_task; // = task-master add-task
expand_task; // = task-master expand
update_task; // = task-master update-task
update_subtask; // = task-master update-subtask
update; // = task-master update
// Analysis
analyze_project_complexity; // = task-master analyze-complexity
complexity_report; // = task-master complexity-report
```
## Claude Code Workflow Integration
### Standard Development Workflow
#### 1. Project Initialization
```bash
# Initialize Task Master
task-master init
# Create or obtain PRD, then parse it
task-master parse-prd scripts/prd.txt
# Analyze complexity and expand tasks
task-master analyze-complexity --research
task-master expand --all --research
```
If tasks already exist, another PRD can be parsed (with new information only!) using parse-prd with --append flag. This will add the generated tasks to the existing list of tasks..
#### 2. Daily Development Loop
```bash
# Start each session
task-master next # Find next available task
task-master show <id> # Review task details
# During implementation, check in code context into the tasks and subtasks
task-master update-subtask --id=<id> --prompt="implementation notes..."
# Complete tasks
task-master set-status --id=<id> --status=done
```
#### 3. Multi-Claude Workflows
For complex projects, use multiple Claude Code sessions:
```bash
# Terminal 1: Main implementation
cd project && claude
# Terminal 2: Testing and validation
cd project-test-worktree && claude
# Terminal 3: Documentation updates
cd project-docs-worktree && claude
```
### Custom Slash Commands
Create `.claude/commands/taskmaster-next.md`:
```markdown
Find the next available Task Master task and show its details.
Steps:
1. Run `task-master next` to get the next task
2. If a task is available, run `task-master show <id>` for full details
3. Provide a summary of what needs to be implemented
4. Suggest the first implementation step
```
Create `.claude/commands/taskmaster-complete.md`:
```markdown
Complete a Task Master task: $ARGUMENTS
Steps:
1. Review the current task with `task-master show $ARGUMENTS`
2. Verify all implementation is complete
3. Run any tests related to this task
4. Mark as complete: `task-master set-status --id=$ARGUMENTS --status=done`
5. Show the next available task with `task-master next`
```
## Tool Allowlist Recommendations
Add to `.claude/settings.json`:
```json
{
"allowedTools": [
"Edit",
"Bash(task-master *)",
"Bash(git commit:*)",
"Bash(git add:*)",
"Bash(npm run *)",
"mcp__task_master_ai__*"
]
}
```
## Configuration & Setup
### API Keys Required
At least **one** of these API keys must be configured:
- `ANTHROPIC_API_KEY` (Claude models) - **Recommended**
- `PERPLEXITY_API_KEY` (Research features) - **Highly recommended**
- `OPENAI_API_KEY` (GPT models)
- `GOOGLE_API_KEY` (Gemini models)
- `MISTRAL_API_KEY` (Mistral models)
- `OPENROUTER_API_KEY` (Multiple models)
- `XAI_API_KEY` (Grok models)
An API key is required for any provider used across any of the 3 roles defined in the `models` command.
### Model Configuration
```bash
# Interactive setup (recommended)
task-master models --setup
# Set specific models
task-master models --set-main claude-3-5-sonnet-20241022
task-master models --set-research perplexity-llama-3.1-sonar-large-128k-online
task-master models --set-fallback gpt-4o-mini
```
## Task Structure & IDs
### Task ID Format
- Main tasks: `1`, `2`, `3`, etc.
- Subtasks: `1.1`, `1.2`, `2.1`, etc.
- Sub-subtasks: `1.1.1`, `1.1.2`, etc.
### Task Status Values
- `pending` - Ready to work on
- `in-progress` - Currently being worked on
- `done` - Completed and verified
- `deferred` - Postponed
- `cancelled` - No longer needed
- `blocked` - Waiting on external factors
### Task Fields
```json
{
"id": "1.2",
"title": "Implement user authentication",
"description": "Set up JWT-based auth system",
"status": "pending",
"priority": "high",
"dependencies": ["1.1"],
"details": "Use bcrypt for hashing, JWT for tokens...",
"testStrategy": "Unit tests for auth functions, integration tests for login flow",
"subtasks": []
}
```
## Claude Code Best Practices with Task Master
### Context Management
- Use `/clear` between different tasks to maintain focus
- This CLAUDE.md file is automatically loaded for context
- Use `task-master show <id>` to pull specific task context when needed
### Iterative Implementation
1. `task-master show <subtask-id>` - Understand requirements
2. Explore codebase and plan implementation
3. `task-master update-subtask --id=<id> --prompt="detailed plan"` - Log plan
4. `task-master set-status --id=<id> --status=in-progress` - Start work
5. Implement code following logged plan
6. `task-master update-subtask --id=<id> --prompt="what worked/didn't work"` - Log progress
7. `task-master set-status --id=<id> --status=done` - Complete task
### Complex Workflows with Checklists
For large migrations or multi-step processes:
1. Create a markdown PRD file describing the new changes: `touch task-migration-checklist.md` (prds can be .txt or .md)
2. Use Taskmaster to parse the new prd with `task-master parse-prd --append` (also available in MCP)
3. Use Taskmaster to expand the newly generated tasks into subtasks. Consdier using `analyze-complexity` with the correct --to and --from IDs (the new ids) to identify the ideal subtask amounts for each task. Then expand them.
4. Work through items systematically, checking them off as completed
5. Use `task-master update-subtask` to log progress on each task/subtask and/or updating/researching them before/during implementation if getting stuck
### Git Integration
Task Master works well with `gh` CLI:
```bash
# Create PR for completed task
gh pr create --title "Complete task 1.2: User authentication" --body "Implements JWT auth system as specified in task 1.2"
# Reference task in commits
git commit -m "feat: implement JWT auth (task 1.2)"
```
### Parallel Development with Git Worktrees
```bash
# Create worktrees for parallel task development
git worktree add ../project-auth feature/auth-system
git worktree add ../project-api feature/api-refactor
# Run Claude Code in each worktree
cd ../project-auth && claude # Terminal 1: Auth work
cd ../project-api && claude # Terminal 2: API work
```
## Troubleshooting
### AI Commands Failing
```bash
# Check API keys are configured
cat .env # For CLI usage
# Verify model configuration
task-master models
# Test with different model
task-master models --set-fallback gpt-4o-mini
```
### MCP Connection Issues
- Check `.mcp.json` configuration
- Verify Node.js installation
- Use `--mcp-debug` flag when starting Claude Code
- Use CLI as fallback if MCP unavailable
### Task File Sync Issues
```bash
# Regenerate task files from tasks.json
task-master generate
# Fix dependency issues
task-master fix-dependencies
```
DO NOT RE-INITIALIZE. That will not do anything beyond re-adding the same Taskmaster core files.
## Important Notes
### AI-Powered Operations
These commands make AI calls and may take up to a minute:
- `parse_prd` / `task-master parse-prd`
- `analyze_project_complexity` / `task-master analyze-complexity`
- `expand_task` / `task-master expand`
- `expand_all` / `task-master expand --all`
- `add_task` / `task-master add-task`
- `update` / `task-master update`
- `update_task` / `task-master update-task`
- `update_subtask` / `task-master update-subtask`
### File Management
- Never manually edit `tasks.json` - use commands instead
- Never manually edit `.taskmasterconfig` - use `task-master models`
- Task markdown files in `tasks/` are auto-generated
- Run `task-master generate` after manual changes to tasks.json
### Claude Code Session Management
- Use `/clear` frequently to maintain focused context
- Create custom slash commands for repeated Task Master workflows
- Configure tool allowlist to streamline permissions
- Use headless mode for automation: `claude -p "task-master next"`
### Multi-Task Updates
- Use `update --from=<id>` to update multiple future tasks
- Use `update-task --id=<id>` for single task updates
- Use `update-subtask --id=<id>` for implementation logging
### Research Mode
- Add `--research` flag for research-based AI enhancement
- Requires a research model API key like Perplexity (`PERPLEXITY_API_KEY`) in environment
- Provides more informed task creation and updates
- Recommended for complex technical tasks
---
_This guide ensures Claude Code has immediate access to Task Master's essential functionality for agentic development workflows._

View File

@@ -1,9 +1,14 @@
# API Keys (Required to enable respective provider)
ANTHROPIC_API_KEY="your_anthropic_api_key_here" # Required: Format: sk-ant-api03-...
PERPLEXITY_API_KEY="your_perplexity_api_key_here" # Optional: Format: pplx-...
OPENAI_API_KEY="your_openai_api_key_here" # Optional, for OpenAI/OpenRouter models. Format: sk-proj-...
GOOGLE_API_KEY="your_google_api_key_here" # Optional, for Google Gemini models.
MISTRAL_API_KEY="your_mistral_key_here" # Optional, for Mistral AI models.
XAI_API_KEY="YOUR_XAI_KEY_HERE" # Optional, for xAI AI models.
AZURE_OPENAI_API_KEY="your_azure_key_here" # Optional, for Azure OpenAI models (requires endpoint in .taskmasterconfig).
OLLAMA_API_KEY="your_ollama_api_key_here" # Optional: For remote Ollama servers that require authentication.
# Required
ANTHROPIC_API_KEY=your-api-key-here # Format: sk-ant-api03-...
PERPLEXITY_API_KEY=pplx-abcde # For research (recommended but optional)
# Optional - defaults shown
MODEL=claude-3-7-sonnet-20250219 # Recommended models: claude-3-7-sonnet-20250219, claude-3-opus-20240229
PERPLEXITY_MODEL=sonar-pro # Make sure you have access to sonar-pro otherwise you can use sonar regular.
MAX_TOKENS=4000 # Maximum tokens for model responses
TEMPERATURE=0.7 # Temperature for model responses (0.0-1.0)
DEBUG=false # Enable debug logging (true/false)
LOG_LEVEL=info # Log level (debug, info, warn, error)
DEFAULT_SUBTASKS=3 # Default number of subtasks when expanding
DEFAULT_PRIORITY=medium # Default priority for generated tasks (high, medium, low)
PROJECT_NAME={{projectName}} # Project name for tasks.json metadata

View File

@@ -1,93 +0,0 @@
**Core Directives & Agentivity:**
# 1. Adhere strictly to the rules defined below.
# 2. Use tools sequentially, one per message. Adhere strictly to the rules defined below.
# 3. CRITICAL: ALWAYS wait for user confirmation of success after EACH tool use before proceeding. Do not assume success.
# 4. Operate iteratively: Analyze task -> Plan steps -> Execute steps one by one.
# 5. Use <thinking> tags for *internal* analysis before tool use (context, tool choice, required params).
# 6. **DO NOT DISPLAY XML TOOL TAGS IN THE OUTPUT.**
# 7. **DO NOT DISPLAY YOUR THINKING IN THE OUTPUT.**
**Architectural Design & Planning Role (Delegated Tasks):**
Your primary role when activated via `new_task` by the Boomerang orchestrator is to perform specific architectural, design, or planning tasks, focusing on the instructions provided in the delegation message and referencing the relevant `taskmaster-ai` task ID.
1. **Analyze Delegated Task:** Carefully examine the `message` provided by Boomerang. This message contains the specific task scope, context (including the `taskmaster-ai` task ID), and constraints.
2. **Information Gathering (As Needed):** Use analysis tools to fulfill the task:
* `list_files`: Understand project structure.
* `read_file`: Examine specific code, configuration, or documentation files relevant to the architectural task.
* `list_code_definition_names`: Analyze code structure and relationships.
* `use_mcp_tool` (taskmaster-ai): Use `get_task` or `analyze_project_complexity` *only if explicitly instructed* by Boomerang in the delegation message to gather further context beyond what was provided.
3. **Task Execution (Design & Planning):** Focus *exclusively* on the delegated architectural task, which may involve:
* Designing system architecture, component interactions, or data models.
* Planning implementation steps or identifying necessary subtasks (to be reported back).
* Analyzing technical feasibility, complexity, or potential risks.
* Defining interfaces, APIs, or data contracts.
* Reviewing existing code/architecture against requirements or best practices.
4. **Reporting Completion:** Signal completion using `attempt_completion`. Provide a concise yet thorough summary of the outcome in the `result` parameter. This summary is **crucial** for Boomerang to update `taskmaster-ai`. Include:
* Summary of design decisions, plans created, analysis performed, or subtasks identified.
* Any relevant artifacts produced (e.g., diagrams described, markdown files written - if applicable and instructed).
* Completion status (success, failure, needs review).
* Any significant findings, potential issues, or context gathered relevant to the next steps.
5. **Handling Issues:**
* **Complexity/Review:** If you encounter significant complexity, uncertainty, or issues requiring further review (e.g., needing testing input, deeper debugging analysis), set the status to 'review' within your `attempt_completion` result and clearly state the reason. **Do not delegate directly.** Report back to Boomerang.
* **Failure:** If the task fails (e.g., requirements are contradictory, necessary information unavailable), clearly report the failure and the reason in the `attempt_completion` result.
6. **Taskmaster Interaction:**
* **Primary Responsibility:** Boomerang is primarily responsible for updating Taskmaster (`set_task_status`, `update_task`, `update_subtask`) after receiving your `attempt_completion` result.
* **Direct Updates (Rare):** Only update Taskmaster directly if operating autonomously (not under Boomerang's delegation) or if *explicitly* instructed by Boomerang within the `new_task` message.
7. **Autonomous Operation (Exceptional):** If operating outside of Boomerang's delegation (e.g., direct user request), ensure Taskmaster is initialized before attempting Taskmaster operations (see Taskmaster-AI Strategy below).
**Context Reporting Strategy:**
context_reporting: |
<thinking>
Strategy:
- Focus on providing comprehensive information within the `attempt_completion` `result` parameter.
- Boomerang will use this information to update Taskmaster's `description`, `details`, or log via `update_task`/`update_subtask`.
- My role is to *report* accurately, not *log* directly to Taskmaster unless explicitly instructed or operating autonomously.
</thinking>
- **Goal:** Ensure the `result` parameter in `attempt_completion` contains all necessary information for Boomerang to understand the outcome and update Taskmaster effectively.
- **Content:** Include summaries of architectural decisions, plans, analysis, identified subtasks, errors encountered, or new context discovered. Structure the `result` clearly.
- **Trigger:** Always provide a detailed `result` upon using `attempt_completion`.
- **Mechanism:** Boomerang receives the `result` and performs the necessary Taskmaster updates.
**Taskmaster-AI Strategy (for Autonomous Operation):**
# Only relevant if operating autonomously (not delegated by Boomerang).
taskmaster_strategy:
status_prefix: "Begin autonomous responses with either '[TASKMASTER: ON]' or '[TASKMASTER: OFF]'."
initialization: |
<thinking>
- **CHECK FOR TASKMASTER (Autonomous Only):**
- Plan: If I need to use Taskmaster tools autonomously, first use `list_files` to check if `tasks/tasks.json` exists.
- If `tasks/tasks.json` is present = set TASKMASTER: ON, else TASKMASTER: OFF.
</thinking>
*Execute the plan described above only if autonomous Taskmaster interaction is required.*
if_uninitialized: |
1. **Inform:** "Task Master is not initialized. Autonomous Taskmaster operations cannot proceed."
2. **Suggest:** "Consider switching to Boomerang mode to initialize and manage the project workflow."
if_ready: |
1. **Verify & Load:** Optionally fetch tasks using `taskmaster-ai`'s `get_tasks` tool if needed for autonomous context.
2. **Set Status:** Set status to '[TASKMASTER: ON]'.
3. **Proceed:** Proceed with autonomous Taskmaster operations.
**Mode Collaboration & Triggers (Architect Perspective):**
mode_collaboration: |
# Architect Mode Collaboration (Focus on receiving from Boomerang and reporting back)
- Delegated Task Reception (FROM Boomerang via `new_task`):
* Receive specific architectural/planning task instructions referencing a `taskmaster-ai` ID.
* Analyze requirements, scope, and constraints provided by Boomerang.
- Completion Reporting (TO Boomerang via `attempt_completion`):
* Report design decisions, plans, analysis results, or identified subtasks in the `result`.
* Include completion status (success, failure, review) and context for Boomerang.
* Signal completion of the *specific delegated architectural task*.
mode_triggers:
# Conditions that might trigger a switch TO Architect mode (typically orchestrated BY Boomerang based on needs identified by other modes or the user)
architect:
- condition: needs_architectural_design # e.g., New feature requires system design
- condition: needs_refactoring_plan # e.g., Code mode identifies complex refactoring needed
- condition: needs_complexity_analysis # e.g., Before breaking down a large feature
- condition: design_clarification_needed # e.g., Implementation details unclear
- condition: pattern_violation_found # e.g., Code deviates significantly from established patterns
- condition: review_architectural_decision # e.g., Boomerang requests review based on 'review' status from another mode

View File

@@ -1,89 +0,0 @@
**Core Directives & Agentivity:**
# 1. Adhere strictly to the rules defined below.
# 2. Use tools sequentially, one per message. Adhere strictly to the rules defined below.
# 3. CRITICAL: ALWAYS wait for user confirmation of success after EACH tool use before proceeding. Do not assume success.
# 4. Operate iteratively: Analyze task -> Plan steps -> Execute steps one by one.
# 5. Use <thinking> tags for *internal* analysis before tool use (context, tool choice, required params).
# 6. **DO NOT DISPLAY XML TOOL TAGS IN THE OUTPUT.**
# 7. **DO NOT DISPLAY YOUR THINKING IN THE OUTPUT.**
**Information Retrieval & Explanation Role (Delegated Tasks):**
Your primary role when activated via `new_task` by the Boomerang (orchestrator) mode is to act as a specialized technical assistant. Focus *exclusively* on fulfilling the specific instructions provided in the `new_task` message, referencing the relevant `taskmaster-ai` task ID.
1. **Understand the Request:** Carefully analyze the `message` provided in the `new_task` delegation. This message will contain the specific question, information request, or analysis needed, referencing the `taskmaster-ai` task ID for context.
2. **Information Gathering:** Utilize appropriate tools to gather the necessary information based *only* on the delegation instructions:
* `read_file`: To examine specific file contents.
* `search_files`: To find patterns or specific text across the project.
* `list_code_definition_names`: To understand code structure in relevant directories.
* `use_mcp_tool` (with `taskmaster-ai`): *Only if explicitly instructed* by the Boomerang delegation message to retrieve specific task details (e.g., using `get_task`).
3. **Formulate Response:** Synthesize the gathered information into a clear, concise, and accurate answer or explanation addressing the specific request from the delegation message.
4. **Reporting Completion:** Signal completion using `attempt_completion`. Provide a concise yet thorough summary of the outcome in the `result` parameter. This summary is **crucial** for Boomerang to process and potentially update `taskmaster-ai`. Include:
* The complete answer, explanation, or analysis formulated in the previous step.
* Completion status (success, failure - e.g., if information could not be found).
* Any significant findings or context gathered relevant to the question.
* Cited sources (e.g., file paths, specific task IDs if used) where appropriate.
5. **Strict Scope:** Execute *only* the delegated information-gathering/explanation task. Do not perform code changes, execute unrelated commands, switch modes, or attempt to manage the overall workflow. Your responsibility ends with reporting the answer via `attempt_completion`.
**Context Reporting Strategy:**
context_reporting: |
<thinking>
Strategy:
- Focus on providing comprehensive information (the answer/analysis) within the `attempt_completion` `result` parameter.
- Boomerang will use this information to potentially update Taskmaster's `description`, `details`, or log via `update_task`/`update_subtask`.
- My role is to *report* accurately, not *log* directly to Taskmaster.
</thinking>
- **Goal:** Ensure the `result` parameter in `attempt_completion` contains the complete and accurate answer/analysis requested by Boomerang.
- **Content:** Include the full answer, explanation, or analysis results. Cite sources if applicable. Structure the `result` clearly.
- **Trigger:** Always provide a detailed `result` upon using `attempt_completion`.
- **Mechanism:** Boomerang receives the `result` and performs any necessary Taskmaster updates or decides the next workflow step.
**Taskmaster Interaction:**
* **Primary Responsibility:** Boomerang is primarily responsible for updating Taskmaster (`set_task_status`, `update_task`, `update_subtask`) after receiving your `attempt_completion` result.
* **Direct Use (Rare & Specific):** Only use Taskmaster tools (`use_mcp_tool` with `taskmaster-ai`) if *explicitly instructed* by Boomerang within the `new_task` message, and *only* for retrieving information (e.g., `get_task`). Do not update Taskmaster status or content directly.
**Taskmaster-AI Strategy (for Autonomous Operation):**
# Only relevant if operating autonomously (not delegated by Boomerang), which is highly exceptional for Ask mode.
taskmaster_strategy:
status_prefix: "Begin autonomous responses with either '[TASKMASTER: ON]' or '[TASKMASTER: OFF]'."
initialization: |
<thinking>
- **CHECK FOR TASKMASTER (Autonomous Only):**
- Plan: If I need to use Taskmaster tools autonomously (extremely rare), first use `list_files` to check if `tasks/tasks.json` exists.
- If `tasks/tasks.json` is present = set TASKMASTER: ON, else TASKMASTER: OFF.
</thinking>
*Execute the plan described above only if autonomous Taskmaster interaction is required.*
if_uninitialized: |
1. **Inform:** "Task Master is not initialized. Autonomous Taskmaster operations cannot proceed."
2. **Suggest:** "Consider switching to Boomerang mode to initialize and manage the project workflow."
if_ready: |
1. **Verify & Load:** Optionally fetch tasks using `taskmaster-ai`'s `get_tasks` tool if needed for autonomous context (again, very rare for Ask).
2. **Set Status:** Set status to '[TASKMASTER: ON]'.
3. **Proceed:** Proceed with autonomous operations (likely just answering a direct question without workflow context).
**Mode Collaboration & Triggers:**
mode_collaboration: |
# Ask Mode Collaboration: Focuses on receiving tasks from Boomerang and reporting back findings.
- Delegated Task Reception (FROM Boomerang via `new_task`):
* Understand question/analysis request from Boomerang (referencing taskmaster-ai task ID).
* Research information or analyze provided context using appropriate tools (`read_file`, `search_files`, etc.) as instructed.
* Formulate answers/explanations strictly within the subtask scope.
* Use `taskmaster-ai` tools *only* if explicitly instructed in the delegation message for information retrieval.
- Completion Reporting (TO Boomerang via `attempt_completion`):
* Provide the complete answer, explanation, or analysis results in the `result` parameter.
* Report completion status (success/failure) of the information-gathering subtask.
* Cite sources or relevant context found.
mode_triggers:
# Ask mode does not typically trigger switches TO other modes.
# It receives tasks via `new_task` and reports completion via `attempt_completion`.
# Triggers defining when OTHER modes might switch TO Ask remain relevant for the overall system,
# but Ask mode itself does not initiate these switches.
ask:
- condition: documentation_needed
- condition: implementation_explanation
- condition: pattern_documentation

View File

@@ -1,181 +0,0 @@
**Core Directives & Agentivity:**
# 1. Adhere strictly to the rules defined below.
# 2. Use tools sequentially, one per message. Adhere strictly to the rules defined below.
# 3. CRITICAL: ALWAYS wait for user confirmation of success after EACH tool use before proceeding. Do not assume success.
# 4. Operate iteratively: Analyze task -> Plan steps -> Execute steps one by one.
# 5. Use <thinking> tags for *internal* analysis before tool use (context, tool choice, required params).
# 6. **DO NOT DISPLAY XML TOOL TAGS IN THE OUTPUT.**
# 7. **DO NOT DISPLAY YOUR THINKING IN THE OUTPUT.**
**Workflow Orchestration Role:**
Your role is to coordinate complex workflows by delegating tasks to specialized modes, using `taskmaster-ai` as the central hub for task definition, progress tracking, and context management. As an orchestrator, you should always delegate tasks:
1. **Task Decomposition:** When given a complex task, analyze it and break it down into logical subtasks suitable for delegation. If TASKMASTER IS ON Leverage `taskmaster-ai` (`get_tasks`, `analyze_project_complexity`, `expand_task`) to understand the existing task structure and identify areas needing updates and/or breakdown.
2. **Delegation via `new_task`:** For each subtask identified (or if creating new top-level tasks via `add_task` is needed first), use the `new_task` tool to delegate.
* Choose the most appropriate mode for the subtask's specific goal.
* Provide comprehensive instructions in the `message` parameter, including:
* All necessary context from the parent task (retrieved via `get_task` or `get_tasks` from `taskmaster-ai`) or previous subtasks.
* A clearly defined scope, specifying exactly what the subtask should accomplish. Reference the relevant `taskmaster-ai` task/subtask ID.
* An explicit statement that the subtask should *only* perform the work outlined and not deviate.
* An instruction for the subtask to signal completion using `attempt_completion`, providing a concise yet thorough summary of the outcome in the `result` parameter. This summary is crucial for updating `taskmaster-ai`.
* A statement that these specific instructions supersede any conflicting general instructions the subtask's mode might have.
3. **Progress Tracking & Context Management (using `taskmaster-ai`):**
* Track and manage the progress of all subtasks primarily through `taskmaster-ai`.
* When a subtask completes (signaled via `attempt_completion`), **process its `result` directly**. Update the relevant task/subtask status and details in `taskmaster-ai` using `set_task_status`, `update_task`, or `update_subtask`. Handle failures explicitly (see Result Reception below).
* After processing the result and updating Taskmaster, determine the next steps based on the updated task statuses and dependencies managed by `taskmaster-ai` (use `next_task`). This might involve delegating the next task, asking the user for clarification (`ask_followup_question`), or proceeding to synthesis.
* Use `taskmaster-ai`'s `set_task_status` tool when starting to work on a new task to mark tasks/subtasks as 'in-progress'. If a subtask reports back with a 'review' status via `attempt_completion`, update Taskmaster accordingly, and then decide the next step: delegate to Architect/Test/Debug for specific review, or use `ask_followup_question` to consult the user directly.
4. **User Communication:** Help the user understand the workflow, the status of tasks (using info from `get_tasks` or `get_task`), and how subtasks fit together. Provide clear reasoning for delegation choices.
5. **Synthesis:** When all relevant tasks managed by `taskmaster-ai` for the user's request are 'done' (confirm via `get_tasks`), **perform the final synthesis yourself**. Compile the summary based on the information gathered and logged in Taskmaster throughout the workflow and present it using `attempt_completion`.
6. **Clarification:** Ask clarifying questions (using `ask_followup_question`) when necessary to better understand how to break down or manage tasks within `taskmaster-ai`.
Use subtasks (`new_task`) to maintain clarity. If a request significantly shifts focus or requires different expertise, create a subtask.
**Taskmaster-AI Strategy:**
taskmaster_strategy:
status_prefix: "Begin EVERY response with either '[TASKMASTER: ON]' or '[TASKMASTER: OFF]', indicating if the Task Master project structure (e.g., `tasks/tasks.json`) appears to be set up."
initialization: |
<thinking>
- **CHECK FOR TASKMASTER:**
- Plan: Use `list_files` to check if `tasks/tasks.json` is PRESENT in the project root, then TASKMASTER has been initialized.
- if `tasks/tasks.json` is present = set TASKMASTER: ON, else TASKMASTER: OFF
</thinking>
*Execute the plan described above.*
if_uninitialized: |
1. **Inform & Suggest:**
"It seems Task Master hasn't been initialized in this project yet. TASKMASTER helps manage tasks and context effectively. Would you like me to delegate to the code mode to run the `initialize_project` command for TASKMASTER?"
2. **Conditional Actions:**
* If the user declines:
<thinking>
I need to proceed without TASKMASTER functionality. I will inform the user and set the status accordingly.
</thinking>
a. Inform the user: "Ok, I will proceed without initializing TASKMASTER."
b. Set status to '[TASKMASTER: OFF]'.
c. Attempt to handle the user's request directly if possible.
* If the user agrees:
<thinking>
I will use `new_task` to delegate project initialization to the `code` mode using the `taskmaster-ai` `initialize_project` tool. I need to ensure the `projectRoot` argument is correctly set.
</thinking>
a. Use `new_task` with `mode: code`` and instructions to execute the `taskmaster-ai` `initialize_project` tool via `use_mcp_tool`. Provide necessary details like `projectRoot`. Instruct Code mode to report completion via `attempt_completion`.
if_ready: |
<thinking>
Plan: Use `use_mcp_tool` with `server_name: taskmaster-ai`, `tool_name: get_tasks`, and required arguments (`projectRoot`). This verifies connectivity and loads initial task context.
</thinking>
1. **Verify & Load:** Attempt to fetch tasks using `taskmaster-ai`'s `get_tasks` tool.
2. **Set Status:** Set status to '[TASKMASTER: ON]'.
3. **Inform User:** "TASKMASTER is ready. I have loaded the current task list."
4. **Proceed:** Proceed with the user's request, utilizing `taskmaster-ai` tools for task management and context as described in the 'Workflow Orchestration Role'.
**Mode Collaboration & Triggers:**
mode_collaboration: |
# Collaboration definitions for how Boomerang orchestrates and interacts.
# Boomerang delegates via `new_task` using taskmaster-ai for task context,
# receives results via `attempt_completion`, processes them, updates taskmaster-ai, and determines the next step.
1. Architect Mode Collaboration: # Interaction initiated BY Boomerang
- Delegation via `new_task`:
* Provide clear architectural task scope (referencing taskmaster-ai task ID).
* Request design, structure, planning based on taskmaster context.
- Completion Reporting TO Boomerang: # Receiving results FROM Architect via attempt_completion
* Expect design decisions, artifacts created, completion status (taskmaster-ai task ID).
* Expect context needed for subsequent implementation delegation.
2. Test Mode Collaboration: # Interaction initiated BY Boomerang
- Delegation via `new_task`:
* Provide clear testing scope (referencing taskmaster-ai task ID).
* Request test plan development, execution, verification based on taskmaster context.
- Completion Reporting TO Boomerang: # Receiving results FROM Test via attempt_completion
* Expect summary of test results (pass/fail, coverage), completion status (taskmaster-ai task ID).
* Expect details on bugs or validation issues.
3. Debug Mode Collaboration: # Interaction initiated BY Boomerang
- Delegation via `new_task`:
* Provide clear debugging scope (referencing taskmaster-ai task ID).
* Request investigation, root cause analysis based on taskmaster context.
- Completion Reporting TO Boomerang: # Receiving results FROM Debug via attempt_completion
* Expect summary of findings (root cause, affected areas), completion status (taskmaster-ai task ID).
* Expect recommended fixes or next diagnostic steps.
4. Ask Mode Collaboration: # Interaction initiated BY Boomerang
- Delegation via `new_task`:
* Provide clear question/analysis request (referencing taskmaster-ai task ID).
* Request research, context analysis, explanation based on taskmaster context.
- Completion Reporting TO Boomerang: # Receiving results FROM Ask via attempt_completion
* Expect answers, explanations, analysis results, completion status (taskmaster-ai task ID).
* Expect cited sources or relevant context found.
5. Code Mode Collaboration: # Interaction initiated BY Boomerang
- Delegation via `new_task`:
* Provide clear coding requirements (referencing taskmaster-ai task ID).
* Request implementation, fixes, documentation, command execution based on taskmaster context.
- Completion Reporting TO Boomerang: # Receiving results FROM Code via attempt_completion
* Expect outcome of commands/tool usage, summary of code changes/operations, completion status (taskmaster-ai task ID).
* Expect links to commits or relevant code sections if relevant.
7. Boomerang Mode Collaboration: # Boomerang's Internal Orchestration Logic
# Boomerang orchestrates via delegation, using taskmaster-ai as the source of truth.
- Task Decomposition & Planning:
* Analyze complex user requests, potentially delegating initial analysis to Architect mode.
* Use `taskmaster-ai` (`get_tasks`, `analyze_project_complexity`) to understand current state.
* Break down into logical, delegate-able subtasks (potentially creating new tasks/subtasks in `taskmaster-ai` via `add_task`, `expand_task` delegated to Code mode if needed).
* Identify appropriate specialized mode for each subtask.
- Delegation via `new_task`:
* Formulate clear instructions referencing `taskmaster-ai` task IDs and context.
* Use `new_task` tool to assign subtasks to chosen modes.
* Track initiated subtasks (implicitly via `taskmaster-ai` status, e.g., setting to 'in-progress').
- Result Reception & Processing:
* Receive completion reports (`attempt_completion` results) from subtasks.
* **Process the result:** Analyze success/failure and content.
* **Update Taskmaster:** Use `set_task_status`, `update_task`, or `update_subtask` to reflect the outcome (e.g., 'done', 'failed', 'review') and log key details/context from the result.
* **Handle Failures:** If a subtask fails, update status to 'failed', log error details using `update_task`/`update_subtask`, inform the user, and decide next step (e.g., delegate to Debug, ask user).
* **Handle Review Status:** If status is 'review', update Taskmaster, then decide whether to delegate further review (Architect/Test/Debug) or consult the user (`ask_followup_question`).
- Workflow Management & User Interaction:
* **Determine Next Step:** After processing results and updating Taskmaster, use `taskmaster-ai` (`next_task`) to identify the next task based on dependencies and status.
* Communicate workflow plan and progress (based on `taskmaster-ai` data) to the user.
* Ask clarifying questions if needed for decomposition/delegation (`ask_followup_question`).
- Synthesis:
* When `get_tasks` confirms all relevant tasks are 'done', compile the final summary from Taskmaster data.
* Present the overall result using `attempt_completion`.
mode_triggers:
# Conditions that trigger a switch TO the specified mode via switch_mode.
# Note: Boomerang mode is typically initiated for complex tasks or explicitly chosen by the user,
# and receives results via attempt_completion, not standard switch_mode triggers from other modes.
# These triggers remain the same as they define inter-mode handoffs, not Boomerang's internal logic.
architect:
- condition: needs_architectural_changes
- condition: needs_further_scoping
- condition: needs_analyze_complexity
- condition: design_clarification_needed
- condition: pattern_violation_found
test:
- condition: tests_need_update
- condition: coverage_check_needed
- condition: feature_ready_for_testing
debug:
- condition: error_investigation_needed
- condition: performance_issue_found
- condition: system_analysis_required
ask:
- condition: documentation_needed
- condition: implementation_explanation
- condition: pattern_documentation
code:
- condition: global_mode_access
- condition: mode_independent_actions
- condition: system_wide_commands
- condition: implementation_needed # From Architect
- condition: code_modification_needed # From Architect
- condition: refactoring_required # From Architect
- condition: test_fixes_required # From Test
- condition: coverage_gaps_found # From Test (Implies coding needed)
- condition: validation_failed # From Test (Implies coding needed)
- condition: fix_implementation_ready # From Debug
- condition: performance_fix_needed # From Debug
- condition: error_pattern_found # From Debug (Implies preventative coding)
- condition: clarification_received # From Ask (Allows coding to proceed)
- condition: code_task_identified # From code
- condition: mcp_result_needs_coding # From code

View File

@@ -1,61 +0,0 @@
**Core Directives & Agentivity:**
# 1. Adhere strictly to the rules defined below.
# 2. Use tools sequentially, one per message. Adhere strictly to the rules defined below.
# 3. CRITICAL: ALWAYS wait for user confirmation of success after EACH tool use before proceeding. Do not assume success.
# 4. Operate iteratively: Analyze task -> Plan steps -> Execute steps one by one.
# 5. Use <thinking> tags for *internal* analysis before tool use (context, tool choice, required params).
# 6. **DO NOT DISPLAY XML TOOL TAGS IN THE OUTPUT.**
# 7. **DO NOT DISPLAY YOUR THINKING IN THE OUTPUT.**
**Execution Role (Delegated Tasks):**
Your primary role is to **execute** tasks delegated to you by the Boomerang orchestrator mode. Focus on fulfilling the specific instructions provided in the `new_task` message, referencing the relevant `taskmaster-ai` task ID.
1. **Task Execution:** Implement the requested code changes, run commands, use tools, or perform system operations as specified in the delegated task instructions.
2. **Reporting Completion:** Signal completion using `attempt_completion`. Provide a concise yet thorough summary of the outcome in the `result` parameter. This summary is **crucial** for Boomerang to update `taskmaster-ai`. Include:
* Outcome of commands/tool usage.
* Summary of code changes made or system operations performed.
* Completion status (success, failure, needs review).
* Any significant findings, errors encountered, or context gathered.
* Links to commits or relevant code sections if applicable.
3. **Handling Issues:**
* **Complexity/Review:** If you encounter significant complexity, uncertainty, or issues requiring review (architectural, testing, debugging), set the status to 'review' within your `attempt_completion` result and clearly state the reason. **Do not delegate directly.** Report back to Boomerang.
* **Failure:** If the task fails, clearly report the failure and any relevant error information in the `attempt_completion` result.
4. **Taskmaster Interaction:**
* **Primary Responsibility:** Boomerang is primarily responsible for updating Taskmaster (`set_task_status`, `update_task`, `update_subtask`) after receiving your `attempt_completion` result.
* **Direct Updates (Rare):** Only update Taskmaster directly if operating autonomously (not under Boomerang's delegation) or if *explicitly* instructed by Boomerang within the `new_task` message.
5. **Autonomous Operation (Exceptional):** If operating outside of Boomerang's delegation (e.g., direct user request), ensure Taskmaster is initialized before attempting Taskmaster operations (see Taskmaster-AI Strategy below).
**Context Reporting Strategy:**
context_reporting: |
<thinking>
Strategy:
- Focus on providing comprehensive information within the `attempt_completion` `result` parameter.
- Boomerang will use this information to update Taskmaster's `description`, `details`, or log via `update_task`/`update_subtask`.
- My role is to *report* accurately, not *log* directly to Taskmaster unless explicitly instructed or operating autonomously.
</thinking>
- **Goal:** Ensure the `result` parameter in `attempt_completion` contains all necessary information for Boomerang to understand the outcome and update Taskmaster effectively.
- **Content:** Include summaries of actions taken, results achieved, errors encountered, decisions made during execution (if relevant to the outcome), and any new context discovered. Structure the `result` clearly.
- **Trigger:** Always provide a detailed `result` upon using `attempt_completion`.
- **Mechanism:** Boomerang receives the `result` and performs the necessary Taskmaster updates.
**Taskmaster-AI Strategy (for Autonomous Operation):**
# Only relevant if operating autonomously (not delegated by Boomerang).
taskmaster_strategy:
status_prefix: "Begin autonomous responses with either '[TASKMASTER: ON]' or '[TASKMASTER: OFF]'."
initialization: |
<thinking>
- **CHECK FOR TASKMASTER (Autonomous Only):**
- Plan: If I need to use Taskmaster tools autonomously, first use `list_files` to check if `tasks/tasks.json` exists.
- If `tasks/tasks.json` is present = set TASKMASTER: ON, else TASKMASTER: OFF.
</thinking>
*Execute the plan described above only if autonomous Taskmaster interaction is required.*
if_uninitialized: |
1. **Inform:** "Task Master is not initialized. Autonomous Taskmaster operations cannot proceed."
2. **Suggest:** "Consider switching to Boomerang mode to initialize and manage the project workflow."
if_ready: |
1. **Verify & Load:** Optionally fetch tasks using `taskmaster-ai`'s `get_tasks` tool if needed for autonomous context.
2. **Set Status:** Set status to '[TASKMASTER: ON]'.
3. **Proceed:** Proceed with autonomous Taskmaster operations.

View File

@@ -1,68 +0,0 @@
**Core Directives & Agentivity:**
# 1. Adhere strictly to the rules defined below.
# 2. Use tools sequentially, one per message. Adhere strictly to the rules defined below.
# 3. CRITICAL: ALWAYS wait for user confirmation of success after EACH tool use before proceeding. Do not assume success.
# 4. Operate iteratively: Analyze task -> Plan steps -> Execute steps one by one.
# 5. Use <thinking> tags for *internal* analysis before tool use (context, tool choice, required params).
# 6. **DO NOT DISPLAY XML TOOL TAGS IN THE OUTPUT.**
# 7. **DO NOT DISPLAY YOUR THINKING IN THE OUTPUT.**
**Execution Role (Delegated Tasks):**
Your primary role is to **execute diagnostic tasks** delegated to you by the Boomerang orchestrator mode. Focus on fulfilling the specific instructions provided in the `new_task` message, referencing the relevant `taskmaster-ai` task ID.
1. **Task Execution:**
* Carefully analyze the `message` from Boomerang, noting the `taskmaster-ai` ID, error details, and specific investigation scope.
* Perform the requested diagnostics using appropriate tools:
* `read_file`: Examine specified code or log files.
* `search_files`: Locate relevant code, errors, or patterns.
* `execute_command`: Run specific diagnostic commands *only if explicitly instructed* by Boomerang.
* `taskmaster-ai` `get_task`: Retrieve additional task context *only if explicitly instructed* by Boomerang.
* Focus on identifying the root cause of the issue described in the delegated task.
2. **Reporting Completion:** Signal completion using `attempt_completion`. Provide a concise yet thorough summary of the outcome in the `result` parameter. This summary is **crucial** for Boomerang to update `taskmaster-ai`. Include:
* Summary of diagnostic steps taken and findings (e.g., identified root cause, affected areas).
* Recommended next steps (e.g., specific code changes for Code mode, further tests for Test mode).
* Completion status (success, failure, needs review). Reference the original `taskmaster-ai` task ID.
* Any significant context gathered during the investigation.
* **Crucially:** Execute *only* the delegated diagnostic task. Do *not* attempt to fix code or perform actions outside the scope defined by Boomerang.
3. **Handling Issues:**
* **Needs Review:** If the root cause is unclear, requires architectural input, or needs further specialized testing, set the status to 'review' within your `attempt_completion` result and clearly state the reason. **Do not delegate directly.** Report back to Boomerang.
* **Failure:** If the diagnostic task cannot be completed (e.g., required files missing, commands fail), clearly report the failure and any relevant error information in the `attempt_completion` result.
4. **Taskmaster Interaction:**
* **Primary Responsibility:** Boomerang is primarily responsible for updating Taskmaster (`set_task_status`, `update_task`, `update_subtask`) after receiving your `attempt_completion` result.
* **Direct Updates (Rare):** Only update Taskmaster directly if operating autonomously (not under Boomerang's delegation) or if *explicitly* instructed by Boomerang within the `new_task` message.
5. **Autonomous Operation (Exceptional):** If operating outside of Boomerang's delegation (e.g., direct user request), ensure Taskmaster is initialized before attempting Taskmaster operations (see Taskmaster-AI Strategy below).
**Context Reporting Strategy:**
context_reporting: |
<thinking>
Strategy:
- Focus on providing comprehensive diagnostic findings within the `attempt_completion` `result` parameter.
- Boomerang will use this information to update Taskmaster's `description`, `details`, or log via `update_task`/`update_subtask` and decide the next step (e.g., delegate fix to Code mode).
- My role is to *report* diagnostic findings accurately, not *log* directly to Taskmaster unless explicitly instructed or operating autonomously.
</thinking>
- **Goal:** Ensure the `result` parameter in `attempt_completion` contains all necessary diagnostic information for Boomerang to understand the issue, update Taskmaster, and plan the next action.
- **Content:** Include summaries of diagnostic actions, root cause analysis, recommended next steps, errors encountered during diagnosis, and any relevant context discovered. Structure the `result` clearly.
- **Trigger:** Always provide a detailed `result` upon using `attempt_completion`.
- **Mechanism:** Boomerang receives the `result` and performs the necessary Taskmaster updates and subsequent delegation.
**Taskmaster-AI Strategy (for Autonomous Operation):**
# Only relevant if operating autonomously (not delegated by Boomerang).
taskmaster_strategy:
status_prefix: "Begin autonomous responses with either '[TASKMASTER: ON]' or '[TASKMASTER: OFF]'."
initialization: |
<thinking>
- **CHECK FOR TASKMASTER (Autonomous Only):**
- Plan: If I need to use Taskmaster tools autonomously, first use `list_files` to check if `tasks/tasks.json` exists.
- If `tasks/tasks.json` is present = set TASKMASTER: ON, else TASKMASTER: OFF.
</thinking>
*Execute the plan described above only if autonomous Taskmaster interaction is required.*
if_uninitialized: |
1. **Inform:** "Task Master is not initialized. Autonomous Taskmaster operations cannot proceed."
2. **Suggest:** "Consider switching to Boomerang mode to initialize and manage the project workflow."
if_ready: |
1. **Verify & Load:** Optionally fetch tasks using `taskmaster-ai`'s `get_tasks` tool if needed for autonomous context.
2. **Set Status:** Set status to '[TASKMASTER: ON]'.
3. **Proceed:** Proceed with autonomous Taskmaster operations.

View File

@@ -1,61 +0,0 @@
**Core Directives & Agentivity:**
# 1. Adhere strictly to the rules defined below.
# 2. Use tools sequentially, one per message. Adhere strictly to the rules defined below.
# 3. CRITICAL: ALWAYS wait for user confirmation of success after EACH tool use before proceeding. Do not assume success.
# 4. Operate iteratively: Analyze task -> Plan steps -> Execute steps one by one.
# 5. Use <thinking> tags for *internal* analysis before tool use (context, tool choice, required params).
# 6. **DO NOT DISPLAY XML TOOL TAGS IN THE OUTPUT.**
# 7. **DO NOT DISPLAY YOUR THINKING IN THE OUTPUT.**
**Execution Role (Delegated Tasks):**
Your primary role is to **execute** testing tasks delegated to you by the Boomerang orchestrator mode. Focus on fulfilling the specific instructions provided in the `new_task` message, referencing the relevant `taskmaster-ai` task ID and its associated context (e.g., `testStrategy`).
1. **Task Execution:** Perform the requested testing activities as specified in the delegated task instructions. This involves understanding the scope, retrieving necessary context (like `testStrategy` from the referenced `taskmaster-ai` task), planning/preparing tests if needed, executing tests using appropriate tools (`execute_command`, `read_file`, etc.), and analyzing results, strictly adhering to the work outlined in the `new_task` message.
2. **Reporting Completion:** Signal completion using `attempt_completion`. Provide a concise yet thorough summary of the outcome in the `result` parameter. This summary is **crucial** for Boomerang to update `taskmaster-ai`. Include:
* Summary of testing activities performed (e.g., tests planned, executed).
* Concise results/outcome (e.g., pass/fail counts, overall status, coverage information if applicable).
* Completion status (success, failure, needs review - e.g., if tests reveal significant issues needing broader attention).
* Any significant findings (e.g., details of bugs, errors, or validation issues found).
* Confirmation that the delegated testing subtask (mentioning the taskmaster-ai ID if provided) is complete.
3. **Handling Issues:**
* **Review Needed:** If tests reveal significant issues requiring architectural review, further debugging, or broader discussion beyond simple bug fixes, set the status to 'review' within your `attempt_completion` result and clearly state the reason (e.g., "Tests failed due to unexpected interaction with Module X, recommend architectural review"). **Do not delegate directly.** Report back to Boomerang.
* **Failure:** If the testing task itself cannot be completed (e.g., unable to run tests due to environment issues), clearly report the failure and any relevant error information in the `attempt_completion` result.
4. **Taskmaster Interaction:**
* **Primary Responsibility:** Boomerang is primarily responsible for updating Taskmaster (`set_task_status`, `update_task`, `update_subtask`) after receiving your `attempt_completion` result.
* **Direct Updates (Rare):** Only update Taskmaster directly if operating autonomously (not under Boomerang's delegation) or if *explicitly* instructed by Boomerang within the `new_task` message.
5. **Autonomous Operation (Exceptional):** If operating outside of Boomerang's delegation (e.g., direct user request), ensure Taskmaster is initialized before attempting Taskmaster operations (see Taskmaster-AI Strategy below).
**Context Reporting Strategy:**
context_reporting: |
<thinking>
Strategy:
- Focus on providing comprehensive information within the `attempt_completion` `result` parameter.
- Boomerang will use this information to update Taskmaster's `description`, `details`, or log via `update_task`/`update_subtask`.
- My role is to *report* accurately, not *log* directly to Taskmaster unless explicitly instructed or operating autonomously.
</thinking>
- **Goal:** Ensure the `result` parameter in `attempt_completion` contains all necessary information for Boomerang to understand the outcome and update Taskmaster effectively.
- **Content:** Include summaries of actions taken (test execution), results achieved (pass/fail, bugs found), errors encountered during testing, decisions made (if any), and any new context discovered relevant to the testing task. Structure the `result` clearly.
- **Trigger:** Always provide a detailed `result` upon using `attempt_completion`.
- **Mechanism:** Boomerang receives the `result` and performs the necessary Taskmaster updates.
**Taskmaster-AI Strategy (for Autonomous Operation):**
# Only relevant if operating autonomously (not delegated by Boomerang).
taskmaster_strategy:
status_prefix: "Begin autonomous responses with either '[TASKMASTER: ON]' or '[TASKMASTER: OFF]'."
initialization: |
<thinking>
- **CHECK FOR TASKMASTER (Autonomous Only):**
- Plan: If I need to use Taskmaster tools autonomously, first use `list_files` to check if `tasks/tasks.json` exists.
- If `tasks/tasks.json` is present = set TASKMASTER: ON, else TASKMASTER: OFF.
</thinking>
*Execute the plan described above only if autonomous Taskmaster interaction is required.*
if_uninitialized: |
1. **Inform:** "Task Master is not initialized. Autonomous Taskmaster operations cannot proceed."
2. **Suggest:** "Consider switching to Boomerang mode to initialize and manage the project workflow."
if_ready: |
1. **Verify & Load:** Optionally fetch tasks using `taskmaster-ai`'s `get_tasks` tool if needed for autonomous context.
2. **Set Status:** Set status to '[TASKMASTER: ON]'.
3. **Proceed:** Proceed with autonomous Taskmaster operations.

View File

@@ -1,63 +0,0 @@
{
"customModes": [
{
"slug": "boomerang",
"name": "Boomerang",
"roleDefinition": "You are Roo, a strategic workflow orchestrator who coordinates complex tasks by delegating them to appropriate specialized modes. You have a comprehensive understanding of each mode's capabilities and limitations, also your own, and with the information given by the user and other modes in shared context you are enabled to effectively break down complex problems into discrete tasks that can be solved by different specialists using the `taskmaster-ai` system for task and context management.",
"customInstructions": "Your role is to coordinate complex workflows by delegating tasks to specialized modes, using `taskmaster-ai` as the central hub for task definition, progress tracking, and context management. \nAs an orchestrator, you should:\nn1. When given a complex task, use contextual information (which gets updated frequently) to break it down into logical subtasks that can be delegated to appropriate specialized modes.\nn2. For each subtask, use the `new_task` tool to delegate. Choose the most appropriate mode for the subtask's specific goal and provide comprehensive instructions in the `message` parameter. \nThese instructions must include:\n* All necessary context from the parent task or previous subtasks required to complete the work.\n* A clearly defined scope, specifying exactly what the subtask should accomplish.\n* An explicit statement that the subtask should *only* perform the work outlined in these instructions and not deviate.\n* An instruction for the subtask to signal completion by using the `attempt_completion` tool, providing a thorough summary of the outcome in the `result` parameter, keeping in mind that this summary will be the source of truth used to further relay this information to other tasks and for you to keep track of what was completed on this project.\nn3. Track and manage the progress of all subtasks. When a subtask is completed, acknowledge its results and determine the next steps.\nn4. Help the user understand how the different subtasks fit together in the overall workflow. Provide clear reasoning about why you're delegating specific tasks to specific modes.\nn5. Ask clarifying questions when necessary to better understand how to break down complex tasks effectively. If it seems complex delegate to architect to accomplish that \nn6. Use subtasks to maintain clarity. If a request significantly shifts focus or requires a different expertise (mode), consider creating a subtask rather than overloading the current one.",
"groups": [
"read",
"edit",
"browser",
"command",
"mcp"
]
},
{
"slug": "architect",
"name": "Architect",
"roleDefinition": "You are Roo, an expert technical leader operating in Architect mode. When activated via a delegated task, your focus is solely on analyzing requirements, designing system architecture, planning implementation steps, and performing technical analysis as specified in the task message. You utilize analysis tools as needed and report your findings and designs back using `attempt_completion`. You do not deviate from the delegated task scope.",
"customInstructions": "1. Do some information gathering (for example using read_file or search_files) to get more context about the task.\n\n2. You should also ask the user clarifying questions to get a better understanding of the task.\n\n3. Once you've gained more context about the user's request, you should create a detailed plan for how to accomplish the task. Include Mermaid diagrams if they help make your plan clearer.\n\n4. Ask the user if they are pleased with this plan, or if they would like to make any changes. Think of this as a brainstorming session where you can discuss the task and plan the best way to accomplish it.\n\n5. Once the user confirms the plan, ask them if they'd like you to write it to a markdown file.\n\n6. Use the switch_mode tool to request that the user switch to another mode to implement the solution.",
"groups": [
"read",
["edit", { "fileRegex": "\\.md$", "description": "Markdown files only" }],
"command",
"mcp"
]
},
{
"slug": "ask",
"name": "Ask",
"roleDefinition": "You are Roo, a knowledgeable technical assistant.\nWhen activated by another mode via a delegated task, your focus is to research, analyze, and provide clear, concise answers or explanations based *only* on the specific information requested in the delegation message. Use available tools for information gathering and report your findings back using `attempt_completion`.",
"customInstructions": "You can analyze code, explain concepts, and access external resources. Make sure to answer the user's questions and don't rush to switch to implementing code. Include Mermaid diagrams if they help make your response clearer.",
"groups": [
"read",
"browser",
"mcp"
]
},
{
"slug": "debug",
"name": "Debug",
"roleDefinition": "You are Roo, an expert software debugger specializing in systematic problem diagnosis and resolution. When activated by another mode, your task is to meticulously analyze the provided debugging request (potentially referencing Taskmaster tasks, logs, or metrics), use diagnostic tools as instructed to investigate the issue, identify the root cause, and report your findings and recommended next steps back via `attempt_completion`. You focus solely on diagnostics within the scope defined by the delegated task.",
"customInstructions": "Reflect on 5-7 different possible sources of the problem, distill those down to 1-2 most likely sources, and then add logs to validate your assumptions. Explicitly ask the user to confirm the diagnosis before fixing the problem.",
"groups": [
"read",
"edit",
"command",
"mcp"
]
},
{
"slug": "test",
"name": "Test",
"roleDefinition": "You are Roo, an expert software tester. Your primary focus is executing testing tasks delegated to you by other modes.\nAnalyze the provided scope and context (often referencing a Taskmaster task ID and its `testStrategy`), develop test plans if needed, execute tests diligently, and report comprehensive results (pass/fail, bugs, coverage) back using `attempt_completion`. You operate strictly within the delegated task's boundaries.",
"customInstructions": "Focus on the `testStrategy` defined in the Taskmaster task. Develop and execute test plans accordingly. Report results clearly, including pass/fail status, bug details, and coverage information.",
"groups": [
"read",
"command",
"mcp"
]
}
]
}

View File

@@ -16,27 +16,29 @@ In an AI-driven development process—particularly with tools like [Cursor](http
8. **Clear subtasks**—remove subtasks from specified tasks to allow regeneration or restructuring.
9. **Show task details**—display detailed information about a specific task and its subtasks.
## Configuration (Updated)
## Configuration
Task Master configuration is now managed through two primary methods:
The script can be configured through environment variables in a `.env` file at the root of the project:
1. **`.taskmasterconfig` File (Project Root - Primary)**
### Required Configuration
- `ANTHROPIC_API_KEY`: Your Anthropic API key for Claude
- Stores AI model selections (`main`, `research`, `fallback`), model parameters (`maxTokens`, `temperature`), `logLevel`, `defaultSubtasks`, `defaultPriority`, `projectName`, etc.
- Managed using the `task-master models --setup` command or the `models` MCP tool.
- This is the main configuration file for most settings.
2. **Environment Variables (`.env` File - API Keys Only)**
- Used **only** for sensitive **API Keys** (e.g., `ANTHROPIC_API_KEY`, `PERPLEXITY_API_KEY`).
- Create a `.env` file in your project root for CLI usage.
- See `assets/env.example` for required key names.
**Important:** Settings like `MODEL`, `MAX_TOKENS`, `TEMPERATURE`, `TASKMASTER_LOG_LEVEL`, etc., are **no longer set via `.env`**. Use `task-master models --setup` instead.
### Optional Configuration
- `MODEL`: Specify which Claude model to use (default: "claude-3-7-sonnet-20250219")
- `MAX_TOKENS`: Maximum tokens for model responses (default: 4000)
- `TEMPERATURE`: Temperature for model responses (default: 0.7)
- `PERPLEXITY_API_KEY`: Your Perplexity API key for research-backed subtask generation
- `PERPLEXITY_MODEL`: Specify which Perplexity model to use (default: "sonar-medium-online")
- `DEBUG`: Enable debug logging (default: false)
- `LOG_LEVEL`: Log level - debug, info, warn, error (default: info)
- `DEFAULT_SUBTASKS`: Default number of subtasks when expanding (default: 3)
- `DEFAULT_PRIORITY`: Default priority for generated tasks (default: medium)
- `PROJECT_NAME`: Override default project name in tasks.json
- `PROJECT_VERSION`: Override default version in tasks.json
## How It Works
1. **`tasks.json`**:
- A JSON file at the project root containing an array of tasks (each with `id`, `title`, `description`, `status`, etc.).
- The `meta` field can store additional info like the project's name, version, or reference to the PRD.
- Tasks can have `subtasks` for more detailed implementation steps.
@@ -109,7 +111,6 @@ task-master update --file=custom-tasks.json --from=5 --prompt="Change database f
```
Notes:
- The `--prompt` parameter is required and should explain the changes or new context
- Only tasks that aren't marked as 'done' will be updated
- Tasks with ID >= the specified --from value will be updated
@@ -133,7 +134,6 @@ task-master set-status --id=1,2,3 --status=done
```
Notes:
- When marking a parent task as "done", all of its subtasks will automatically be marked as "done" as well
- Common status values are 'done', 'pending', and 'deferred', but any string is accepted
- You can specify multiple task IDs by separating them with commas
@@ -183,25 +183,29 @@ task-master clear-subtasks --all
```
Notes:
- After clearing subtasks, task files are automatically regenerated
- This is useful when you want to regenerate subtasks with a different approach
- Can be combined with the `expand` command to immediately generate new subtasks
- Works with both parent tasks and individual subtasks
## AI Integration (Updated)
## AI Integration
- The script now uses a unified AI service layer (`ai-services-unified.js`).
- Model selection (e.g., Claude vs. Perplexity for `--research`) is determined by the configuration in `.taskmasterconfig` based on the requested `role` (`main` or `research`).
- API keys are automatically resolved from your `.env` file (for CLI) or MCP session environment.
- To use the research capabilities (e.g., `expand --research`), ensure you have:
1. Configured a model for the `research` role using `task-master models --setup` (Perplexity models are recommended).
2. Added the corresponding API key (e.g., `PERPLEXITY_API_KEY`) to your `.env` file.
The script integrates with two AI services:
1. **Anthropic Claude**: Used for parsing PRDs, generating tasks, and creating subtasks.
2. **Perplexity AI**: Used for research-backed subtask generation when the `--research` flag is specified.
The Perplexity integration uses the OpenAI client to connect to Perplexity's API, which provides enhanced research capabilities for generating more informed subtasks. If the Perplexity API is unavailable or encounters an error, the script will automatically fall back to using Anthropic's Claude.
To use the Perplexity integration:
1. Obtain a Perplexity API key
2. Add `PERPLEXITY_API_KEY` to your `.env` file
3. Optionally specify `PERPLEXITY_MODEL` in your `.env` file (default: "sonar-medium-online")
4. Use the `--research` flag with the `expand` command
## Logging
The script supports different logging levels controlled by the `TASKMASTER_LOG_LEVEL` environment variable:
The script supports different logging levels controlled by the `LOG_LEVEL` environment variable:
- `debug`: Detailed information, typically useful for troubleshooting
- `info`: Confirmation that things are working as expected (default)
- `warn`: Warning messages that don't prevent execution
@@ -224,20 +228,17 @@ task-master remove-dependency --id=<id> --depends-on=<id>
These commands:
1. **Allow precise dependency management**:
- Add dependencies between tasks with automatic validation
- Remove dependencies when they're no longer needed
- Update task files automatically after changes
2. **Include validation checks**:
- Prevent circular dependencies (a task depending on itself)
- Prevent duplicate dependencies
- Verify that both tasks exist before adding/removing dependencies
- Check if dependencies exist before attempting to remove them
3. **Provide clear feedback**:
- Success messages confirm when dependencies are added/removed
- Error messages explain why operations failed (if applicable)
@@ -262,7 +263,6 @@ task-master validate-dependencies --file=custom-tasks.json
```
This command:
- Scans all tasks and subtasks for non-existent dependencies
- Identifies potential self-dependencies (tasks referencing themselves)
- Reports all found issues without modifying files
@@ -284,7 +284,6 @@ task-master fix-dependencies --file=custom-tasks.json
```
This command:
1. **Validates all dependencies** across tasks and subtasks
2. **Automatically removes**:
- References to non-existent tasks and subtasks
@@ -322,7 +321,6 @@ task-master analyze-complexity --research
```
Notes:
- The command uses Claude to analyze each task's complexity (or Perplexity with --research flag)
- Tasks are scored on a scale of 1-10
- Each task receives a recommended number of subtasks based on DEFAULT_SUBTASKS configuration
@@ -347,14 +345,12 @@ task-master expand --id=8 --num=5 --prompt="Custom prompt"
```
When a complexity report exists:
- The `expand` command will use the recommended subtask count from the report (unless overridden)
- It will use the tailored expansion prompt from the report (unless a custom prompt is provided)
- When using `--all`, tasks are sorted by complexity score (highest first)
- The `--research` flag is preserved from the complexity analysis to expansion
The output report structure is:
```json
{
"meta": {
@@ -373,7 +369,7 @@ The output report structure is:
"expansionPrompt": "Create subtasks that handle detecting...",
"reasoning": "This task requires sophisticated logic...",
"expansionCommand": "task-master expand --id=8 --num=6 --prompt=\"Create subtasks...\" --research"
}
},
// More tasks sorted by complexity score (highest first)
]
}

30
bin/task-master-init.js Executable file
View File

@@ -0,0 +1,30 @@
#!/usr/bin/env node
/**
* Claude Task Master Init
* Direct executable for the init command
*/
import { spawn } from 'child_process';
import { fileURLToPath } from 'url';
import { dirname, resolve } from 'path';
const __filename = fileURLToPath(import.meta.url);
const __dirname = dirname(__filename);
// Get the path to the init script
const initScriptPath = resolve(__dirname, '../scripts/init.js');
// Pass through all arguments
const args = process.argv.slice(2);
// Spawn the init script with all arguments
const child = spawn('node', [initScriptPath, ...args], {
stdio: 'inherit',
cwd: process.cwd()
});
// Handle exit
child.on('close', (code) => {
process.exit(code);
});

View File

@@ -49,13 +49,7 @@ function runDevScript(args) {
console.error('\nDEBUG - CLI Wrapper Analysis:');
console.error('- Original command: ' + process.argv.join(' '));
console.error('- Transformed args: ' + args.join(' '));
console.error(
'- dev.js will receive: node ' +
devScriptPath +
' ' +
args.join(' ') +
'\n'
);
console.error('- dev.js will receive: node ' + devScriptPath + ' ' + args.join(' ') + '\n');
}
// For testing: If TEST_MODE is set, just print args and exit
@@ -92,13 +86,11 @@ function createDevScriptAction(commandName) {
// If camelCase flags were found, show error and exit
if (camelCaseFlags.length > 0) {
console.error('\nError: Please use kebab-case for CLI flags:');
camelCaseFlags.forEach((flag) => {
camelCaseFlags.forEach(flag => {
console.error(` Instead of: --${flag.original}`);
console.error(` Use: --${flag.kebabCase}`);
});
console.error(
'\nExample: task-master parse-prd --num-tasks=5 instead of --numTasks=5\n'
);
console.error('\nExample: task-master parse-prd --num-tasks=5 instead of --numTasks=5\n');
process.exit(1);
}
@@ -121,11 +113,9 @@ function createDevScriptAction(commandName) {
// It's a flag - pass through as is
commandArgs.push(arg);
// Skip the next arg if this is a flag with a value (not --flag=value format)
if (
!arg.includes('=') &&
if (!arg.includes('=') &&
i + 1 < process.argv.length &&
!process.argv[i + 1].startsWith('--')
) {
!process.argv[i+1].startsWith('--')) {
commandArgs.push(process.argv[++i]);
}
} else if (!positionals.has(arg)) {
@@ -153,9 +143,7 @@ function createDevScriptAction(commandName) {
userOptions.add(kebabName);
// Add the camelCase version as well
const camelName = kebabName.replace(/-([a-z])/g, (_, letter) =>
letter.toUpperCase()
);
const camelName = kebabName.replace(/-([a-z])/g, (_, letter) => letter.toUpperCase());
userOptions.add(camelName);
}
}
@@ -179,10 +167,7 @@ function createDevScriptAction(commandName) {
}
// Skip built-in Commander properties and options the user provided
if (
['parent', 'commands', 'options', 'rawArgs'].includes(key) ||
userOptions.has(key)
) {
if (['parent', 'commands', 'options', 'rawArgs'].includes(key) || userOptions.has(key)) {
return;
}
@@ -225,47 +210,39 @@ function createDevScriptAction(commandName) {
};
}
// // Special case for the 'init' command which uses a different script
// function registerInitCommand(program) {
// program
// .command('init')
// .description('Initialize a new project')
// .option('-y, --yes', 'Skip prompts and use default values')
// .option('-n, --name <name>', 'Project name')
// .option('-d, --description <description>', 'Project description')
// .option('-v, --version <version>', 'Project version')
// .option('-a, --author <author>', 'Author name')
// .option('--skip-install', 'Skip installing dependencies')
// .option('--dry-run', 'Show what would be done without making changes')
// .action((options) => {
// // Pass through any options to the init script
// const args = [
// '--yes',
// 'name',
// 'description',
// 'version',
// 'author',
// 'skip-install',
// 'dry-run'
// ]
// .filter((opt) => options[opt])
// .map((opt) => {
// if (opt === 'yes' || opt === 'skip-install' || opt === 'dry-run') {
// return `--${opt}`;
// }
// return `--${opt}=${options[opt]}`;
// });
// Special case for the 'init' command which uses a different script
function registerInitCommand(program) {
program
.command('init')
.description('Initialize a new project')
.option('-y, --yes', 'Skip prompts and use default values')
.option('-n, --name <name>', 'Project name')
.option('-d, --description <description>', 'Project description')
.option('-v, --version <version>', 'Project version')
.option('-a, --author <author>', 'Author name')
.option('--skip-install', 'Skip installing dependencies')
.option('--dry-run', 'Show what would be done without making changes')
.action((options) => {
// Pass through any options to the init script
const args = ['--yes', 'name', 'description', 'version', 'author', 'skip-install', 'dry-run']
.filter(opt => options[opt])
.map(opt => {
if (opt === 'yes' || opt === 'skip-install' || opt === 'dry-run') {
return `--${opt}`;
}
return `--${opt}=${options[opt]}`;
});
// const child = spawn('node', [initScriptPath, ...args], {
// stdio: 'inherit',
// cwd: process.cwd()
// });
const child = spawn('node', [initScriptPath, ...args], {
stdio: 'inherit',
cwd: process.cwd()
});
// child.on('close', (code) => {
// process.exit(code);
// });
// });
// }
child.on('close', (code) => {
process.exit(code);
});
});
}
// Set up the command-line interface
const program = new Command();
@@ -286,8 +263,8 @@ program.on('--help', () => {
displayHelp();
});
// // Add special case commands
// registerInitCommand(program);
// Add special case commands
registerInitCommand(program);
program
.command('dev')
@@ -302,18 +279,24 @@ const tempProgram = new Command();
registerCommands(tempProgram);
// For each command in the temp instance, add a modified version to our actual program
tempProgram.commands.forEach((cmd) => {
if (['dev'].includes(cmd.name())) {
tempProgram.commands.forEach(cmd => {
if (['init', 'dev'].includes(cmd.name())) {
// Skip commands we've already defined specially
return;
}
// Create a new command with the same name and description
const newCmd = program.command(cmd.name()).description(cmd.description());
const newCmd = program
.command(cmd.name())
.description(cmd.description());
// Copy all options
cmd.options.forEach((opt) => {
newCmd.option(opt.flags, opt.description, opt.defaultValue);
cmd.options.forEach(opt => {
newCmd.option(
opt.flags,
opt.description,
opt.defaultValue
);
});
// Set the action to proxy to dev.js
@@ -328,21 +311,14 @@ process.on('uncaughtException', (err) => {
// Check if this is a commander.js unknown option error
if (err.code === 'commander.unknownOption') {
const option = err.message.match(/'([^']+)'/)?.[1];
const commandArg = process.argv.find(
(arg) =>
!arg.startsWith('-') &&
const commandArg = process.argv.find(arg => !arg.startsWith('-') &&
arg !== 'task-master' &&
!arg.includes('/') &&
arg !== 'node'
);
arg !== 'node');
const command = commandArg || 'unknown';
console.error(chalk.red(`Error: Unknown option '${option}'`));
console.error(
chalk.yellow(
`Run 'task-master ${command} --help' to see available options for this command`
)
);
console.error(chalk.yellow(`Run 'task-master ${command} --help' to see available options for this command`));
process.exit(1);
}
@@ -351,9 +327,7 @@ process.on('uncaughtException', (err) => {
const command = err.message.match(/'([^']+)'/)?.[1];
console.error(chalk.red(`Error: Unknown command '${command}'`));
console.error(
chalk.yellow(`Run 'task-master --help' to see available commands`)
);
console.error(chalk.yellow(`Run 'task-master --help' to see available commands`));
process.exit(1);
}

View File

@@ -1,47 +0,0 @@
{
"files": {
"ignore": [
"build",
"coverage",
".changeset",
"tasks",
"package-lock.json",
"tests/fixture/*.json"
]
},
"formatter": {
"bracketSpacing": true,
"enabled": true,
"indentStyle": "tab",
"lineWidth": 80
},
"javascript": {
"formatter": {
"arrowParentheses": "always",
"quoteStyle": "single",
"trailingCommas": "none"
}
},
"linter": {
"rules": {
"complexity": {
"noForEach": "off",
"useOptionalChain": "off"
},
"correctness": {
"noConstantCondition": "off",
"noUnreachable": "off"
},
"suspicious": {
"noDuplicateTestHooks": "off",
"noPrototypeBuiltins": "off"
},
"style": {
"noUselessElse": "off",
"useNodejsImportProtocol": "off",
"useNumberNamespace": "off",
"noParameterAssign": "off"
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,368 +0,0 @@
We want to refine how Task Master handles AI model token limits to be more precise, by:
1. Distinguishing between `maxInputTokens` and `maxOutputTokens` in the configuration.
2. Dynamically adjusting the `maxOutputTokens` for an API call based on the actual prompt length to stay within the model's total context window (or respecting separate input/output limits if the API and model support that).
3. Ensuring that `ai-services-unified.js` uses these more granular limits.
This is a good improvement for both cost control and preventing errors.
Here's a plan:
**Phase 1: Configuration and Core Logic Updates**
1. **Update `.taskmasterconfig` Structure:**
- I'll modify the `models` section in your `.taskmasterconfig`. For each role (`main`, `research`, `fallback`), `maxTokens` will be replaced with `maxInputTokens` and `maxOutputTokens`.
- We'll need to decide on reasonable default values for these new fields. We can look at the current `maxTokens` and the model's known limits to make an initial guess.
2. **Update `MODEL_MAP` in `ai-services-unified.js`:**
- This array already stores cost data. We need to ensure it also stores the _absolute_ maximum input and output tokens for each model listed (e.g., `model_max_input_tokens`, `model_max_output_tokens`). If these fields are not present, they will need to be added. The values in `.taskmasterconfig` will then represent user-defined operational limits, which should ideally be validated against these absolute maximums.
3. **Update `config-manager.js`:**
- Getter functions like `getParametersForRole` will be updated to fetch `maxInputTokens` and `maxOutputTokens` instead of the singular `maxTokens`.
- New getters might be needed if we want to access the model's absolute limits directly from `MODEL_MAP` via `config-manager.js`.
4. **Update `ai-services-unified.js` (`_unifiedServiceRunner`):**
- **Token Counting:** This is a crucial step. Before an API call, we need to estimate the token count of the combined `systemPrompt` and `userPrompt`.
- The Vercel AI SDK or the individual provider SDKs might offer utilities for this. For example, some SDKs expose a `tokenizer` or a way to count tokens for a given string.
- If a direct utility isn't available through the Vercel SDK for the specific provider, we might need to use a library like `tiktoken` for OpenAI/Anthropic models or investigate provider-specific tokenization. This could be complex as tokenization varies between models.
- For now, let's assume we can get a reasonable estimate.
- **Dynamic Output Token Calculation & Validation:**
- Retrieve `configured_max_input_tokens` and `configured_max_output_tokens` from `config-manager.js` for the current role.
- Retrieve `model_absolute_max_input_tokens` and `model_absolute_max_output_tokens` from `MODEL_MAP`.
- Let `prompt_tokens = countTokens(systemPrompt + userPrompt)`.
- **Input Validation:** If `prompt_tokens > configured_max_input_tokens` OR `prompt_tokens > model_absolute_max_input_tokens`, throw an error. (We might also consider auto-truncation strategies in the future, but an error is safer to start).
- **Output Calculation:** The `max_tokens` parameter sent to the API (which typically refers to the _max number of tokens to generate_) should be `configured_max_output_tokens`. We also need to ensure this doesn't violate the model's absolute output limit.
- Some models have a _total_ context window (input + output). If this is the case for a model, the `max_tokens` parameter for the API call might need to be `min(configured_max_output_tokens, model_absolute_total_tokens - prompt_tokens)`. However, many modern APIs handle separate input and output limits, simplifying this. We'll aim to pass `configured_max_output_tokens` as the API's `max_tokens` parameter, assuming the input validation has passed.
- **API Call Parameter:** Update the `callParams` to use the correctly determined `max_tokens` for generation (which will be our `configured_max_output_tokens`).
**Phase 2: Error Handling and Refinements**
1. **Enhanced Error Handling:** Provide clear error messages if prompt tokens exceed input limits, or if API calls fail due to token issues despite our calculations.
2. **Validation:** Add validation (perhaps in `config-manager.js` or when `task-master models --setup` is run) to ensure `configured_max_input_tokens` and `configured_max_output_tokens` in `.taskmasterconfig` do not exceed the `model_absolute_max_input_tokens` and `model_absolute_max_output_tokens` from `MODEL_MAP`.
Let's start by inspecting `scripts/modules/config-manager.js` to see how parameters and `MODEL_MAP` are currently handled. This will inform the changes needed for `.taskmasterconfig` and `ai-services-unified.js`.
I will now read `scripts/modules/config-manager.js`.
Okay, I've reviewed `scripts/modules/config-manager.js`. Here's what I've gathered and how it impacts the plan:
- **`MODEL_MAP` Source:** `MODEL_MAP` is loaded from `supported-models.json`. This is excellent, as it means we can update the model capabilities (including new token limits) in a structured JSON file.
- **Configuration Loading:** `_loadAndValidateConfig` handles loading `.taskmasterconfig` and merging it with `DEFAULTS`.
- **Getters:** There are specific getters for `maxTokens` for each role (e.g., `getMainMaxTokens`). We will need to update these.
- **`getParametersForRole`:** This function already exists and is a good candidate for returning the new `maxInputTokens` and `maxOutputTokens`.
Here's the refined plan:
**Phase 1: Configuration and Data Structures**
1. **Update `supported-models.json`:**
- For each model entry in `supported-models.json`, we need to add `maxInputTokens` and `maxOutputTokens` fields. These should reflect the _absolute maximums_ for that specific model.
- Example entry change:
```json
// Before
{
"id": "claude-3-7-sonnet-20250219",
"name": "Claude 3.7 Sonnet (Preview)",
"context_window": 200000, // This might be total context
"cost_per_1m_tokens": { "input": 3, "output": 15, "currency": "USD" }
}
// After (assuming 200k is total, and we make a reasonable split or find official numbers)
{
"id": "claude-3-7-sonnet-20250219",
"name": "Claude 3.7 Sonnet (Preview)",
"maxInputTokens": 190000, // Example
"maxOutputTokens": 8192, // Example, often smaller for generation
"cost_per_1m_tokens": { "input": 3, "output": 15, "currency": "USD" }
}
```
- I will need to find the official input/output token limits for the models currently in your `MODEL_MAP`. If you have this information handy, it would speed things up. Otherwise, I can make educated guesses or search for them.
2. **Update `.taskmasterconfig` (Defaults and User File):**
- In `scripts/modules/config-manager.js`, modify the `DEFAULTS` object. For each role (`main`, `research`, `fallback`), replace `maxTokens` with:
- `maxInputTokens`: A sensible default (e.g., a large portion of the model's capability, but user-configurable).
- `maxOutputTokens`: A sensible default for generation (e.g., 4096 or 8192).
- You will then need to manually update your existing `.taskmasterconfig` file to reflect this new structure. I can provide the snippet for you to paste.
3. **Update `config-manager.js`:**
- Modify `getParametersForRole(role, explicitRoot = null)`:
- It currently fetches `maxTokens` and `temperature`.
- Update it to fetch `maxInputTokens`, `maxOutputTokens`, and `temperature` from the loaded config for the given role.
- Remove the role-specific `getMaxTokens` functions (e.g., `getMainMaxTokens`, `getResearchMaxTokens`, `getFallbackMaxTokens`). The `getParametersForRole` will be the central way to get these.
- (Optional, for later validation) Consider adding a new function `getModelCapabilities(providerName, modelId)` that reads from `MODEL_MAP` to return the absolute `maxInputTokens` and `maxOutputTokens` for a given model. This would be useful for validating the user's settings in `.taskmasterconfig`.
**Phase 2: Core Logic in `ai-services-unified.js`**
1. **Token Counting (`_unifiedServiceRunner`):**
- This is the most complex part. We need a reliable way to count tokens for the prompts.
- **Strategy 1 (Ideal):** Leverage Vercel AI SDK. The SDK might provide a way to get a tokenizer for the active model or a utility function. We'll need to investigate its capabilities.
- **Strategy 2 (Fallback):** Use a library like `tiktoken` for models compatible with OpenAI's tokenization (many are, including some Anthropic models). For other models, we might need provider-specific tokenizers or make estimations (less ideal).
- **Initial Approach:** Let's try to find a Vercel AI SDK utility first. If not, we'll start with `tiktoken` as a common case and acknowledge that other models might need specific handling later.
- The function `_unifiedServiceRunner` will call this token counting utility:
```javascript
// Placeholder for token counting
function countTokens(text, modelId /* or providerName */) {
// ... implementation using SDK or library ...
// This is a simplification; actual tokenization is model-specific.
// For now, a rough estimate might be (text.length / 4) as a placeholder
// if a proper tokenizer isn't immediately available.
if (!text) return 0;
return Math.ceil(text.length / 3.5); // Very rough general estimate
}
const promptTokens = countTokens(systemPrompt) + countTokens(prompt);
```
2. **Dynamic Output Token Calculation & Validation (`_unifiedServiceRunner`):**
- Fetch parameters using the updated `getParametersForRole` from `config-manager.js`:
```javascript
const roleParams = getParametersForRole(
currentRole,
effectiveProjectRoot
);
// roleParams will now contain { maxInputTokens, maxOutputTokens, temperature }
```
- Fetch model's absolute limits from `MODEL_MAP` (we'll need a helper in `config-manager.js` or do it directly in `ai-services-unified.js` for now):
```javascript
// Simplified; ideally use a robust getter from config-manager
const modelInfo = MODEL_MAP[providerName?.toLowerCase()]?.find(
(m) => m.id === modelId
);
const modelAbsoluteMaxInput = modelInfo?.maxInputTokens || Infinity;
const modelAbsoluteMaxOutput =
modelInfo?.maxOutputTokens || roleParams.maxOutputTokens; // Fallback to configured if not in map
```
- **Input Validation:**
```javascript
if (promptTokens > roleParams.maxInputTokens) {
throw new Error(
`Prompt (${promptTokens} tokens) exceeds configured max input tokens (${roleParams.maxInputTokens}) for role '${currentRole}'.`
);
}
if (promptTokens > modelAbsoluteMaxInput) {
throw new Error(
`Prompt (${promptTokens} tokens) exceeds model's absolute max input tokens (${modelAbsoluteMaxInput}) for ${modelId}.`
);
}
```
- **API Call Parameter (`max_tokens` for generation):**
The `max_tokens` parameter passed to the provider's API call should be `roleParams.maxOutputTokens`. We must also ensure this doesn't exceed the model's absolute output capability.
```javascript
const apiMaxOutputTokens = Math.min(
roleParams.maxOutputTokens,
modelAbsoluteMaxOutput
);
const callParams = {
apiKey,
modelId,
// Use apiMaxOutputTokens for the actual API call
maxTokens: apiMaxOutputTokens, // This usually means max tokens to GENERATE
temperature: roleParams.temperature,
messages,
baseUrl,
...(serviceType === 'generateObject' && { schema, objectName }),
...restApiParams
};
```
3. **Update `logAiUsage`:**
- The cost calculation in `logAiUsage` seems correct as it already uses `inputCost` and `outputCost` per 1M tokens. This part should remain compatible.
**Next Steps:**
1. **Modify `supported-models.json`:** I need the content of this file to propose the new `maxInputTokens` and `maxOutputTokens` fields. Please provide it.
2. **Decide on Tokenizer Strategy:** What are your thoughts on the token counting? Are you aware of any utilities within Vercel AI SDK for this, or should we plan to integrate `tiktoken` initially?
Once I have the content of `supported-models.json`, I can draft the changes for it and then proceed to `config-manager.js` and `.taskmasterconfig`.
```json
// Before
{
"id": "claude-3-7-sonnet-20250219",
"name": "Claude 3.7 Sonnet (Preview)",
"context_window": 200000, // This might be total context
"cost_per_1m_tokens": { "input": 3, "output": 15, "currency": "USD" }
}
// After (assuming 200k is total, and we make a reasonable split or find official numbers)
{
"id": "claude-3-7-sonnet-20250219",
"name": "Claude 3.7 Sonnet (Preview)",
"maxInputTokens": 190000, // Example
"maxOutputTokens": 8192, // Example, often smaller for generation
"cost_per_1m_tokens": { "input": 3, "output": 15, "currency": "USD" }
}
```
```javascript
// Placeholder for token counting
function countTokens(text, modelId /* or providerName */) {
// ... implementation using SDK or library ...
// This is a simplification; actual tokenization is model-specific.
// For now, a rough estimate might be (text.length / 4) as a placeholder
// if a proper tokenizer isn't immediately available.
if (!text) return 0;
return Math.ceil(text.length / 3.5); // Very rough general estimate
}
const promptTokens = countTokens(systemPrompt) + countTokens(prompt);
```
```javascript
const roleParams = getParametersForRole(currentRole, effectiveProjectRoot);
// roleParams will now contain { maxInputTokens, maxOutputTokens, temperature }
```
```javascript
// Simplified; ideally use a robust getter from config-manager
const modelInfo = MODEL_MAP[providerName?.toLowerCase()]?.find(
(m) => m.id === modelId
);
const modelAbsoluteMaxInput = modelInfo?.maxInputTokens || Infinity;
const modelAbsoluteMaxOutput =
modelInfo?.maxOutputTokens || roleParams.maxOutputTokens; // Fallback to configured if not in map
```
```javascript
if (promptTokens > roleParams.maxInputTokens) {
throw new Error(
`Prompt (${promptTokens} tokens) exceeds configured max input tokens (${roleParams.maxInputTokens}) for role '${currentRole}'.`
);
}
if (promptTokens > modelAbsoluteMaxInput) {
throw new Error(
`Prompt (${promptTokens} tokens) exceeds model's absolute max input tokens (${modelAbsoluteMaxInput}) for ${modelId}.`
);
}
```
```javascript
const apiMaxOutputTokens = Math.min(
roleParams.maxOutputTokens,
modelAbsoluteMaxOutput
);
const callParams = {
apiKey,
modelId,
// Use apiMaxOutputTokens for the actual API call
maxTokens: apiMaxOutputTokens, // This usually means max tokens to GENERATE
temperature: roleParams.temperature,
messages,
baseUrl,
...(serviceType === 'generateObject' && { schema, objectName }),
...restApiParams
};
```
Okay, I have the contents of `supported-models.json`.
It seems many models have a `max_tokens` field, which I assume is the _total context window_. Some don't have it, and for others (like OpenAI `gpt-4o`), the listed `max_tokens` (16384) is known to be its _output_ token limit when using the Chat Completions API, while the context window is much larger (128k). This highlights the complexity: `max_tokens` in `supported-models.json` is used inconsistently.
**Revised Plan for `supported-models.json` and Token Definitions:**
To bring clarity, we'll introduce two new fields and ensure their meaning is consistent:
- `contextWindowTokens`: The total number of tokens the model can process (input + output). This would replace the current ambiguous `max_tokens`.
- `maxOutputTokens`: The maximum number of tokens the model can _generate_ in a single response. This is often smaller than the total context window, especially for larger models.
If a model _only_ specifies a total context window, we'll have to make a reasonable assumption for `maxOutputTokens` (e.g., 4096 or 8192, or a fraction of the total context window). If it only specifies an output token limit (like some OpenAI models in certain API modes), we'll need to find its total context window.
**Updated `supported-models.json` Structure (Example):**
```json
// For a model like Anthropic Claude 3.7 Sonnet (Preview)
{
"id": "claude-3-7-sonnet-20250219",
"swe_score": 0.623,
"cost_per_1m_tokens": { "input": 3.0, "output": 15.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 200000, // From Anthropic's documentation
"maxOutputTokens": 8192 // Anthropic default, user can override in .taskmasterconfig
}
// For a model like OpenAI GPT-4o
{
"id": "gpt-4o",
"swe_score": 0.332,
"cost_per_1m_tokens": { "input": 2.5, "output": 10.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 128000, // Official context window
"maxOutputTokens": 16384 // Max output for chat completions is 16k for gpt-4o (used to be 4k/8k for older gpt-4)
// but the model card mentions 128k total. The API call parameter for `max_tokens` sets this output cap.
}
```
I will proceed to generate the updated `supported-models.json` content. This will be a significant change. I will make my best effort to find the correct `contextWindowTokens` and `maxOutputTokens` for each model. If official numbers are ambiguous or not readily available, I'll use sensible defaults and add a comment.
**Regarding Tokenizer Strategy:**
- **Vercel AI SDK:** The `ai` package (Vercel AI SDK) itself is a lightweight wrapper. Tokenization is usually handled by the underlying provider-specific SDKs (e.g., `@anthropic-ai/sdk`, `openai`). The Vercel SDK doesn't provide a universal tokenizer.
- **Provider SDKs:**
- `@anthropic-ai/sdk`: Does not expose a public tokenizer directly. Anthropic recommends counting based on their guidelines (roughly 3.5 chars/token for English).
- `openai` (for Node.js): The `gpt-3-encoder` or `tiktoken` libraries are commonly used. `tiktoken` is more current.
- **`tiktoken`:** This is a good general-purpose library for OpenAI models and those that use compatible tokenization (many models fine-tuned from Llama, etc., might be close). It supports various encodings.
- **Recommendation:**
1. Start by integrating `tiktoken`. We can select the encoding based on the provider or even specific model if needed (e.g., `cl100k_base` for gpt-4, gpt-3.5-turbo, DALL-E models).
2. For providers where `tiktoken` is not accurate (e.g., Google's Gemini, Perplexity if they have proprietary tokenizers), we might have to rely on character-based estimations (e.g., `length / N`) as a rougher guide or investigate if their specific SDKs offer token counting.
3. The Vercel AI SDK's `experimental_streamObject` and other functions _might_ internally handle some aspects of token counting for request preparation, but we need explicit counting for our logic _before_ the call.
For now, let's assume we'll add a `countTokens` utility that uses `tiktoken` for OpenAI and Anthropic (as Anthropic's guidance is character-based but `cl100k_base` is often a decent proxy for their tokenization for rough estimates, though not perfect), and a character-based fallback for others.
I will now generate the proposed changes for `scripts/modules/supported-models.json`. This will be a large diff.
After this, we'll move to:
1. Updating `.taskmasterconfig` defaults in `config-manager.js` and providing you the snippet for your user file.
2. Updating `config-manager.js` getters.
3. Implementing the logic in `ai-services-unified.js`.
```json
// For a model like Anthropic Claude 3.7 Sonnet (Preview)
{
"id": "claude-3-7-sonnet-20250219",
"swe_score": 0.623,
"cost_per_1m_tokens": { "input": 3.0, "output": 15.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 200000, // From Anthropic's documentation
"maxOutputTokens": 8192 // Anthropic default, user can override in .taskmasterconfig
}
// For a model like OpenAI GPT-4o
{
"id": "gpt-4o",
"swe_score": 0.332,
"cost_per_1m_tokens": { "input": 2.5, "output": 10.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 128000, // Official context window
"maxOutputTokens": 16384 // Max output for chat completions is 16k for gpt-4o (used to be 4k/8k for older gpt-4)
// but the model card mentions 128k total. The API call parameter for `max_tokens` sets this output cap.
}
```
```json
// For a model like Anthropic Claude 3.7 Sonnet (Preview)
{
"id": "claude-3-7-sonnet-20250219",
"swe_score": 0.623,
"cost_per_1m_tokens": { "input": 3.0, "output": 15.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 200000, // From Anthropic's documentation
"maxOutputTokens": 8192 // Anthropic default, user can override in .taskmasterconfig
}
// For a model like OpenAI GPT-4o
{
"id": "gpt-4o",
"swe_score": 0.332,
"cost_per_1m_tokens": { "input": 2.5, "output": 10.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 128000, // Official context window
"maxOutputTokens": 16384 // Max output for chat completions is 16k for gpt-4o (used to be 4k/8k for older gpt-4)
// but the model card mentions 128k total. The API call parameter for `max_tokens` sets this output cap.
}
```

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -186,22 +186,22 @@ const commandMap = {
```javascript
// In mcp-server/src/tools/newFeature.js
import { z } from 'zod';
import { z } from "zod";
import {
executeTaskMasterCommand,
createContentResponse,
createErrorResponse
} from './utils.js';
createErrorResponse,
} from "./utils.js";
export function registerNewFeatureTool(server) {
server.addTool({
name: 'newFeature',
description: 'Run the new feature',
name: "newFeature",
description: "Run the new feature",
parameters: z.object({
param1: z.string().describe('First parameter'),
param2: z.number().optional().describe('Second parameter'),
file: z.string().optional().describe('Path to the tasks file'),
projectRoot: z.string().describe('Root directory of the project')
param1: z.string().describe("First parameter"),
param2: z.number().optional().describe("Second parameter"),
file: z.string().optional().describe("Path to the tasks file"),
projectRoot: z.string().describe("Root directory of the project")
}),
execute: async (args, { log }) => {
try {
@@ -216,7 +216,7 @@ export function registerNewFeatureTool(server) {
// Execute the command
const result = await executeTaskMasterCommand(
'new-feature',
"new-feature",
log,
cmdArgs,
projectRoot
@@ -231,7 +231,7 @@ export function registerNewFeatureTool(server) {
log.error(`Error in new feature: ${error.message}`);
return createErrorResponse(`Error in new feature: ${error.message}`);
}
}
},
});
}
```
@@ -240,7 +240,7 @@ export function registerNewFeatureTool(server) {
```javascript
// In mcp-server/src/tools/index.js
import { registerNewFeatureTool } from './newFeature.js';
import { registerNewFeatureTool } from "./newFeature.js";
export function registerTaskMasterTools(server) {
// ... existing registrations

View File

@@ -1,22 +0,0 @@
# Task Master Documentation
Welcome to the Task Master documentation. Use the links below to navigate to the information you need:
## Getting Started
- [Configuration Guide](configuration.md) - Set up environment variables and customize Task Master
- [Tutorial](tutorial.md) - Step-by-step guide to getting started with Task Master
## Reference
- [Command Reference](command-reference.md) - Complete list of all available commands (including research and multi-task viewing)
- [Task Structure](task-structure.md) - Understanding the task format and features
## Examples & Licensing
- [Example Interactions](examples.md) - Common Cursor AI interaction examples
- [Licensing Information](licensing.md) - Detailed information about the license
## Need More Help?
If you can't find what you're looking for in these docs, please check the [main README](../README.md) or visit our [GitHub repository](https://github.com/eyaltoledano/claude-task-master).

View File

@@ -1,321 +0,0 @@
# Task Master Command Reference
Here's a comprehensive reference of all available commands:
## Parse PRD
```bash
# Parse a PRD file and generate tasks
task-master parse-prd <prd-file.txt>
# Limit the number of tasks generated
task-master parse-prd <prd-file.txt> --num-tasks=10
```
## List Tasks
```bash
# List all tasks
task-master list
# List tasks with a specific status
task-master list --status=<status>
# List tasks with subtasks
task-master list --with-subtasks
# List tasks with a specific status and include subtasks
task-master list --status=<status> --with-subtasks
```
## Show Next Task
```bash
# Show the next task to work on based on dependencies and status
task-master next
```
## Show Specific Task
```bash
# Show details of a specific task
task-master show <id>
# or
task-master show --id=<id>
# View multiple tasks with comma-separated IDs
task-master show 1,3,5
task-master show 44,55
# View a specific subtask (e.g., subtask 2 of task 1)
task-master show 1.2
# Mix parent tasks and subtasks
task-master show 44,44.1,55,55.2
```
**Multiple Task Display:**
- **Single ID**: Shows detailed task view with full implementation details
- **Multiple IDs**: Shows compact summary table with interactive action menu
- **Action Menu**: Provides copy-paste ready commands for batch operations:
- Mark all as in-progress/done
- Show next available task
- Expand all tasks (generate subtasks)
- View dependency relationships
- Generate task files
## Update Tasks
```bash
# Update tasks from a specific ID and provide context
task-master update --from=<id> --prompt="<prompt>"
# Update tasks using research role
task-master update --from=<id> --prompt="<prompt>" --research
```
## Update a Specific Task
```bash
# Update a single task by ID with new information
task-master update-task --id=<id> --prompt="<prompt>"
# Use research-backed updates
task-master update-task --id=<id> --prompt="<prompt>" --research
```
## Update a Subtask
```bash
# Append additional information to a specific subtask
task-master update-subtask --id=<parentId.subtaskId> --prompt="<prompt>"
# Example: Add details about API rate limiting to subtask 2 of task 5
task-master update-subtask --id=5.2 --prompt="Add rate limiting of 100 requests per minute"
# Use research-backed updates
task-master update-subtask --id=<parentId.subtaskId> --prompt="<prompt>" --research
```
Unlike the `update-task` command which replaces task information, the `update-subtask` command _appends_ new information to the existing subtask details, marking it with a timestamp. This is useful for iteratively enhancing subtasks while preserving the original content.
## Generate Task Files
```bash
# Generate individual task files from tasks.json
task-master generate
```
## Set Task Status
```bash
# Set status of a single task
task-master set-status --id=<id> --status=<status>
# Set status for multiple tasks
task-master set-status --id=1,2,3 --status=<status>
# Set status for subtasks
task-master set-status --id=1.1,1.2 --status=<status>
```
When marking a task as "done", all of its subtasks will automatically be marked as "done" as well.
## Expand Tasks
```bash
# Expand a specific task with subtasks
task-master expand --id=<id> --num=<number>
# Expand with additional context
task-master expand --id=<id> --prompt="<context>"
# Expand all pending tasks
task-master expand --all
# Force regeneration of subtasks for tasks that already have them
task-master expand --all --force
# Research-backed subtask generation for a specific task
task-master expand --id=<id> --research
# Research-backed generation for all tasks
task-master expand --all --research
```
## Clear Subtasks
```bash
# Clear subtasks from a specific task
task-master clear-subtasks --id=<id>
# Clear subtasks from multiple tasks
task-master clear-subtasks --id=1,2,3
# Clear subtasks from all tasks
task-master clear-subtasks --all
```
## Analyze Task Complexity
```bash
# Analyze complexity of all tasks
task-master analyze-complexity
# Save report to a custom location
task-master analyze-complexity --output=my-report.json
# Use a specific LLM model
task-master analyze-complexity --model=claude-3-opus-20240229
# Set a custom complexity threshold (1-10)
task-master analyze-complexity --threshold=6
# Use an alternative tasks file
task-master analyze-complexity --file=custom-tasks.json
# Use Perplexity AI for research-backed complexity analysis
task-master analyze-complexity --research
```
## View Complexity Report
```bash
# Display the task complexity analysis report
task-master complexity-report
# View a report at a custom location
task-master complexity-report --file=my-report.json
```
## Managing Task Dependencies
```bash
# Add a dependency to a task
task-master add-dependency --id=<id> --depends-on=<id>
# Remove a dependency from a task
task-master remove-dependency --id=<id> --depends-on=<id>
# Validate dependencies without fixing them
task-master validate-dependencies
# Find and fix invalid dependencies automatically
task-master fix-dependencies
```
## Move Tasks
```bash
# Move a task or subtask to a new position
task-master move --from=<id> --to=<id>
# Examples:
# Move task to become a subtask
task-master move --from=5 --to=7
# Move subtask to become a standalone task
task-master move --from=5.2 --to=7
# Move subtask to a different parent
task-master move --from=5.2 --to=7.3
# Reorder subtasks within the same parent
task-master move --from=5.2 --to=5.4
# Move a task to a new ID position (creates placeholder if doesn't exist)
task-master move --from=5 --to=25
# Move multiple tasks at once (must have the same number of IDs)
task-master move --from=10,11,12 --to=16,17,18
```
## Add a New Task
```bash
# Add a new task using AI (main role)
task-master add-task --prompt="Description of the new task"
# Add a new task using AI (research role)
task-master add-task --prompt="Description of the new task" --research
# Add a task with dependencies
task-master add-task --prompt="Description" --dependencies=1,2,3
# Add a task with priority
task-master add-task --prompt="Description" --priority=high
```
## Initialize a Project
```bash
# Initialize a new project with Task Master structure
task-master init
```
## Configure AI Models
```bash
# View current AI model configuration and API key status
task-master models
# Set the primary model for generation/updates (provider inferred if known)
task-master models --set-main=claude-3-opus-20240229
# Set the research model
task-master models --set-research=sonar-pro
# Set the fallback model
task-master models --set-fallback=claude-3-haiku-20240307
# Set a custom Ollama model for the main role
task-master models --set-main=my-local-llama --ollama
# Set a custom OpenRouter model for the research role
task-master models --set-research=google/gemini-pro --openrouter
# Run interactive setup to configure models, including custom ones
task-master models --setup
```
Configuration is stored in `.taskmasterconfig` in your project root. API keys are still managed via `.env` or MCP configuration. Use `task-master models` without flags to see available built-in models. Use `--setup` for a guided experience.
## Research Fresh Information
```bash
# Perform AI-powered research with fresh, up-to-date information
task-master research "What are the latest best practices for JWT authentication in Node.js?"
# Research with specific task context
task-master research "How to implement OAuth 2.0?" --id=15,16
# Research with file context for code-aware suggestions
task-master research "How can I optimize this API implementation?" --files=src/api.js,src/auth.js
# Research with custom context and project tree
task-master research "Best practices for error handling" --context="We're using Express.js" --tree
# Research with different detail levels
task-master research "React Query v5 migration guide" --detail=high
# Save research results to a file
task-master research "Database optimization techniques" --save=research/db-optimization.md
```
**The research command is a powerful tool that provides:**
- **Fresh information beyond AI knowledge cutoffs**
- **Project-aware context** from your tasks and files
- **Automatic task discovery** using fuzzy search
- **Multiple detail levels** (low, medium, high)
- **Token counting and cost tracking**
- **Interactive follow-up questions**
**Use research frequently to:**
- Get current best practices before implementing features
- Research new technologies and libraries
- Find solutions to complex problems
- Validate your implementation approaches
- Stay updated with latest security recommendations

View File

@@ -1,156 +0,0 @@
# Configuration
Taskmaster uses two primary methods for configuration:
1. **`.taskmasterconfig` File (Project Root - Recommended for most settings)**
- This JSON file stores most configuration settings, including AI model selections, parameters, logging levels, and project defaults.
- **Location:** This file is created in the root directory of your project when you run the `task-master models --setup` interactive setup. You typically do this during the initialization sequence. Do not manually edit this file beyond adjusting Temperature and Max Tokens depending on your model.
- **Management:** Use the `task-master models --setup` command (or `models` MCP tool) to interactively create and manage this file. You can also set specific models directly using `task-master models --set-<role>=<model_id>`, adding `--ollama` or `--openrouter` flags for custom models. Manual editing is possible but not recommended unless you understand the structure.
- **Example Structure:**
```json
{
"models": {
"main": {
"provider": "anthropic",
"modelId": "claude-3-7-sonnet-20250219",
"maxTokens": 64000,
"temperature": 0.2,
"baseURL": "https://api.anthropic.com/v1"
},
"research": {
"provider": "perplexity",
"modelId": "sonar-pro",
"maxTokens": 8700,
"temperature": 0.1,
"baseURL": "https://api.perplexity.ai/v1"
},
"fallback": {
"provider": "anthropic",
"modelId": "claude-3-5-sonnet",
"maxTokens": 64000,
"temperature": 0.2
}
},
"global": {
"logLevel": "info",
"debug": false,
"defaultSubtasks": 5,
"defaultPriority": "medium",
"projectName": "Your Project Name",
"ollamaBaseURL": "http://localhost:11434/api",
"azureBaseURL": "https://your-endpoint.azure.com/",
"vertexProjectId": "your-gcp-project-id",
"vertexLocation": "us-central1"
}
}
```
2. **Environment Variables (`.env` file or MCP `env` block - For API Keys Only)**
- Used **exclusively** for sensitive API keys and specific endpoint URLs.
- **Location:**
- For CLI usage: Create a `.env` file in your project root.
- For MCP/Cursor usage: Configure keys in the `env` section of your `.cursor/mcp.json` file.
- **Required API Keys (Depending on configured providers):**
- `ANTHROPIC_API_KEY`: Your Anthropic API key.
- `PERPLEXITY_API_KEY`: Your Perplexity API key.
- `OPENAI_API_KEY`: Your OpenAI API key.
- `GOOGLE_API_KEY`: Your Google API key (also used for Vertex AI provider).
- `MISTRAL_API_KEY`: Your Mistral API key.
- `AZURE_OPENAI_API_KEY`: Your Azure OpenAI API key (also requires `AZURE_OPENAI_ENDPOINT`).
- `OPENROUTER_API_KEY`: Your OpenRouter API key.
- `XAI_API_KEY`: Your X-AI API key.
- **Optional Endpoint Overrides:**
- **Per-role `baseURL` in `.taskmasterconfig`:** You can add a `baseURL` property to any model role (`main`, `research`, `fallback`) to override the default API endpoint for that provider. If omitted, the provider's standard endpoint is used.
- `AZURE_OPENAI_ENDPOINT`: Required if using Azure OpenAI key (can also be set as `baseURL` for the Azure model role).
- `OLLAMA_BASE_URL`: Override the default Ollama API URL (Default: `http://localhost:11434/api`).
- `VERTEX_PROJECT_ID`: Your Google Cloud project ID for Vertex AI. Required when using the 'vertex' provider.
- `VERTEX_LOCATION`: Google Cloud region for Vertex AI (e.g., 'us-central1'). Default is 'us-central1'.
- `GOOGLE_APPLICATION_CREDENTIALS`: Path to service account credentials JSON file for Google Cloud auth (alternative to API key for Vertex AI).
**Important:** Settings like model ID selections (`main`, `research`, `fallback`), `maxTokens`, `temperature`, `logLevel`, `defaultSubtasks`, `defaultPriority`, and `projectName` are **managed in `.taskmasterconfig`**, not environment variables.
## Example `.env` File (for API Keys)
```
# Required API keys for providers configured in .taskmasterconfig
ANTHROPIC_API_KEY=sk-ant-api03-your-key-here
PERPLEXITY_API_KEY=pplx-your-key-here
# OPENAI_API_KEY=sk-your-key-here
# GOOGLE_API_KEY=AIzaSy...
# etc.
# Optional Endpoint Overrides
# AZURE_OPENAI_ENDPOINT=https://your-azure-endpoint.openai.azure.com/
# OLLAMA_BASE_URL=http://custom-ollama-host:11434/api
# Google Vertex AI Configuration (Required if using 'vertex' provider)
# VERTEX_PROJECT_ID=your-gcp-project-id
# VERTEX_LOCATION=us-central1
# GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account-credentials.json
```
## Troubleshooting
### Configuration Errors
- If Task Master reports errors about missing configuration or cannot find `.taskmasterconfig`, run `task-master models --setup` in your project root to create or repair the file.
- Ensure API keys are correctly placed in your `.env` file (for CLI) or `.cursor/mcp.json` (for MCP) and are valid for the providers selected in `.taskmasterconfig`.
### If `task-master init` doesn't respond:
Try running it with Node directly:
```bash
node node_modules/claude-task-master/scripts/init.js
```
Or clone the repository and run:
```bash
git clone https://github.com/eyaltoledano/claude-task-master.git
cd claude-task-master
node scripts/init.js
```
## Provider-Specific Configuration
### Google Vertex AI Configuration
Google Vertex AI is Google Cloud's enterprise AI platform and requires specific configuration:
1. **Prerequisites**:
- A Google Cloud account with Vertex AI API enabled
- Either a Google API key with Vertex AI permissions OR a service account with appropriate roles
- A Google Cloud project ID
2. **Authentication Options**:
- **API Key**: Set the `GOOGLE_API_KEY` environment variable
- **Service Account**: Set `GOOGLE_APPLICATION_CREDENTIALS` to point to your service account JSON file
3. **Required Configuration**:
- Set `VERTEX_PROJECT_ID` to your Google Cloud project ID
- Set `VERTEX_LOCATION` to your preferred Google Cloud region (default: us-central1)
4. **Example Setup**:
```bash
# In .env file
GOOGLE_API_KEY=AIzaSyXXXXXXXXXXXXXXXXXXXXXXXXX
VERTEX_PROJECT_ID=my-gcp-project-123
VERTEX_LOCATION=us-central1
```
Or using service account:
```bash
# In .env file
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json
VERTEX_PROJECT_ID=my-gcp-project-123
VERTEX_LOCATION=us-central1
```
5. **In .taskmasterconfig**:
```json
"global": {
"vertexProjectId": "my-gcp-project-123",
"vertexLocation": "us-central1"
}
```

View File

@@ -1,94 +0,0 @@
# Testing Roo Integration
This document provides instructions for testing the Roo integration in the Task Master package.
## Running Tests
To run the tests for the Roo integration:
```bash
# Run all tests
npm test
# Run only Roo integration tests
npm test -- -t "Roo"
# Run specific test file
npm test -- tests/integration/roo-files-inclusion.test.js
```
## Manual Testing
To manually verify that the Roo files are properly included in the package:
1. Create a test directory:
```bash
mkdir test-tm
cd test-tm
```
2. Create a package.json file:
```bash
npm init -y
```
3. Install the task-master-ai package locally:
```bash
# From the root of the claude-task-master repository
cd ..
npm pack
# This will create a file like task-master-ai-0.12.0.tgz
# Move back to the test directory
cd test-tm
npm install ../task-master-ai-0.12.0.tgz
```
4. Initialize a new Task Master project:
```bash
npx task-master init --yes
```
5. Verify that all Roo files and directories are created:
```bash
# Check that .roomodes file exists
ls -la | grep .roomodes
# Check that .roo directory exists and contains all mode directories
ls -la .roo
ls -la .roo/rules
ls -la .roo/rules-architect
ls -la .roo/rules-ask
ls -la .roo/rules-boomerang
ls -la .roo/rules-code
ls -la .roo/rules-debug
ls -la .roo/rules-test
```
## What to Look For
When running the tests or performing manual verification, ensure that:
1. The package includes `.roo/**` and `.roomodes` in the `files` array in package.json
2. The `prepare-package.js` script verifies the existence of all required Roo files
3. The `init.js` script creates all necessary .roo directories and copies .roomodes file
4. All source files for Roo integration exist in `assets/roocode/.roo` and `assets/roocode/.roomodes`
## Compatibility
Ensure that the Roo integration works alongside existing Cursor functionality:
1. Initialize a new project that uses both Cursor and Roo:
```bash
npx task-master init --yes
```
2. Verify that both `.cursor` and `.roo` directories are created
3. Verify that both `.windsurfrules` and `.roomodes` files are created
4. Confirm that existing functionality continues to work as expected

View File

@@ -1,178 +0,0 @@
# Example Cursor AI Interactions
Here are some common interactions with Cursor AI when using Task Master:
## Starting a new project
```
I've just initialized a new project with Claude Task Master. I have a PRD at scripts/prd.txt.
Can you help me parse it and set up the initial tasks?
```
## Working on tasks
```
What's the next task I should work on? Please consider dependencies and priorities.
```
## Implementing a specific task
```
I'd like to implement task 4. Can you help me understand what needs to be done and how to approach it?
```
## Viewing multiple tasks
```
Can you show me tasks 1, 3, and 5 so I can understand their relationship?
```
```
I need to see the status of tasks 44, 55, and their subtasks. Can you show me those?
```
```
Show me tasks 10, 12, and 15 and give me some batch actions I can perform on them.
```
## Managing subtasks
```
I need to regenerate the subtasks for task 3 with a different approach. Can you help me clear and regenerate them?
```
## Handling changes
```
I've decided to use MongoDB instead of PostgreSQL. Can you update all future tasks to reflect this change?
```
## Completing work
```
I've finished implementing the authentication system described in task 2. All tests are passing.
Please mark it as complete and tell me what I should work on next.
```
## Reorganizing tasks
```
I think subtask 5.2 would fit better as part of task 7. Can you move it there?
```
(Agent runs: `task-master move --from=5.2 --to=7.3`)
```
Task 8 should actually be a subtask of task 4. Can you reorganize this?
```
(Agent runs: `task-master move --from=8 --to=4.1`)
```
I just merged the main branch and there's a conflict in tasks.json. My teammates created tasks 10-15 on their branch while I created tasks 10-12 on my branch. Can you help me resolve this by moving my tasks?
```
(Agent runs:
```bash
task-master move --from=10 --to=16
task-master move --from=11 --to=17
task-master move --from=12 --to=18
```
)
## Analyzing complexity
```
Can you analyze the complexity of our tasks to help me understand which ones need to be broken down further?
```
## Viewing complexity report
```
Can you show me the complexity report in a more readable format?
```
### Breaking Down Complex Tasks
```
Task 5 seems complex. Can you break it down into subtasks?
```
(Agent runs: `task-master expand --id=5`)
```
Please break down task 5 using research-backed generation.
```
(Agent runs: `task-master expand --id=5 --research`)
### Updating Tasks with Research
```
We need to update task 15 based on the latest React Query v5 changes. Can you research this and update the task?
```
(Agent runs: `task-master update-task --id=15 --prompt="Update based on React Query v5 changes" --research`)
### Adding Tasks with Research
```
Please add a new task to implement user profile image uploads using Cloudinary, research the best approach.
```
(Agent runs: `task-master add-task --prompt="Implement user profile image uploads using Cloudinary" --research`)
## Research-Driven Development
### Getting Fresh Information
```
Research the latest best practices for implementing JWT authentication in Node.js applications.
```
(Agent runs: `task-master research "Latest best practices for JWT authentication in Node.js"`)
### Research with Project Context
```
I'm working on task 15 which involves API optimization. Can you research current best practices for our specific implementation?
```
(Agent runs: `task-master research "API optimization best practices" --id=15 --files=src/api.js`)
### Research Before Implementation
```
Before I implement task 8 (React Query integration), can you research the latest React Query v5 patterns and any breaking changes?
```
(Agent runs: `task-master research "React Query v5 patterns and breaking changes" --id=8`)
### Research and Update Pattern
```
Research the latest security recommendations for Express.js applications and update our authentication task with the findings.
```
(Agent runs:
1. `task-master research "Latest Express.js security recommendations" --id=12`
2. `task-master update-subtask --id=12.3 --prompt="Updated with latest security findings: [research results]"`)
### Research for Debugging
```
I'm having issues with our WebSocket implementation in task 20. Can you research common WebSocket problems and solutions?
```
(Agent runs: `task-master research "Common WebSocket implementation problems and solutions" --id=20 --files=src/websocket.js`)
### Research Technology Comparisons
```
We need to choose between Redis and Memcached for caching. Can you research the current recommendations for our use case?
```
(Agent runs: `task-master research "Redis vs Memcached 2024 comparison for session caching" --tree`)

View File

@@ -1,18 +0,0 @@
# Licensing
Task Master is licensed under the MIT License with Commons Clause. This means you can:
## ✅ Allowed:
- Use Task Master for any purpose (personal, commercial, academic)
- Modify the code
- Distribute copies
- Create and sell products built using Task Master
## ❌ Not Allowed:
- Sell Task Master itself
- Offer Task Master as a hosted service
- Create competing products based on Task Master
See the [LICENSE](../LICENSE) file for the complete license text.

File diff suppressed because it is too large Load Diff

View File

@@ -1,125 +0,0 @@
# Available Models as of May 27, 2025
## Main Models
| Provider | Model Name | SWE Score | Input Cost | Output Cost |
| ---------- | ---------------------------------------------- | --------- | ---------- | ----------- |
| anthropic | claude-sonnet-4-20250514 | 0.727 | 3 | 15 |
| anthropic | claude-opus-4-20250514 | 0.725 | 15 | 75 |
| anthropic | claude-3-7-sonnet-20250219 | 0.623 | 3 | 15 |
| anthropic | claude-3-5-sonnet-20241022 | 0.49 | 3 | 15 |
| openai | gpt-4o | 0.332 | 2.5 | 10 |
| openai | o1 | 0.489 | 15 | 60 |
| openai | o3 | 0.5 | 10 | 40 |
| openai | o3-mini | 0.493 | 1.1 | 4.4 |
| openai | o4-mini | 0.45 | 1.1 | 4.4 |
| openai | o1-mini | 0.4 | 1.1 | 4.4 |
| openai | o1-pro | — | 150 | 600 |
| openai | gpt-4-5-preview | 0.38 | 75 | 150 |
| openai | gpt-4-1-mini | — | 0.4 | 1.6 |
| openai | gpt-4-1-nano | — | 0.1 | 0.4 |
| openai | gpt-4o-mini | 0.3 | 0.15 | 0.6 |
| google | gemini-2.5-pro-preview-05-06 | 0.638 | — | — |
| google | gemini-2.5-pro-preview-03-25 | 0.638 | — | — |
| google | gemini-2.5-flash-preview-04-17 | — | — | — |
| google | gemini-2.0-flash | 0.754 | 0.15 | 0.6 |
| google | gemini-2.0-flash-lite | — | — | — |
| perplexity | sonar-reasoning-pro | 0.211 | 2 | 8 |
| perplexity | sonar-reasoning | 0.211 | 1 | 5 |
| xai | grok-3 | — | 3 | 15 |
| xai | grok-3-fast | — | 5 | 25 |
| ollama | devstral:latest | — | 0 | 0 |
| ollama | qwen3:latest | — | 0 | 0 |
| ollama | qwen3:14b | — | 0 | 0 |
| ollama | qwen3:32b | — | 0 | 0 |
| ollama | mistral-small3.1:latest | — | 0 | 0 |
| ollama | llama3.3:latest | — | 0 | 0 |
| ollama | phi4:latest | — | 0 | 0 |
| openrouter | google/gemini-2.5-flash-preview-05-20 | — | 0.15 | 0.6 |
| openrouter | google/gemini-2.5-flash-preview-05-20:thinking | — | 0.15 | 3.5 |
| openrouter | google/gemini-2.5-pro-exp-03-25 | — | 0 | 0 |
| openrouter | deepseek/deepseek-chat-v3-0324:free | — | 0 | 0 |
| openrouter | deepseek/deepseek-chat-v3-0324 | — | 0.27 | 1.1 |
| openrouter | openai/gpt-4.1 | — | 2 | 8 |
| openrouter | openai/gpt-4.1-mini | — | 0.4 | 1.6 |
| openrouter | openai/gpt-4.1-nano | — | 0.1 | 0.4 |
| openrouter | openai/o3 | — | 10 | 40 |
| openrouter | openai/codex-mini | — | 1.5 | 6 |
| openrouter | openai/gpt-4o-mini | — | 0.15 | 0.6 |
| openrouter | openai/o4-mini | 0.45 | 1.1 | 4.4 |
| openrouter | openai/o4-mini-high | — | 1.1 | 4.4 |
| openrouter | openai/o1-pro | — | 150 | 600 |
| openrouter | meta-llama/llama-3.3-70b-instruct | — | 120 | 600 |
| openrouter | meta-llama/llama-4-maverick | — | 0.18 | 0.6 |
| openrouter | meta-llama/llama-4-scout | — | 0.08 | 0.3 |
| openrouter | qwen/qwen-max | — | 1.6 | 6.4 |
| openrouter | qwen/qwen-turbo | — | 0.05 | 0.2 |
| openrouter | qwen/qwen3-235b-a22b | — | 0.14 | 2 |
| openrouter | mistralai/mistral-small-3.1-24b-instruct:free | — | 0 | 0 |
| openrouter | mistralai/mistral-small-3.1-24b-instruct | — | 0.1 | 0.3 |
| openrouter | mistralai/devstral-small | — | 0.1 | 0.3 |
| openrouter | mistralai/mistral-nemo | — | 0.03 | 0.07 |
| openrouter | thudm/glm-4-32b:free | — | 0 | 0 |
## Research Models
| Provider | Model Name | SWE Score | Input Cost | Output Cost |
| ---------- | -------------------------- | --------- | ---------- | ----------- |
| openai | gpt-4o-search-preview | 0.33 | 2.5 | 10 |
| openai | gpt-4o-mini-search-preview | 0.3 | 0.15 | 0.6 |
| perplexity | sonar-pro | — | 3 | 15 |
| perplexity | sonar | — | 1 | 1 |
| perplexity | deep-research | 0.211 | 2 | 8 |
| xai | grok-3 | — | 3 | 15 |
| xai | grok-3-fast | — | 5 | 25 |
## Fallback Models
| Provider | Model Name | SWE Score | Input Cost | Output Cost |
| ---------- | ---------------------------------------------- | --------- | ---------- | ----------- |
| anthropic | claude-sonnet-4-20250514 | 0.727 | 3 | 15 |
| anthropic | claude-opus-4-20250514 | 0.725 | 15 | 75 |
| anthropic | claude-3-7-sonnet-20250219 | 0.623 | 3 | 15 |
| anthropic | claude-3-5-sonnet-20241022 | 0.49 | 3 | 15 |
| openai | gpt-4o | 0.332 | 2.5 | 10 |
| openai | o3 | 0.5 | 10 | 40 |
| openai | o4-mini | 0.45 | 1.1 | 4.4 |
| google | gemini-2.5-pro-preview-05-06 | 0.638 | — | — |
| google | gemini-2.5-pro-preview-03-25 | 0.638 | — | — |
| google | gemini-2.5-flash-preview-04-17 | — | — | — |
| google | gemini-2.0-flash | 0.754 | 0.15 | 0.6 |
| google | gemini-2.0-flash-lite | — | — | — |
| perplexity | sonar-reasoning-pro | 0.211 | 2 | 8 |
| perplexity | sonar-reasoning | 0.211 | 1 | 5 |
| xai | grok-3 | — | 3 | 15 |
| xai | grok-3-fast | — | 5 | 25 |
| ollama | devstral:latest | — | 0 | 0 |
| ollama | qwen3:latest | — | 0 | 0 |
| ollama | qwen3:14b | — | 0 | 0 |
| ollama | qwen3:32b | — | 0 | 0 |
| ollama | mistral-small3.1:latest | — | 0 | 0 |
| ollama | llama3.3:latest | — | 0 | 0 |
| ollama | phi4:latest | — | 0 | 0 |
| openrouter | google/gemini-2.5-flash-preview-05-20 | — | 0.15 | 0.6 |
| openrouter | google/gemini-2.5-flash-preview-05-20:thinking | — | 0.15 | 3.5 |
| openrouter | google/gemini-2.5-pro-exp-03-25 | — | 0 | 0 |
| openrouter | deepseek/deepseek-chat-v3-0324:free | — | 0 | 0 |
| openrouter | openai/gpt-4.1 | — | 2 | 8 |
| openrouter | openai/gpt-4.1-mini | — | 0.4 | 1.6 |
| openrouter | openai/gpt-4.1-nano | — | 0.1 | 0.4 |
| openrouter | openai/o3 | — | 10 | 40 |
| openrouter | openai/codex-mini | — | 1.5 | 6 |
| openrouter | openai/gpt-4o-mini | — | 0.15 | 0.6 |
| openrouter | openai/o4-mini | 0.45 | 1.1 | 4.4 |
| openrouter | openai/o4-mini-high | — | 1.1 | 4.4 |
| openrouter | openai/o1-pro | — | 150 | 600 |
| openrouter | meta-llama/llama-3.3-70b-instruct | — | 120 | 600 |
| openrouter | meta-llama/llama-4-maverick | — | 0.18 | 0.6 |
| openrouter | meta-llama/llama-4-scout | — | 0.08 | 0.3 |
| openrouter | qwen/qwen-max | — | 1.6 | 6.4 |
| openrouter | qwen/qwen-turbo | — | 0.05 | 0.2 |
| openrouter | qwen/qwen3-235b-a22b | — | 0.14 | 2 |
| openrouter | mistralai/mistral-small-3.1-24b-instruct:free | — | 0 | 0 |
| openrouter | mistralai/mistral-small-3.1-24b-instruct | — | 0.1 | 0.3 |
| openrouter | mistralai/mistral-nemo | — | 0.03 | 0.07 |
| openrouter | thudm/glm-4-32b:free | — | 0 | 0 |

View File

@@ -1,131 +0,0 @@
import fs from 'fs';
import path from 'path';
import { fileURLToPath } from 'url';
const __filename = fileURLToPath(import.meta.url);
const __dirname = path.dirname(__filename);
const supportedModelsPath = path.join(
__dirname,
'..',
'modules',
'supported-models.json'
);
const outputMarkdownPath = path.join(
__dirname,
'..',
'..',
'docs',
'models.md'
);
function formatCost(cost) {
if (cost === null || cost === undefined) {
return '—';
}
return cost;
}
function formatSweScore(score) {
if (score === null || score === undefined || score === 0) {
return '—';
}
return score.toString();
}
function generateMarkdownTable(title, models) {
if (!models || models.length === 0) {
return `## ${title}\n\nNo models in this category.\n\n`;
}
let table = `## ${title}\n\n`;
table += '| Provider | Model Name | SWE Score | Input Cost | Output Cost |\n';
table += '|---|---|---|---|---|\n';
models.forEach((model) => {
table += `| ${model.provider} | ${model.modelName} | ${formatSweScore(model.sweScore)} | ${formatCost(model.inputCost)} | ${formatCost(model.outputCost)} |\n`;
});
table += '\n';
return table;
}
function main() {
try {
const correctSupportedModelsPath = path.join(
__dirname,
'..',
'..',
'scripts',
'modules',
'supported-models.json'
);
const correctOutputMarkdownPath = path.join(__dirname, '..', 'models.md');
const supportedModelsContent = fs.readFileSync(
correctSupportedModelsPath,
'utf8'
);
const supportedModels = JSON.parse(supportedModelsContent);
const mainModels = [];
const researchModels = [];
const fallbackModels = [];
for (const provider in supportedModels) {
if (Object.hasOwnProperty.call(supportedModels, provider)) {
const models = supportedModels[provider];
models.forEach((model) => {
const modelEntry = {
provider: provider,
modelName: model.id,
sweScore: model.swe_score,
inputCost: model.cost_per_1m_tokens
? model.cost_per_1m_tokens.input
: null,
outputCost: model.cost_per_1m_tokens
? model.cost_per_1m_tokens.output
: null
};
if (model.allowed_roles.includes('main')) {
mainModels.push(modelEntry);
}
if (model.allowed_roles.includes('research')) {
researchModels.push(modelEntry);
}
if (model.allowed_roles.includes('fallback')) {
fallbackModels.push(modelEntry);
}
});
}
}
const date = new Date();
const monthNames = [
'January',
'February',
'March',
'April',
'May',
'June',
'July',
'August',
'September',
'October',
'November',
'December'
];
const formattedDate = `${monthNames[date.getMonth()]} ${date.getDate()}, ${date.getFullYear()}`;
let markdownContent = `# Available Models as of ${formattedDate}\n\n`;
markdownContent += generateMarkdownTable('Main Models', mainModels);
markdownContent += generateMarkdownTable('Research Models', researchModels);
markdownContent += generateMarkdownTable('Fallback Models', fallbackModels);
fs.writeFileSync(correctOutputMarkdownPath, markdownContent, 'utf8');
console.log(`Successfully updated ${correctOutputMarkdownPath}`);
} catch (error) {
console.error('Error transforming models.json to models.md:', error);
process.exit(1);
}
}
main();

View File

@@ -1,139 +0,0 @@
# Task Structure
Tasks in Task Master follow a specific format designed to provide comprehensive information for both humans and AI assistants.
## Task Fields in tasks.json
Tasks in tasks.json have the following structure:
- `id`: Unique identifier for the task (Example: `1`)
- `title`: Brief, descriptive title of the task (Example: `"Initialize Repo"`)
- `description`: Concise description of what the task involves (Example: `"Create a new repository, set up initial structure."`)
- `status`: Current state of the task (Example: `"pending"`, `"done"`, `"deferred"`)
- `dependencies`: IDs of tasks that must be completed before this task (Example: `[1, 2]`)
- Dependencies are displayed with status indicators (✅ for completed, ⏱️ for pending)
- This helps quickly identify which prerequisite tasks are blocking work
- `priority`: Importance level of the task (Example: `"high"`, `"medium"`, `"low"`)
- `details`: In-depth implementation instructions (Example: `"Use GitHub client ID/secret, handle callback, set session token."`)
- `testStrategy`: Verification approach (Example: `"Deploy and call endpoint to confirm 'Hello World' response."`)
- `subtasks`: List of smaller, more specific tasks that make up the main task (Example: `[{"id": 1, "title": "Configure OAuth", ...}]`)
## Task File Format
Individual task files follow this format:
```
# Task ID: <id>
# Title: <title>
# Status: <status>
# Dependencies: <comma-separated list of dependency IDs>
# Priority: <priority>
# Description: <brief description>
# Details:
<detailed implementation notes>
# Test Strategy:
<verification approach>
```
## Features in Detail
### Analyzing Task Complexity
The `analyze-complexity` command:
- Analyzes each task using AI to assess its complexity on a scale of 1-10
- Recommends optimal number of subtasks based on configured DEFAULT_SUBTASKS
- Generates tailored prompts for expanding each task
- Creates a comprehensive JSON report with ready-to-use commands
- Saves the report to scripts/task-complexity-report.json by default
The generated report contains:
- Complexity analysis for each task (scored 1-10)
- Recommended number of subtasks based on complexity
- AI-generated expansion prompts customized for each task
- Ready-to-run expansion commands directly within each task analysis
### Viewing Complexity Report
The `complexity-report` command:
- Displays a formatted, easy-to-read version of the complexity analysis report
- Shows tasks organized by complexity score (highest to lowest)
- Provides complexity distribution statistics (low, medium, high)
- Highlights tasks recommended for expansion based on threshold score
- Includes ready-to-use expansion commands for each complex task
- If no report exists, offers to generate one on the spot
### Smart Task Expansion
The `expand` command automatically checks for and uses the complexity report:
When a complexity report exists:
- Tasks are automatically expanded using the recommended subtask count and prompts
- When expanding all tasks, they're processed in order of complexity (highest first)
- Research-backed generation is preserved from the complexity analysis
- You can still override recommendations with explicit command-line options
Example workflow:
```bash
# Generate the complexity analysis report with research capabilities
task-master analyze-complexity --research
# Review the report in a readable format
task-master complexity-report
# Expand tasks using the optimized recommendations
task-master expand --id=8
# or expand all tasks
task-master expand --all
```
### Finding the Next Task
The `next` command:
- Identifies tasks that are pending/in-progress and have all dependencies satisfied
- Prioritizes tasks by priority level, dependency count, and task ID
- Displays comprehensive information about the selected task:
- Basic task details (ID, title, priority, dependencies)
- Implementation details
- Subtasks (if they exist)
- Provides contextual suggested actions:
- Command to mark the task as in-progress
- Command to mark the task as done
- Commands for working with subtasks
### Viewing Specific Task Details
The `show` command:
- Displays comprehensive details about a specific task or subtask
- Shows task status, priority, dependencies, and detailed implementation notes
- For parent tasks, displays all subtasks and their status
- For subtasks, shows parent task relationship
- Provides contextual action suggestions based on the task's state
- Works with both regular tasks and subtasks (using the format taskId.subtaskId)
## Best Practices for AI-Driven Development
1. **Start with a detailed PRD**: The more detailed your PRD, the better the generated tasks will be.
2. **Review generated tasks**: After parsing the PRD, review the tasks to ensure they make sense and have appropriate dependencies.
3. **Analyze task complexity**: Use the complexity analysis feature to identify which tasks should be broken down further.
4. **Follow the dependency chain**: Always respect task dependencies - the Cursor agent will help with this.
5. **Update as you go**: If your implementation diverges from the plan, use the update command to keep future tasks aligned with your current approach.
6. **Break down complex tasks**: Use the expand command to break down complex tasks into manageable subtasks.
7. **Regenerate task files**: After any updates to tasks.json, regenerate the task files to keep them in sync.
8. **Communicate context to the agent**: When asking the Cursor agent to help with a task, provide context about what you're trying to achieve.
9. **Validate dependencies**: Periodically run the validate-dependencies command to check for invalid or circular dependencies.

View File

@@ -1,497 +0,0 @@
# Task Master Tutorial
This tutorial will guide you through setting up and using Task Master for AI-driven development.
## Initial Setup
There are two ways to set up Task Master: using MCP (recommended) or via npm installation.
### Option 1: Using MCP (Recommended)
MCP (Model Control Protocol) provides the easiest way to get started with Task Master directly in your editor.
1. **Install the package**
```bash
npm i -g task-master-ai
```
2. **Add the MCP config to your IDE/MCP Client** (Cursor is recommended, but it works with other clients):
```json
{
"mcpServers": {
"taskmaster-ai": {
"command": "npx",
"args": ["-y", "--package=task-master-ai", "task-master-ai"],
"env": {
"ANTHROPIC_API_KEY": "YOUR_ANTHROPIC_API_KEY_HERE",
"PERPLEXITY_API_KEY": "YOUR_PERPLEXITY_API_KEY_HERE",
"OPENAI_API_KEY": "YOUR_OPENAI_KEY_HERE",
"GOOGLE_API_KEY": "YOUR_GOOGLE_KEY_HERE",
"MISTRAL_API_KEY": "YOUR_MISTRAL_KEY_HERE",
"OPENROUTER_API_KEY": "YOUR_OPENROUTER_KEY_HERE",
"XAI_API_KEY": "YOUR_XAI_KEY_HERE",
"AZURE_OPENAI_API_KEY": "YOUR_AZURE_KEY_HERE"
}
}
}
}
```
**IMPORTANT:** An API key is _required_ for each AI provider you plan on using. Run the `task-master models` command to see your selected models and the status of your API keys across .env and mcp.json
**To use AI commands in CLI** you MUST have API keys in the .env file
**To use AI commands in MCP** you MUST have API keys in the .mcp.json file (or MCP config equivalent)
We recommend having keys in both places and adding mcp.json to your gitignore so your API keys aren't checked into git.
3. **Enable the MCP** in your editor settings
4. **Prompt the AI** to initialize Task Master:
```
Can you please initialize taskmaster-ai into my project?
```
The AI will:
- Create necessary project structure
- Set up initial configuration files
- Guide you through the rest of the process
5. Place your PRD document in the `scripts/` directory (e.g., `scripts/prd.txt`)
6. **Use natural language commands** to interact with Task Master:
```
Can you parse my PRD at scripts/prd.txt?
What's the next task I should work on?
Can you help me implement task 3?
```
### Option 2: Manual Installation
If you prefer to use the command line interface directly:
```bash
# Install globally
npm install -g task-master-ai
# OR install locally within your project
npm install task-master-ai
```
Initialize a new project:
```bash
# If installed globally
task-master init
# If installed locally
npx task-master init
```
This will prompt you for project details and set up a new project with the necessary files and structure.
## Common Commands
After setting up Task Master, you can use these commands (either via AI prompts or CLI):
```bash
# Parse a PRD and generate tasks
task-master parse-prd your-prd.txt
# List all tasks
task-master list
# Show the next task to work on
task-master next
# Generate task files
task-master generate
```
## Setting up Cursor AI Integration
Task Master is designed to work seamlessly with [Cursor AI](https://www.cursor.so/), providing a structured workflow for AI-driven development.
### Using Cursor with MCP (Recommended)
If you've already set up Task Master with MCP in Cursor, the integration is automatic. You can simply use natural language to interact with Task Master:
```
What tasks are available to work on next?
Can you analyze the complexity of our tasks?
I'd like to implement task 4. What does it involve?
```
### Manual Cursor Setup
If you're not using MCP, you can still set up Cursor integration:
1. After initializing your project, open it in Cursor
2. The `.cursor/rules/dev_workflow.mdc` file is automatically loaded by Cursor, providing the AI with knowledge about the task management system
3. Place your PRD document in the `scripts/` directory (e.g., `scripts/prd.txt`)
4. Open Cursor's AI chat and switch to Agent mode
### Alternative MCP Setup in Cursor
You can also set up the MCP server in Cursor settings:
1. Go to Cursor settings
2. Navigate to the MCP section
3. Click on "Add New MCP Server"
4. Configure with the following details:
- Name: "Task Master"
- Type: "Command"
- Command: "npx -y --package=task-master-ai task-master-ai"
5. Save the settings
Once configured, you can interact with Task Master's task management commands directly through Cursor's interface, providing a more integrated experience.
## Initial Task Generation
In Cursor's AI chat, instruct the agent to generate tasks from your PRD:
```
Please use the task-master parse-prd command to generate tasks from my PRD. The PRD is located at scripts/prd.txt.
```
The agent will execute:
```bash
task-master parse-prd scripts/prd.txt
```
This will:
- Parse your PRD document
- Generate a structured `tasks.json` file with tasks, dependencies, priorities, and test strategies
- The agent will understand this process due to the Cursor rules
### Generate Individual Task Files
Next, ask the agent to generate individual task files:
```
Please generate individual task files from tasks.json
```
The agent will execute:
```bash
task-master generate
```
This creates individual task files in the `tasks/` directory (e.g., `task_001.txt`, `task_002.txt`), making it easier to reference specific tasks.
## AI-Driven Development Workflow
The Cursor agent is pre-configured (via the rules file) to follow this workflow:
### 1. Task Discovery and Selection
Ask the agent to list available tasks:
```
What tasks are available to work on next?
```
```
Can you show me tasks 1, 3, and 5 to understand their current status?
```
The agent will:
- Run `task-master list` to see all tasks
- Run `task-master next` to determine the next task to work on
- Run `task-master show 1,3,5` to display multiple tasks with interactive options
- Analyze dependencies to determine which tasks are ready to be worked on
- Prioritize tasks based on priority level and ID order
- Suggest the next task(s) to implement
### 2. Task Implementation
When implementing a task, the agent will:
- Reference the task's details section for implementation specifics
- Consider dependencies on previous tasks
- Follow the project's coding standards
- Create appropriate tests based on the task's testStrategy
You can ask:
```
Let's implement task 3. What does it involve?
```
### 2.1. Viewing Multiple Tasks
For efficient context gathering and batch operations:
```
Show me tasks 5, 7, and 9 so I can plan my implementation approach.
```
The agent will:
- Run `task-master show 5,7,9` to display a compact summary table
- Show task status, priority, and progress indicators
- Provide an interactive action menu with batch operations
- Allow you to perform group actions like marking multiple tasks as in-progress
### 3. Task Verification
Before marking a task as complete, verify it according to:
- The task's specified testStrategy
- Any automated tests in the codebase
- Manual verification if required
### 4. Task Completion
When a task is completed, tell the agent:
```
Task 3 is now complete. Please update its status.
```
The agent will execute:
```bash
task-master set-status --id=3 --status=done
```
### 5. Handling Implementation Drift
If during implementation, you discover that:
- The current approach differs significantly from what was planned
- Future tasks need to be modified due to current implementation choices
- New dependencies or requirements have emerged
Tell the agent:
```
We've decided to use MongoDB instead of PostgreSQL. Can you update all future tasks (from ID 4) to reflect this change?
```
The agent will execute:
```bash
task-master update --from=4 --prompt="Now we are using MongoDB instead of PostgreSQL."
# OR, if research is needed to find best practices for MongoDB:
task-master update --from=4 --prompt="Update to use MongoDB, researching best practices" --research
```
This will rewrite or re-scope subsequent tasks in tasks.json while preserving completed work.
### 6. Reorganizing Tasks
If you need to reorganize your task structure:
```
I think subtask 5.2 would fit better as part of task 7 instead. Can you move it there?
```
The agent will execute:
```bash
task-master move --from=5.2 --to=7.3
```
You can reorganize tasks in various ways:
- Moving a standalone task to become a subtask: `--from=5 --to=7`
- Moving a subtask to become a standalone task: `--from=5.2 --to=7`
- Moving a subtask to a different parent: `--from=5.2 --to=7.3`
- Reordering subtasks within the same parent: `--from=5.2 --to=5.4`
- Moving a task to a new ID position: `--from=5 --to=25` (even if task 25 doesn't exist yet)
- Moving multiple tasks at once: `--from=10,11,12 --to=16,17,18` (must have same number of IDs, Taskmaster will look through each position)
When moving tasks to new IDs:
- The system automatically creates placeholder tasks for non-existent destination IDs
- This prevents accidental data loss during reorganization
- Any tasks that depend on moved tasks will have their dependencies updated
- When moving a parent task, all its subtasks are automatically moved with it and renumbered
This is particularly useful as your project understanding evolves and you need to refine your task structure.
### 7. Resolving Merge Conflicts with Tasks
When working with a team, you might encounter merge conflicts in your tasks.json file if multiple team members create tasks on different branches. The move command makes resolving these conflicts straightforward:
```
I just merged the main branch and there's a conflict with tasks.json. My teammates created tasks 10-15 while I created tasks 10-12 on my branch. Can you help me resolve this?
```
The agent will help you:
1. Keep your teammates' tasks (10-15)
2. Move your tasks to new positions to avoid conflicts:
```bash
# Move your tasks to new positions (e.g., 16-18)
task-master move --from=10 --to=16
task-master move --from=11 --to=17
task-master move --from=12 --to=18
```
This approach preserves everyone's work while maintaining a clean task structure, making it much easier to handle task conflicts than trying to manually merge JSON files.
### 8. Breaking Down Complex Tasks
For complex tasks that need more granularity:
```
Task 5 seems complex. Can you break it down into subtasks?
```
The agent will execute:
```bash
task-master expand --id=5 --num=3
```
You can provide additional context:
```
Please break down task 5 with a focus on security considerations.
```
The agent will execute:
```bash
task-master expand --id=5 --prompt="Focus on security aspects"
```
You can also expand all pending tasks:
```
Please break down all pending tasks into subtasks.
```
The agent will execute:
```bash
task-master expand --all
```
For research-backed subtask generation using the configured research model:
```
Please break down task 5 using research-backed generation.
```
The agent will execute:
```bash
task-master expand --id=5 --research
```
## Example Cursor AI Interactions
### Starting a new project
```
I've just initialized a new project with Claude Task Master. I have a PRD at scripts/prd.txt.
Can you help me parse it and set up the initial tasks?
```
### Working on tasks
```
What's the next task I should work on? Please consider dependencies and priorities.
```
### Implementing a specific task
```
I'd like to implement task 4. Can you help me understand what needs to be done and how to approach it?
```
### Managing subtasks
```
I need to regenerate the subtasks for task 3 with a different approach. Can you help me clear and regenerate them?
```
### Handling changes
```
We've decided to use MongoDB instead of PostgreSQL. Can you update all future tasks to reflect this change?
```
### Completing work
```
I've finished implementing the authentication system described in task 2. All tests are passing.
Please mark it as complete and tell me what I should work on next.
```
### Analyzing complexity
```
Can you analyze the complexity of our tasks to help me understand which ones need to be broken down further?
```
### Viewing complexity report
```
Can you show me the complexity report in a more readable format?
```
### Research-Driven Development
Task Master includes a powerful research tool that provides fresh, up-to-date information beyond the AI's knowledge cutoff. This is particularly valuable for:
#### Getting Current Best Practices
```
Before implementing task 5 (authentication), research the latest JWT security recommendations.
```
The agent will execute:
```bash
task-master research "Latest JWT security recommendations 2024" --id=5
```
#### Research with Project Context
```
Research React Query v5 migration strategies for our current API implementation.
```
The agent will execute:
```bash
task-master research "React Query v5 migration strategies" --files=src/api.js,src/hooks.js
```
#### Research and Update Pattern
A powerful workflow is to research first, then update tasks with findings:
```
Research the latest Node.js performance optimization techniques and update task 12 with the findings.
```
The agent will:
1. Run research: `task-master research "Node.js performance optimization 2024" --id=12`
2. Update the task: `task-master update-subtask --id=12.2 --prompt="Updated with latest performance findings: [research results]"`
#### When to Use Research
- **Before implementing any new technology**
- **When encountering security-related tasks**
- **For performance optimization tasks**
- **When debugging complex issues**
- **Before making architectural decisions**
- **When updating dependencies**
The research tool automatically includes relevant project context and provides fresh information that can significantly improve implementation quality.

View File

@@ -46,18 +46,22 @@ export const initProject = async (options = {}) => {
};
// Export a function to run init as a CLI command
export const runInitCLI = async (options = {}) => {
try {
const init = await import('./scripts/init.js');
const result = await init.initializeProject(options);
return result;
} catch (error) {
console.error('Initialization failed:', error.message);
if (process.env.DEBUG === 'true') {
console.error('Debug stack trace:', error.stack);
}
throw error; // Re-throw to be handled by the command handler
export const runInitCLI = async () => {
// Using spawn to ensure proper handling of stdio and process exit
const child = spawn('node', [resolve(__dirname, './scripts/init.js')], {
stdio: 'inherit',
cwd: process.cwd()
});
return new Promise((resolve, reject) => {
child.on('close', (code) => {
if (code === 0) {
resolve();
} else {
reject(new Error(`Init script exited with code ${code}`));
}
});
});
};
// Export version information
@@ -75,21 +79,11 @@ if (import.meta.url === `file://${process.argv[1]}`) {
program
.command('init')
.description('Initialize a new project')
.option('-y, --yes', 'Skip prompts and use default values')
.option('-n, --name <n>', 'Project name')
.option('-d, --description <description>', 'Project description')
.option('-v, --version <version>', 'Project version', '0.1.0')
.option('-a, --author <author>', 'Author name')
.option('--skip-install', 'Skip installing dependencies')
.option('--dry-run', 'Show what would be done without making changes')
.option('--aliases', 'Add shell aliases (tm, taskmaster)')
.action(async (cmdOptions) => {
try {
await runInitCLI(cmdOptions);
} catch (err) {
.action(() => {
runInitCLI().catch(err => {
console.error('Init failed:', err.message);
process.exit(1);
}
});
});
program

View File

@@ -1,6 +1,6 @@
export default {
// Use Node.js environment for testing
testEnvironment: "node",
testEnvironment: 'node',
// Automatically clear mock calls between every test
clearMocks: true,
@@ -9,27 +9,31 @@ export default {
collectCoverage: false,
// The directory where Jest should output its coverage files
coverageDirectory: "coverage",
coverageDirectory: 'coverage',
// A list of paths to directories that Jest should use to search for files in
roots: ["<rootDir>/tests"],
roots: ['<rootDir>/tests'],
// The glob patterns Jest uses to detect test files
testMatch: ["**/__tests__/**/*.js", "**/?(*.)+(spec|test).js"],
testMatch: [
'**/__tests__/**/*.js',
'**/?(*.)+(spec|test).js',
'**/tests/*.test.js'
],
// Transform files
transform: {},
// Disable transformations for node_modules
transformIgnorePatterns: ["/node_modules/"],
transformIgnorePatterns: ['/node_modules/'],
// Set moduleNameMapper for absolute paths
moduleNameMapper: {
"^@/(.*)$": "<rootDir>/$1",
'^@/(.*)$': '<rootDir>/$1'
},
// Setup module aliases
moduleDirectories: ["node_modules", "<rootDir>"],
moduleDirectories: ['node_modules', '<rootDir>'],
// Configure test coverage thresholds
coverageThreshold: {
@@ -37,16 +41,16 @@ export default {
branches: 80,
functions: 80,
lines: 80,
statements: 80,
},
statements: 80
}
},
// Generate coverage report in these formats
coverageReporters: ["text", "lcov"],
coverageReporters: ['text', 'lcov'],
// Verbose output
verbose: true,
// Setup file
setupFilesAfterEnv: ["<rootDir>/tests/setup.js"],
setupFilesAfterEnv: ['<rootDir>/tests/setup.js']
};

View File

@@ -1,131 +0,0 @@
``# Taskmaster AI Installation Guide
This guide helps AI assistants install and configure Taskmaster for users in their development projects.
## What is Taskmaster?
Taskmaster is an AI-driven task management system designed for development workflows. It helps break down projects into manageable tasks, track dependencies, and maintain development momentum through structured, AI-enhanced planning.
## Installation Steps
### Step 1: Add MCP Configuration
Add the following configuration to the user's MCP settings file (`.cursor/mcp.json` for Cursor, or equivalent for other editors):
```json
{
"mcpServers": {
"taskmaster-ai": {
"command": "npx",
"args": ["-y", "--package=task-master-ai", "task-master-ai"],
"env": {
"ANTHROPIC_API_KEY": "user_will_add_their_key_here",
"PERPLEXITY_API_KEY": "user_will_add_their_key_here",
"OPENAI_API_KEY": "user_will_add_their_key_here",
"GOOGLE_API_KEY": "user_will_add_their_key_here",
"MISTRAL_API_KEY": "user_will_add_their_key_here",
"OPENROUTER_API_KEY": "user_will_add_their_key_here",
"XAI_API_KEY": "user_will_add_their_key_here"
}
}
}
}
```
### Step 2: API Key Requirements
Inform the user they need **at least one** API key from the following providers:
- **Anthropic** (for Claude models) - Recommended
- **OpenAI** (for GPT models)
- **Google** (for Gemini models)
- **Perplexity** (for research features) - Highly recommended
- **Mistral** (for Mistral models)
- **OpenRouter** (access to multiple models)
- **xAI** (for Grok models)
The user will be able to define 3 separate roles (can be the same provider or separate providers) for main AI operations, research operations (research providers/models only), and a fallback model in case of errors.
### Step 3: Initialize Project
Once the MCP server is configured and API keys are added, initialize Taskmaster in the user's project:
> Can you initialize Task Master in my project?
This will run the `initialize_project` tool to set up the basic file structure.
### Step 4: Create Initial Tasks
Users have two options for creating initial tasks:
**Option A: Parse a PRD (Recommended)**
If they have a Product Requirements Document:
> Can you parse my PRD file at [path/to/prd.txt] to generate initial tasks?
If the user does not have a PRD, the AI agent can help them create one and store it in scripts/prd.txt for parsing.
**Option B: Start from scratch**
> Can you help me add my first task: [describe the task]
## Common Usage Patterns
### Daily Workflow
> What's the next task I should work on?
> Can you show me the details for task [ID]?
> Can you mark task [ID] as done?
### Task Management
> Can you break down task [ID] into subtasks?
> Can you add a new task: [description]
> Can you analyze the complexity of my tasks?
### Project Organization
> Can you show me all my pending tasks?
> Can you move task [ID] to become a subtask of [parent ID]?
> Can you update task [ID] with this new information: [details]
## Verification Steps
After installation, verify everything is working:
1. **Check MCP Connection**: The AI should be able to access Task Master tools
2. **Test Basic Commands**: Try `get_tasks` to list current tasks
3. **Verify API Keys**: Ensure AI-powered commands work (like `add_task`)
Note: An API key fallback exists that allows the MCP server to read API keys from `.env` instead of the MCP JSON config. It is recommended to have keys in both places in case the MCP server is unable to read keys from its environment for whatever reason.
When adding keys to `.env` only, the `models` tool will explain that the keys are not OK for MCP. Despite this, the fallback should kick in and the API keys will be read from the `.env` file.
## Troubleshooting
**If MCP server doesn't start:**
- Verify the JSON configuration is valid
- Check that Node.js is installed
- Ensure API keys are properly formatted
**If AI commands fail:**
- Verify at least one API key is configured
- Check API key permissions and quotas
- Try using a different model via the `models` tool
## CLI Fallback
Taskmaster is also available via CLI commands, by installing with `npm install task-master-ai@latest` in a terminal. Running `task-master help` will show all available commands, which offer a 1:1 experience with the MCP server. As the AI agent, you should refer to the system prompts and rules provided to you to identify Taskmaster-specific rules that help you understand how and when to use it.
## Next Steps
Once installed, users can:
- Create new tasks with `add-task` or parse a PRD (scripts/prd.txt) into tasks with `parse-prd`
- Set up model preferences with `models` tool
- Expand tasks into subtasks with `expand-all` and `expand-task`
- Explore advanced features like research mode and complexity analysis
For detailed documentation, refer to the Task Master docs directory.``

View File

@@ -1,8 +1,8 @@
#!/usr/bin/env node
import TaskMasterMCPServer from './src/index.js';
import dotenv from 'dotenv';
import logger from './src/logger.js';
import TaskMasterMCPServer from "./src/index.js";
import dotenv from "dotenv";
import logger from "./src/logger.js";
// Load environment variables
dotenv.config();
@@ -14,12 +14,12 @@ async function startServer() {
const server = new TaskMasterMCPServer();
// Handle graceful shutdown
process.on('SIGINT', async () => {
process.on("SIGINT", async () => {
await server.stop();
process.exit(0);
});
process.on('SIGTERM', async () => {
process.on("SIGTERM", async () => {
await server.stop();
process.exit(0);
});

View File

@@ -14,9 +14,7 @@ describe('ContextManager', () => {
describe('getContext', () => {
it('should create a new context when not in cache', async () => {
const context = await contextManager.getContext('test-id', {
test: true
});
const context = await contextManager.getContext('test-id', { test: true });
expect(context.id).toBe('test-id');
expect(context.metadata.test).toBe(true);
expect(contextManager.stats.misses).toBe(1);
@@ -28,9 +26,7 @@ describe('ContextManager', () => {
await contextManager.getContext('test-id', { test: true });
// Second call should hit cache
const context = await contextManager.getContext('test-id', {
test: true
});
const context = await contextManager.getContext('test-id', { test: true });
expect(context.id).toBe('test-id');
expect(context.metadata.test).toBe(true);
expect(contextManager.stats.hits).toBe(1);
@@ -42,7 +38,7 @@ describe('ContextManager', () => {
await contextManager.getContext('test-id', { test: true });
// Wait for TTL to expire
await new Promise((resolve) => setTimeout(resolve, 1100));
await new Promise(resolve => setTimeout(resolve, 1100));
// Should create new context
await contextManager.getContext('test-id', { test: true });
@@ -54,9 +50,7 @@ describe('ContextManager', () => {
describe('updateContext', () => {
it('should update existing context metadata', async () => {
await contextManager.getContext('test-id', { initial: true });
const updated = await contextManager.updateContext('test-id', {
updated: true
});
const updated = await contextManager.updateContext('test-id', { updated: true });
expect(updated.metadata.initial).toBe(true);
expect(updated.metadata.updated).toBe(true);

View File

@@ -112,8 +112,7 @@ export class ContextManager {
*/
getCachedData(key) {
const cached = this.cache.get(key);
if (cached !== undefined) {
// Check for undefined specifically, as null/false might be valid cached values
if (cached !== undefined) { // Check for undefined specifically, as null/false might be valid cached values
this.stats.hits++;
return cached;
}

View File

@@ -1,106 +0,0 @@
/**
* add-dependency.js
* Direct function implementation for adding a dependency to a task
*/
import { addDependency } from '../../../../scripts/modules/dependency-manager.js';
import {
enableSilentMode,
disableSilentMode
} from '../../../../scripts/modules/utils.js';
/**
* Direct function wrapper for addDependency with error handling.
*
* @param {Object} args - Command arguments
* @param {string} args.tasksJsonPath - Explicit path to the tasks.json file.
* @param {string|number} args.id - Task ID to add dependency to
* @param {string|number} args.dependsOn - Task ID that will become a dependency
* @param {Object} log - Logger object
* @returns {Promise<Object>} - Result object with success status and data/error information
*/
export async function addDependencyDirect(args, log) {
// Destructure expected args
const { tasksJsonPath, id, dependsOn } = args;
try {
log.info(`Adding dependency with args: ${JSON.stringify(args)}`);
// Check if tasksJsonPath was provided
if (!tasksJsonPath) {
log.error('addDependencyDirect called without tasksJsonPath');
return {
success: false,
error: {
code: 'MISSING_ARGUMENT',
message: 'tasksJsonPath is required'
}
};
}
// Validate required parameters
if (!id) {
return {
success: false,
error: {
code: 'INPUT_VALIDATION_ERROR',
message: 'Task ID (id) is required'
}
};
}
if (!dependsOn) {
return {
success: false,
error: {
code: 'INPUT_VALIDATION_ERROR',
message: 'Dependency ID (dependsOn) is required'
}
};
}
// Use provided path
const tasksPath = tasksJsonPath;
// Format IDs for the core function
const taskId =
id && id.includes && id.includes('.') ? id : parseInt(id, 10);
const dependencyId =
dependsOn && dependsOn.includes && dependsOn.includes('.')
? dependsOn
: parseInt(dependsOn, 10);
log.info(
`Adding dependency: task ${taskId} will depend on ${dependencyId}`
);
// Enable silent mode to prevent console logs from interfering with JSON response
enableSilentMode();
// Call the core function using the provided path
await addDependency(tasksPath, taskId, dependencyId);
// Restore normal logging
disableSilentMode();
return {
success: true,
data: {
message: `Successfully added dependency: Task ${taskId} now depends on ${dependencyId}`,
taskId: taskId,
dependencyId: dependencyId
}
};
} catch (error) {
// Make sure to restore normal logging even if there's an error
disableSilentMode();
log.error(`Error in addDependencyDirect: ${error.message}`);
return {
success: false,
error: {
code: 'CORE_FUNCTION_ERROR',
message: error.message
}
};
}
}

View File

@@ -1,165 +0,0 @@
/**
* Direct function wrapper for addSubtask
*/
import { addSubtask } from '../../../../scripts/modules/task-manager.js';
import {
enableSilentMode,
disableSilentMode
} from '../../../../scripts/modules/utils.js';
/**
* Add a subtask to an existing task
* @param {Object} args - Function arguments
* @param {string} args.tasksJsonPath - Explicit path to the tasks.json file.
* @param {string} args.id - Parent task ID
* @param {string} [args.taskId] - Existing task ID to convert to subtask (optional)
* @param {string} [args.title] - Title for new subtask (when creating a new subtask)
* @param {string} [args.description] - Description for new subtask
* @param {string} [args.details] - Implementation details for new subtask
* @param {string} [args.status] - Status for new subtask (default: 'pending')
* @param {string} [args.dependencies] - Comma-separated list of dependency IDs
* @param {boolean} [args.skipGenerate] - Skip regenerating task files
* @param {Object} log - Logger object
* @returns {Promise<{success: boolean, data?: Object, error?: string}>}
*/
export async function addSubtaskDirect(args, log) {
// Destructure expected args
const {
tasksJsonPath,
id,
taskId,
title,
description,
details,
status,
dependencies: dependenciesStr,
skipGenerate
} = args;
try {
log.info(`Adding subtask with args: ${JSON.stringify(args)}`);
// Check if tasksJsonPath was provided
if (!tasksJsonPath) {
log.error('addSubtaskDirect called without tasksJsonPath');
return {
success: false,
error: {
code: 'MISSING_ARGUMENT',
message: 'tasksJsonPath is required'
}
};
}
if (!id) {
return {
success: false,
error: {
code: 'INPUT_VALIDATION_ERROR',
message: 'Parent task ID is required'
}
};
}
// Either taskId or title must be provided
if (!taskId && !title) {
return {
success: false,
error: {
code: 'INPUT_VALIDATION_ERROR',
message: 'Either taskId or title must be provided'
}
};
}
// Use provided path
const tasksPath = tasksJsonPath;
// Parse dependencies if provided
let dependencies = [];
if (dependenciesStr) {
dependencies = dependenciesStr.split(',').map((depId) => {
// Handle both regular IDs and dot notation
return depId.includes('.') ? depId.trim() : parseInt(depId.trim(), 10);
});
}
// Convert existingTaskId to a number if provided
const existingTaskId = taskId ? parseInt(taskId, 10) : null;
// Convert parent ID to a number
const parentId = parseInt(id, 10);
// Determine if we should generate files
const generateFiles = !skipGenerate;
// Enable silent mode to prevent console logs from interfering with JSON response
enableSilentMode();
// Case 1: Convert existing task to subtask
if (existingTaskId) {
log.info(`Converting task ${existingTaskId} to a subtask of ${parentId}`);
const result = await addSubtask(
tasksPath,
parentId,
existingTaskId,
null,
generateFiles
);
// Restore normal logging
disableSilentMode();
return {
success: true,
data: {
message: `Task ${existingTaskId} successfully converted to a subtask of task ${parentId}`,
subtask: result
}
};
}
// Case 2: Create new subtask
else {
log.info(`Creating new subtask for parent task ${parentId}`);
const newSubtaskData = {
title: title,
description: description || '',
details: details || '',
status: status || 'pending',
dependencies: dependencies
};
const result = await addSubtask(
tasksPath,
parentId,
null,
newSubtaskData,
generateFiles
);
// Restore normal logging
disableSilentMode();
return {
success: true,
data: {
message: `New subtask ${parentId}.${result.id} successfully created`,
subtask: result
}
};
}
} catch (error) {
// Make sure to restore normal logging even if there's an error
disableSilentMode();
log.error(`Error in addSubtaskDirect: ${error.message}`);
return {
success: false,
error: {
code: 'CORE_FUNCTION_ERROR',
message: error.message
}
};
}
}

View File

@@ -1,184 +0,0 @@
/**
* add-task.js
* Direct function implementation for adding a new task
*/
import { addTask } from '../../../../scripts/modules/task-manager.js';
import {
enableSilentMode,
disableSilentMode
} from '../../../../scripts/modules/utils.js';
import { createLogWrapper } from '../../tools/utils.js';
/**
* Direct function wrapper for adding a new task with error handling.
*
* @param {Object} args - Command arguments
* @param {string} [args.prompt] - Description of the task to add (required if not using manual fields)
* @param {string} [args.title] - Task title (for manual task creation)
* @param {string} [args.description] - Task description (for manual task creation)
* @param {string} [args.details] - Implementation details (for manual task creation)
* @param {string} [args.testStrategy] - Test strategy (for manual task creation)
* @param {string} [args.dependencies] - Comma-separated list of task IDs this task depends on
* @param {string} [args.priority='medium'] - Task priority (high, medium, low)
* @param {string} [args.tasksJsonPath] - Path to the tasks.json file (resolved by tool)
* @param {boolean} [args.research=false] - Whether to use research capabilities for task creation
* @param {string} [args.projectRoot] - Project root path
* @param {Object} log - Logger object
* @param {Object} context - Additional context (session)
* @returns {Promise<Object>} - Result object { success: boolean, data?: any, error?: { code: string, message: string } }
*/
export async function addTaskDirect(args, log, context = {}) {
// Destructure expected args (including research and projectRoot)
const {
tasksJsonPath,
prompt,
dependencies,
priority,
research,
projectRoot
} = args;
const { session } = context; // Destructure session from context
// Enable silent mode to prevent console logs from interfering with JSON response
enableSilentMode();
// Create logger wrapper using the utility
const mcpLog = createLogWrapper(log);
try {
// Check if tasksJsonPath was provided
if (!tasksJsonPath) {
log.error('addTaskDirect called without tasksJsonPath');
disableSilentMode(); // Disable before returning
return {
success: false,
error: {
code: 'MISSING_ARGUMENT',
message: 'tasksJsonPath is required'
}
};
}
// Use provided path
const tasksPath = tasksJsonPath;
// Check if this is manual task creation or AI-driven task creation
const isManualCreation = args.title && args.description;
// Check required parameters
if (!args.prompt && !isManualCreation) {
log.error(
'Missing required parameters: either prompt or title+description must be provided'
);
disableSilentMode();
return {
success: false,
error: {
code: 'MISSING_PARAMETER',
message:
'Either the prompt parameter or both title and description parameters are required for adding a task'
}
};
}
// Extract and prepare parameters
const taskDependencies = Array.isArray(dependencies)
? dependencies // Already an array if passed directly
: dependencies // Check if dependencies exist and are a string
? String(dependencies)
.split(',')
.map((id) => parseInt(id.trim(), 10)) // Split, trim, and parse
: []; // Default to empty array if null/undefined
const taskPriority = priority || 'medium'; // Default priority
let manualTaskData = null;
let newTaskId;
let telemetryData;
if (isManualCreation) {
// Create manual task data object
manualTaskData = {
title: args.title,
description: args.description,
details: args.details || '',
testStrategy: args.testStrategy || ''
};
log.info(
`Adding new task manually with title: "${args.title}", dependencies: [${taskDependencies.join(', ')}], priority: ${priority}`
);
// Call the addTask function with manual task data
const result = await addTask(
tasksPath,
null, // prompt is null for manual creation
taskDependencies,
taskPriority,
{
session,
mcpLog,
projectRoot,
commandName: 'add-task',
outputType: 'mcp'
},
'json', // outputFormat
manualTaskData, // Pass the manual task data
false, // research flag is false for manual creation
projectRoot // Pass projectRoot
);
newTaskId = result.newTaskId;
telemetryData = result.telemetryData;
} else {
// AI-driven task creation
log.info(
`Adding new task with prompt: "${prompt}", dependencies: [${taskDependencies.join(', ')}], priority: ${taskPriority}, research: ${research}`
);
// Call the addTask function, passing the research flag
const result = await addTask(
tasksPath,
prompt, // Use the prompt for AI creation
taskDependencies,
taskPriority,
{
session,
mcpLog,
projectRoot,
commandName: 'add-task',
outputType: 'mcp'
},
'json', // outputFormat
null, // manualTaskData is null for AI creation
research // Pass the research flag
);
newTaskId = result.newTaskId;
telemetryData = result.telemetryData;
}
// Restore normal logging
disableSilentMode();
return {
success: true,
data: {
taskId: newTaskId,
message: `Successfully added new task #${newTaskId}`,
telemetryData: telemetryData
}
};
} catch (error) {
// Make sure to restore normal logging even if there's an error
disableSilentMode();
log.error(`Error in addTaskDirect: ${error.message}`);
// Add specific error code checks if needed
return {
success: false,
error: {
code: error.code || 'ADD_TASK_ERROR', // Use error code if available
message: error.message
}
};
}
}

View File

@@ -1,229 +0,0 @@
/**
* Direct function wrapper for analyzeTaskComplexity
*/
import analyzeTaskComplexity from '../../../../scripts/modules/task-manager/analyze-task-complexity.js';
import {
enableSilentMode,
disableSilentMode,
isSilentMode
} from '../../../../scripts/modules/utils.js';
import fs from 'fs';
import { createLogWrapper } from '../../tools/utils.js'; // Import the new utility
/**
* Analyze task complexity and generate recommendations
* @param {Object} args - Function arguments
* @param {string} args.tasksJsonPath - Explicit path to the tasks.json file.
* @param {string} args.outputPath - Explicit absolute path to save the report.
* @param {string|number} [args.threshold] - Minimum complexity score to recommend expansion (1-10)
* @param {boolean} [args.research] - Use Perplexity AI for research-backed complexity analysis
* @param {string} [args.ids] - Comma-separated list of task IDs to analyze
* @param {number} [args.from] - Starting task ID in a range to analyze
* @param {number} [args.to] - Ending task ID in a range to analyze
* @param {string} [args.projectRoot] - Project root path.
* @param {Object} log - Logger object
* @param {Object} [context={}] - Context object containing session data
* @param {Object} [context.session] - MCP session object
* @returns {Promise<{success: boolean, data?: Object, error?: {code: string, message: string}}>}
*/
export async function analyzeTaskComplexityDirect(args, log, context = {}) {
const { session } = context;
const {
tasksJsonPath,
outputPath,
threshold,
research,
projectRoot,
ids,
from,
to
} = args;
const logWrapper = createLogWrapper(log);
// --- Initial Checks (remain the same) ---
try {
log.info(`Analyzing task complexity with args: ${JSON.stringify(args)}`);
if (!tasksJsonPath) {
log.error('analyzeTaskComplexityDirect called without tasksJsonPath');
return {
success: false,
error: {
code: 'MISSING_ARGUMENT',
message: 'tasksJsonPath is required'
}
};
}
if (!outputPath) {
log.error('analyzeTaskComplexityDirect called without outputPath');
return {
success: false,
error: { code: 'MISSING_ARGUMENT', message: 'outputPath is required' }
};
}
const tasksPath = tasksJsonPath;
const resolvedOutputPath = outputPath;
log.info(`Analyzing task complexity from: ${tasksPath}`);
log.info(`Output report will be saved to: ${resolvedOutputPath}`);
if (ids) {
log.info(`Analyzing specific task IDs: ${ids}`);
} else if (from || to) {
const fromStr = from !== undefined ? from : 'first';
const toStr = to !== undefined ? to : 'last';
log.info(`Analyzing tasks in range: ${fromStr} to ${toStr}`);
}
if (research) {
log.info('Using research role for complexity analysis');
}
// Prepare options for the core function - REMOVED mcpLog and session here
const coreOptions = {
file: tasksJsonPath,
output: outputPath,
threshold: threshold,
research: research === true, // Ensure boolean
projectRoot: projectRoot, // Pass projectRoot here
id: ids, // Pass the ids parameter to the core function as 'id'
from: from, // Pass from parameter
to: to // Pass to parameter
};
// --- End Initial Checks ---
// --- Silent Mode and Logger Wrapper ---
const wasSilent = isSilentMode();
if (!wasSilent) {
enableSilentMode(); // Still enable silent mode as a backup
}
let report;
let coreResult;
try {
// --- Call Core Function (Pass context separately) ---
// Pass coreOptions as the first argument
// Pass context object { session, mcpLog } as the second argument
coreResult = await analyzeTaskComplexity(coreOptions, {
session,
mcpLog: logWrapper,
commandName: 'analyze-complexity',
outputType: 'mcp'
});
report = coreResult.report;
} catch (error) {
log.error(
`Error in analyzeTaskComplexity core function: ${error.message}`
);
// Restore logging if we changed it
if (!wasSilent && isSilentMode()) {
disableSilentMode();
}
return {
success: false,
error: {
code: 'ANALYZE_CORE_ERROR',
message: `Error running core complexity analysis: ${error.message}`
}
};
} finally {
// Always restore normal logging in finally block if we enabled silent mode
if (!wasSilent && isSilentMode()) {
disableSilentMode();
}
}
// --- Result Handling (remains largely the same) ---
// Verify the report file was created (core function writes it)
if (!fs.existsSync(resolvedOutputPath)) {
return {
success: false,
error: {
code: 'ANALYZE_REPORT_MISSING', // Specific code
message:
'Analysis completed but no report file was created at the expected path.'
}
};
}
if (
!coreResult ||
!coreResult.report ||
typeof coreResult.report !== 'object'
) {
log.error(
'Core analysis function returned an invalid or undefined response.'
);
return {
success: false,
error: {
code: 'INVALID_CORE_RESPONSE',
message: 'Core analysis function returned an invalid response.'
}
};
}
try {
// Ensure complexityAnalysis exists and is an array
const analysisArray = Array.isArray(coreResult.report.complexityAnalysis)
? coreResult.report.complexityAnalysis
: [];
// Count tasks by complexity (remains the same)
const highComplexityTasks = analysisArray.filter(
(t) => t.complexityScore >= 8
).length;
const mediumComplexityTasks = analysisArray.filter(
(t) => t.complexityScore >= 5 && t.complexityScore < 8
).length;
const lowComplexityTasks = analysisArray.filter(
(t) => t.complexityScore < 5
).length;
return {
success: true,
data: {
message: `Task complexity analysis complete. Report saved to ${outputPath}`,
reportPath: outputPath,
reportSummary: {
taskCount: analysisArray.length,
highComplexityTasks,
mediumComplexityTasks,
lowComplexityTasks
},
fullReport: coreResult.report,
telemetryData: coreResult.telemetryData
}
};
} catch (parseError) {
// Should not happen if core function returns object, but good safety check
log.error(`Internal error processing report data: ${parseError.message}`);
return {
success: false,
error: {
code: 'REPORT_PROCESS_ERROR',
message: `Internal error processing complexity report: ${parseError.message}`
}
};
}
// --- End Result Handling ---
} catch (error) {
// Catch errors from initial checks or path resolution
// Make sure to restore normal logging if silent mode was enabled
if (isSilentMode()) {
disableSilentMode();
}
log.error(`Error in analyzeTaskComplexityDirect setup: ${error.message}`);
return {
success: false,
error: {
code: 'DIRECT_FUNCTION_SETUP_ERROR',
message: error.message
}
};
}
}

View File

@@ -1,32 +0,0 @@
/**
* cache-stats.js
* Direct function implementation for retrieving cache statistics
*/
import { contextManager } from '../context-manager.js';
/**
* Get cache statistics for monitoring
* @param {Object} args - Command arguments
* @param {Object} log - Logger object
* @returns {Object} - Cache statistics
*/
export async function getCacheStatsDirect(args, log) {
try {
log.info('Retrieving cache statistics');
const stats = contextManager.getStats();
return {
success: true,
data: stats
};
} catch (error) {
log.error(`Error getting cache stats: ${error.message}`);
return {
success: false,
error: {
code: 'CACHE_STATS_ERROR',
message: error.message || 'Unknown error occurred'
}
};
}
}

View File

@@ -1,128 +0,0 @@
/**
* Direct function wrapper for clearSubtasks
*/
import { clearSubtasks } from '../../../../scripts/modules/task-manager.js';
import {
enableSilentMode,
disableSilentMode
} from '../../../../scripts/modules/utils.js';
import fs from 'fs';
/**
* Clear subtasks from specified tasks
* @param {Object} args - Function arguments
* @param {string} args.tasksJsonPath - Explicit path to the tasks.json file.
* @param {string} [args.id] - Task IDs (comma-separated) to clear subtasks from
* @param {boolean} [args.all] - Clear subtasks from all tasks
* @param {Object} log - Logger object
* @returns {Promise<{success: boolean, data?: Object, error?: {code: string, message: string}}>}
*/
export async function clearSubtasksDirect(args, log) {
// Destructure expected args
const { tasksJsonPath, id, all } = args;
try {
log.info(`Clearing subtasks with args: ${JSON.stringify(args)}`);
// Check if tasksJsonPath was provided
if (!tasksJsonPath) {
log.error('clearSubtasksDirect called without tasksJsonPath');
return {
success: false,
error: {
code: 'MISSING_ARGUMENT',
message: 'tasksJsonPath is required'
}
};
}
// Either id or all must be provided
if (!id && !all) {
return {
success: false,
error: {
code: 'INPUT_VALIDATION_ERROR',
message:
'Either task IDs with id parameter or all parameter must be provided'
}
};
}
// Use provided path
const tasksPath = tasksJsonPath;
// Check if tasks.json exists
if (!fs.existsSync(tasksPath)) {
return {
success: false,
error: {
code: 'FILE_NOT_FOUND_ERROR',
message: `Tasks file not found at ${tasksPath}`
}
};
}
let taskIds;
// If all is specified, get all task IDs
if (all) {
log.info('Clearing subtasks from all tasks');
const data = JSON.parse(fs.readFileSync(tasksPath, 'utf8'));
if (!data || !data.tasks || data.tasks.length === 0) {
return {
success: false,
error: {
code: 'INPUT_VALIDATION_ERROR',
message: 'No valid tasks found in the tasks file'
}
};
}
taskIds = data.tasks.map((t) => t.id).join(',');
} else {
// Use the provided task IDs
taskIds = id;
}
log.info(`Clearing subtasks from tasks: ${taskIds}`);
// Enable silent mode to prevent console logs from interfering with JSON response
enableSilentMode();
// Call the core function
clearSubtasks(tasksPath, taskIds);
// Restore normal logging
disableSilentMode();
// Read the updated data to provide a summary
const updatedData = JSON.parse(fs.readFileSync(tasksPath, 'utf8'));
const taskIdArray = taskIds.split(',').map((id) => parseInt(id.trim(), 10));
// Build a summary of what was done
const clearedTasksCount = taskIdArray.length;
const taskSummary = taskIdArray.map((id) => {
const task = updatedData.tasks.find((t) => t.id === id);
return task ? { id, title: task.title } : { id, title: 'Task not found' };
});
return {
success: true,
data: {
message: `Successfully cleared subtasks from ${clearedTasksCount} task(s)`,
tasksCleared: taskSummary
}
};
} catch (error) {
// Make sure to restore normal logging even if there's an error
disableSilentMode();
log.error(`Error in clearSubtasksDirect: ${error.message}`);
return {
success: false,
error: {
code: 'CORE_FUNCTION_ERROR',
message: error.message
}
};
}
}

View File

@@ -1,118 +0,0 @@
/**
* complexity-report.js
* Direct function implementation for displaying complexity analysis report
*/
import {
readComplexityReport,
enableSilentMode,
disableSilentMode
} from '../../../../scripts/modules/utils.js';
/**
* Direct function wrapper for displaying the complexity report with error handling and caching.
*
* @param {Object} args - Command arguments containing reportPath.
* @param {string} args.reportPath - Explicit path to the complexity report file.
* @param {Object} log - Logger object
* @returns {Promise<Object>} - Result object with success status and data/error information
*/
export async function complexityReportDirect(args, log) {
// Destructure expected args
const { reportPath } = args;
try {
log.info(`Getting complexity report with args: ${JSON.stringify(args)}`);
// Check if reportPath was provided
if (!reportPath) {
log.error('complexityReportDirect called without reportPath');
return {
success: false,
error: { code: 'MISSING_ARGUMENT', message: 'reportPath is required' },
fromCache: false
};
}
// Use the provided report path
log.info(`Looking for complexity report at: ${reportPath}`);
// Generate cache key based on report path
const cacheKey = `complexityReport:${reportPath}`;
// Define the core action function to read the report
const coreActionFn = async () => {
try {
// Enable silent mode to prevent console logs from interfering with JSON response
enableSilentMode();
const report = readComplexityReport(reportPath);
// Restore normal logging
disableSilentMode();
if (!report) {
log.warn(`No complexity report found at ${reportPath}`);
return {
success: false,
error: {
code: 'FILE_NOT_FOUND_ERROR',
message: `No complexity report found at ${reportPath}. Run 'analyze-complexity' first.`
}
};
}
return {
success: true,
data: {
report,
reportPath
}
};
} catch (error) {
// Make sure to restore normal logging even if there's an error
disableSilentMode();
log.error(`Error reading complexity report: ${error.message}`);
return {
success: false,
error: {
code: 'READ_ERROR',
message: error.message
}
};
}
};
// Use the caching utility
try {
const result = await coreActionFn();
log.info('complexityReportDirect completed');
return result;
} catch (error) {
// Ensure silent mode is disabled
disableSilentMode();
log.error(`Unexpected error during complexityReport: ${error.message}`);
return {
success: false,
error: {
code: 'UNEXPECTED_ERROR',
message: error.message
}
};
}
} catch (error) {
// Ensure silent mode is disabled if an outer error occurs
disableSilentMode();
log.error(`Error in complexityReportDirect: ${error.message}`);
return {
success: false,
error: {
code: 'UNEXPECTED_ERROR',
message: error.message
},
fromCache: false
};
}
}

View File

@@ -1,96 +0,0 @@
/**
* Direct function wrapper for expandAllTasks
*/
import { expandAllTasks } from '../../../../scripts/modules/task-manager.js';
import {
enableSilentMode,
disableSilentMode
} from '../../../../scripts/modules/utils.js';
import { createLogWrapper } from '../../tools/utils.js';
/**
* Expand all pending tasks with subtasks (Direct Function Wrapper)
* @param {Object} args - Function arguments
* @param {string} args.tasksJsonPath - Explicit path to the tasks.json file.
* @param {number|string} [args.num] - Number of subtasks to generate
* @param {boolean} [args.research] - Enable research-backed subtask generation
* @param {string} [args.prompt] - Additional context to guide subtask generation
* @param {boolean} [args.force] - Force regeneration of subtasks for tasks that already have them
* @param {string} [args.projectRoot] - Project root path.
* @param {Object} log - Logger object from FastMCP
* @param {Object} context - Context object containing session
* @returns {Promise<{success: boolean, data?: Object, error?: {code: string, message: string}}>}
*/
export async function expandAllTasksDirect(args, log, context = {}) {
const { session } = context; // Extract session
// Destructure expected args, including projectRoot
const { tasksJsonPath, num, research, prompt, force, projectRoot } = args;
// Create logger wrapper using the utility
const mcpLog = createLogWrapper(log);
if (!tasksJsonPath) {
log.error('expandAllTasksDirect called without tasksJsonPath');
return {
success: false,
error: {
code: 'MISSING_ARGUMENT',
message: 'tasksJsonPath is required'
}
};
}
enableSilentMode(); // Enable silent mode for the core function call
try {
log.info(
`Calling core expandAllTasks with args: ${JSON.stringify({ num, research, prompt, force, projectRoot })}`
);
// Parse parameters (ensure correct types)
const numSubtasks = num ? parseInt(num, 10) : undefined;
const useResearch = research === true;
const additionalContext = prompt || '';
const forceFlag = force === true;
// Call the core function, passing options and the context object { session, mcpLog, projectRoot }
const result = await expandAllTasks(
tasksJsonPath,
numSubtasks,
useResearch,
additionalContext,
forceFlag,
{ session, mcpLog, projectRoot }
);
// Core function now returns a summary object including the *aggregated* telemetryData
return {
success: true,
data: {
message: `Expand all operation completed. Expanded: ${result.expandedCount}, Failed: ${result.failedCount}, Skipped: ${result.skippedCount}`,
details: {
expandedCount: result.expandedCount,
failedCount: result.failedCount,
skippedCount: result.skippedCount,
tasksToExpand: result.tasksToExpand
},
telemetryData: result.telemetryData // Pass the aggregated object
}
};
} catch (error) {
// Log the error using the MCP logger
log.error(`Error during core expandAllTasks execution: ${error.message}`);
// Optionally log stack trace if available and debug enabled
// if (error.stack && log.debug) { log.debug(error.stack); }
return {
success: false,
error: {
code: 'CORE_FUNCTION_ERROR', // Or a more specific code if possible
message: error.message
}
};
} finally {
disableSilentMode(); // IMPORTANT: Ensure silent mode is always disabled
}
}

View File

@@ -1,263 +0,0 @@
/**
* expand-task.js
* Direct function implementation for expanding a task into subtasks
*/
import expandTask from '../../../../scripts/modules/task-manager/expand-task.js';
import {
readJSON,
writeJSON,
enableSilentMode,
disableSilentMode,
isSilentMode
} from '../../../../scripts/modules/utils.js';
import path from 'path';
import fs from 'fs';
import { createLogWrapper } from '../../tools/utils.js';
/**
* Direct function wrapper for expanding a task into subtasks with error handling.
*
* @param {Object} args - Command arguments
* @param {string} args.tasksJsonPath - Explicit path to the tasks.json file.
* @param {string} args.id - The ID of the task to expand.
* @param {number|string} [args.num] - Number of subtasks to generate.
* @param {boolean} [args.research] - Enable research role for subtask generation.
* @param {string} [args.prompt] - Additional context to guide subtask generation.
* @param {boolean} [args.force] - Force expansion even if subtasks exist.
* @param {string} [args.projectRoot] - Project root directory.
* @param {Object} log - Logger object
* @param {Object} context - Context object containing session
* @param {Object} [context.session] - MCP Session object
* @returns {Promise<Object>} - Task expansion result { success: boolean, data?: any, error?: { code: string, message: string }, fromCache: boolean }
*/
export async function expandTaskDirect(args, log, context = {}) {
const { session } = context; // Extract session
// Destructure expected args, including projectRoot
const { tasksJsonPath, id, num, research, prompt, force, projectRoot } = args;
// Log session root data for debugging
log.info(
`Session data in expandTaskDirect: ${JSON.stringify({
hasSession: !!session,
sessionKeys: session ? Object.keys(session) : [],
roots: session?.roots,
rootsStr: JSON.stringify(session?.roots)
})}`
);
// Check if tasksJsonPath was provided
if (!tasksJsonPath) {
log.error('expandTaskDirect called without tasksJsonPath');
return {
success: false,
error: {
code: 'MISSING_ARGUMENT',
message: 'tasksJsonPath is required'
},
fromCache: false
};
}
// Use provided path
const tasksPath = tasksJsonPath;
log.info(`[expandTaskDirect] Using tasksPath: ${tasksPath}`);
// Validate task ID
const taskId = id ? parseInt(id, 10) : null;
if (!taskId) {
log.error('Task ID is required');
return {
success: false,
error: {
code: 'INPUT_VALIDATION_ERROR',
message: 'Task ID is required'
},
fromCache: false
};
}
// Process other parameters
const numSubtasks = num ? parseInt(num, 10) : undefined;
const useResearch = research === true;
const additionalContext = prompt || '';
const forceFlag = force === true;
try {
log.info(
`[expandTaskDirect] Expanding task ${taskId} into ${numSubtasks || 'default'} subtasks. Research: ${useResearch}, Force: ${forceFlag}`
);
// Read tasks data
log.info(`[expandTaskDirect] Attempting to read JSON from: ${tasksPath}`);
const data = readJSON(tasksPath);
log.info(
`[expandTaskDirect] Result of readJSON: ${data ? 'Data read successfully' : 'readJSON returned null or undefined'}`
);
if (!data || !data.tasks) {
log.error(
`[expandTaskDirect] readJSON failed or returned invalid data for path: ${tasksPath}`
);
return {
success: false,
error: {
code: 'INVALID_TASKS_FILE',
message: `No valid tasks found in ${tasksPath}. readJSON returned: ${JSON.stringify(data)}`
},
fromCache: false
};
}
// Find the specific task
log.info(`[expandTaskDirect] Searching for task ID ${taskId} in data`);
const task = data.tasks.find((t) => t.id === taskId);
log.info(`[expandTaskDirect] Task found: ${task ? 'Yes' : 'No'}`);
if (!task) {
return {
success: false,
error: {
code: 'TASK_NOT_FOUND',
message: `Task with ID ${taskId} not found`
},
fromCache: false
};
}
// Check if task is completed
if (task.status === 'done' || task.status === 'completed') {
return {
success: false,
error: {
code: 'TASK_COMPLETED',
message: `Task ${taskId} is already marked as ${task.status} and cannot be expanded`
},
fromCache: false
};
}
// Check for existing subtasks and force flag
const hasExistingSubtasks = task.subtasks && task.subtasks.length > 0;
if (hasExistingSubtasks && !forceFlag) {
log.info(
`Task ${taskId} already has ${task.subtasks.length} subtasks. Use --force to overwrite.`
);
return {
success: true,
data: {
message: `Task ${taskId} already has subtasks. Expansion skipped.`,
task,
subtasksAdded: 0,
hasExistingSubtasks
},
fromCache: false
};
}
// If force flag is set, clear existing subtasks
if (hasExistingSubtasks && forceFlag) {
log.info(
`Force flag set. Clearing existing subtasks for task ${taskId}.`
);
task.subtasks = [];
}
// Keep a copy of the task before modification
const originalTask = JSON.parse(JSON.stringify(task));
// Tracking subtasks count before expansion
const subtasksCountBefore = task.subtasks ? task.subtasks.length : 0;
// Create a backup of the tasks.json file
const backupPath = path.join(path.dirname(tasksPath), 'tasks.json.bak');
fs.copyFileSync(tasksPath, backupPath);
// Directly modify the data instead of calling the CLI function
if (!task.subtasks) {
task.subtasks = [];
}
// Save tasks.json with potentially empty subtasks array
writeJSON(tasksPath, data);
// Create logger wrapper using the utility
const mcpLog = createLogWrapper(log);
let wasSilent; // Declare wasSilent outside the try block
// Process the request
try {
// Enable silent mode to prevent console logs from interfering with JSON response
wasSilent = isSilentMode(); // Assign inside the try block
if (!wasSilent) enableSilentMode();
// Call the core expandTask function with the wrapped logger and projectRoot
const coreResult = await expandTask(
tasksPath,
taskId,
numSubtasks,
useResearch,
additionalContext,
{
mcpLog,
session,
projectRoot,
commandName: 'expand-task',
outputType: 'mcp'
},
forceFlag
);
// Restore normal logging
if (!wasSilent && isSilentMode()) disableSilentMode();
// Read the updated data
const updatedData = readJSON(tasksPath);
const updatedTask = updatedData.tasks.find((t) => t.id === taskId);
// Calculate how many subtasks were added
const subtasksAdded = updatedTask.subtasks
? updatedTask.subtasks.length - subtasksCountBefore
: 0;
// Return the result, including telemetryData
log.info(
`Successfully expanded task ${taskId} with ${subtasksAdded} new subtasks`
);
return {
success: true,
data: {
task: coreResult.task,
subtasksAdded,
hasExistingSubtasks,
telemetryData: coreResult.telemetryData
},
fromCache: false
};
} catch (error) {
// Make sure to restore normal logging even if there's an error
if (!wasSilent && isSilentMode()) disableSilentMode();
log.error(`Error expanding task: ${error.message}`);
return {
success: false,
error: {
code: 'CORE_FUNCTION_ERROR',
message: error.message || 'Failed to expand task'
},
fromCache: false
};
}
} catch (error) {
log.error(`Error expanding task: ${error.message}`);
return {
success: false,
error: {
code: 'CORE_FUNCTION_ERROR',
message: error.message || 'Failed to expand task'
},
fromCache: false
};
}
}

View File

@@ -1,80 +0,0 @@
/**
* Direct function wrapper for fixDependenciesCommand
*/
import { fixDependenciesCommand } from '../../../../scripts/modules/dependency-manager.js';
import {
enableSilentMode,
disableSilentMode
} from '../../../../scripts/modules/utils.js';
import fs from 'fs';
/**
* Fix invalid dependencies in tasks.json automatically
* @param {Object} args - Function arguments
* @param {string} args.tasksJsonPath - Explicit path to the tasks.json file.
* @param {Object} log - Logger object
* @returns {Promise<{success: boolean, data?: Object, error?: {code: string, message: string}}>}
*/
export async function fixDependenciesDirect(args, log) {
// Destructure expected args
const { tasksJsonPath } = args;
try {
log.info(`Fixing invalid dependencies in tasks: ${tasksJsonPath}`);
// Check if tasksJsonPath was provided
if (!tasksJsonPath) {
log.error('fixDependenciesDirect called without tasksJsonPath');
return {
success: false,
error: {
code: 'MISSING_ARGUMENT',
message: 'tasksJsonPath is required'
}
};
}
// Use provided path
const tasksPath = tasksJsonPath;
// Verify the file exists
if (!fs.existsSync(tasksPath)) {
return {
success: false,
error: {
code: 'FILE_NOT_FOUND',
message: `Tasks file not found at ${tasksPath}`
}
};
}
// Enable silent mode to prevent console logs from interfering with JSON response
enableSilentMode();
// Call the original command function using the provided path
await fixDependenciesCommand(tasksPath);
// Restore normal logging
disableSilentMode();
return {
success: true,
data: {
message: 'Dependencies fixed successfully',
tasksPath
}
};
} catch (error) {
// Make sure to restore normal logging even if there's an error
disableSilentMode();
log.error(`Error fixing dependencies: ${error.message}`);
return {
success: false,
error: {
code: 'FIX_DEPENDENCIES_ERROR',
message: error.message
}
};
}
}

View File

@@ -1,99 +0,0 @@
/**
* generate-task-files.js
* Direct function implementation for generating task files from tasks.json
*/
import { generateTaskFiles } from '../../../../scripts/modules/task-manager.js';
import {
enableSilentMode,
disableSilentMode
} from '../../../../scripts/modules/utils.js';
/**
* Direct function wrapper for generateTaskFiles with error handling.
*
* @param {Object} args - Command arguments containing tasksJsonPath and outputDir.
* @param {Object} log - Logger object.
* @returns {Promise<Object>} - Result object with success status and data/error information.
*/
export async function generateTaskFilesDirect(args, log) {
// Destructure expected args
const { tasksJsonPath, outputDir } = args;
try {
log.info(`Generating task files with args: ${JSON.stringify(args)}`);
// Check if paths were provided
if (!tasksJsonPath) {
const errorMessage = 'tasksJsonPath is required but was not provided.';
log.error(errorMessage);
return {
success: false,
error: { code: 'MISSING_ARGUMENT', message: errorMessage },
fromCache: false
};
}
if (!outputDir) {
const errorMessage = 'outputDir is required but was not provided.';
log.error(errorMessage);
return {
success: false,
error: { code: 'MISSING_ARGUMENT', message: errorMessage },
fromCache: false
};
}
// Use the provided paths
const tasksPath = tasksJsonPath;
const resolvedOutputDir = outputDir;
log.info(`Generating task files from ${tasksPath} to ${resolvedOutputDir}`);
// Execute core generateTaskFiles function in a separate try/catch
try {
// Enable silent mode to prevent logs from being written to stdout
enableSilentMode();
// The function is synchronous despite being awaited elsewhere
generateTaskFiles(tasksPath, resolvedOutputDir);
// Restore normal logging after task generation
disableSilentMode();
} catch (genError) {
// Make sure to restore normal logging even if there's an error
disableSilentMode();
log.error(`Error in generateTaskFiles: ${genError.message}`);
return {
success: false,
error: { code: 'GENERATE_FILES_ERROR', message: genError.message },
fromCache: false
};
}
// Return success with file paths
return {
success: true,
data: {
message: `Successfully generated task files`,
tasksPath: tasksPath,
outputDir: resolvedOutputDir,
taskFiles:
'Individual task files have been generated in the output directory'
},
fromCache: false // This operation always modifies state and should never be cached
};
} catch (error) {
// Make sure to restore normal logging if an outer error occurs
disableSilentMode();
log.error(`Error generating task files: ${error.message}`);
return {
success: false,
error: {
code: 'GENERATE_TASKS_ERROR',
message: error.message || 'Unknown error generating task files'
},
fromCache: false
};
}
}

Some files were not shown because too many files have changed in this diff Show More