Compare commits

...

67 Commits

Author SHA1 Message Date
Ralph Khreish
2b9bb8b94f chore: fix CI issues 2025-05-26 07:40:57 -04:00
Ralph Khreish
6f27399df8 feat(config): Implement TASK_MASTER_PROJECT_ROOT support for project root resolution
- Added support for the TASK_MASTER_PROJECT_ROOT environment variable in MCP configuration, establishing a clear precedence order for project root resolution.
- Updated utility functions to prioritize the environment variable, followed by args.projectRoot and session-based resolution.
- Enhanced error handling and logging for project root determination.
- Introduced new tasks for comprehensive testing and documentation updates related to the new configuration options.
2025-05-26 07:35:50 -04:00
github-actions[bot]
48732d5423 docs: Auto-update and format models.md 2025-05-25 22:13:23 -04:00
Eyal Toledano
2d520de269 fix(add-task): removes stdout in add-task which will crash MCP server (#593)
* fix(add-task): fixes an isse in which stdout leaks out of add-task causing the mcp server to crash if used.

* chore: add changeset

---------

Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
2025-05-25 22:13:23 -04:00
celgost
b60e1cf835 revamping readme (#522) 2025-05-24 17:21:15 +02:00
Ralph Khreish
d1e45ff50e Merge pull request #589 from eyaltoledano/changeset-release/main
Version Packages
2025-05-24 16:25:26 +02:00
github-actions[bot]
1513858da4 Version Packages 2025-05-24 14:07:53 +00:00
Ralph Khreish
59dcf4bd64 Release 0.15.0
Release 0.15.0
2025-05-24 16:07:24 +02:00
github-actions[bot]
a09ba021c5 chore: rc version bump 2025-05-24 00:44:47 +00:00
Eyal Toledano
e906166141 Merge pull request #567 from eyaltoledano/parse-prd-research
v0.15 improvements & new features
2025-05-23 20:42:41 -04:00
Eyal Toledano
231e569e84 Adjusts default main model model to Claude Sonnet 4. Adjusts default fallback to Claude Sonney 3.7 2025-05-23 20:33:45 -04:00
Eyal Toledano
09add37423 feat(models): Add comprehensive Ollama model validation and interactive setup - Add 'Custom Ollama model' option to interactive setup (--setup) - Implement live validation against local Ollama instance via /api/tags - Support configurable Ollama endpoints from .taskmasterconfig - Add robust error handling for server connectivity and model existence - Enhance user experience with clear validation feedback - Support both MCP server and CLI interfaces 2025-05-23 20:20:39 -04:00
Eyal Toledano
91fc779714 chore: adjusts changesets and an import. 2025-05-23 17:41:25 -04:00
Eyal Toledano
8c69c0aafd Task management, research, improvements for 24, 41 and 51 2025-05-23 17:30:25 -04:00
Eyal Toledano
43ad75c7fa chore: formatting 2025-05-23 14:44:53 -04:00
Eyal Toledano
a59dd037cf chore: changeset for Claude Code rules. depends on us adding it as an init option from the other PR. 2025-05-23 13:23:26 -04:00
Eyal Toledano
3293c7858b feat: adds AGENTS.md to the assets/ folder so we can add it into the project if the user selects Claude Code as the IDE of choice in the init sequence (to be done in another PR) 2025-05-23 13:17:45 -04:00
Eyal Toledano
b371808524 fix(models): Adjusts the Claude 4 models and introduces the llms-install.md file to enable AI agents to install the Taskmaster MCP server programmatically. 2025-05-23 12:59:14 -04:00
Shrey Paharia
86d8f00af8 Add next task to set status for mcp server (#558) 2025-05-22 11:09:36 +02:00
Eyal Toledano
0c55ce0165 chore: linting and prettier 2025-05-22 04:17:06 -04:00
Eyal Toledano
5a91941913 removes changeset for set/mark which i didnt add in the end 2025-05-22 04:15:10 -04:00
Eyal Toledano
04af16de27 feat(move-tasks): Implement move command for tasks and subtasks
Adds a new CLI command and MCP tool to reorganize tasks and subtasks within the hierarchy. Features include:
- Moving tasks between different positions in the task list
- Converting tasks to subtasks and vice versa
- Moving subtasks between parents
- Moving multiple tasks at once with comma-separated IDs
- Creating placeholder tasks when moving to new IDs
- Validation to prevent accidental data loss

This is particularly useful for resolving merge conflicts when multiple team members create tasks on different branches.
2025-05-22 04:14:22 -04:00
Eyal Toledano
edf0f23005 update changesets 2025-05-22 03:03:25 -04:00
Eyal Toledano
e0e1155260 fix(parse-prd): Fix parameter naming inconsistency in CLI parse-prd command 2025-05-22 02:59:32 -04:00
Eyal Toledano
70f4054f26 feat(parse-prd): Add research flag to parse-prd command for enhanced PRD analysis. Significantly improves parse PRD system prompt when used with research. 2025-05-22 02:57:51 -04:00
Eyal Toledano
34c769bcd0 feat(analyze): add task ID filtering to analyze-complexity command
Enhance analyze-complexity to support analyzing specific tasks by ID or range:
- Add --id option for comma-separated task IDs
- Add --from/--to options for analyzing tasks within a range
- Implement intelligent merging with existing reports
- Update CLI, MCP tools, and direct functions for consistent support
- Add changeset documenting the feature
2025-05-22 01:49:41 -04:00
Eyal Toledano
34df2c8bbd feat: automatically create tasks.json when missing (Task #68)
This commit implements automatic tasks.json file creation when it doesn't exist:

- When tasks.json is missing or invalid, create a new one with { tasks: [] }
- Allows adding tasks immediately after initializing a project without parsing a PRD
- Replaces error with informative feedback about file creation
- Enables smoother workflow for new projects or directories

This change improves user experience by removing the requirement to parse a PRD
before adding the first task to a newly initialized project. Closes #494
2025-05-22 01:18:27 -04:00
Eyal Toledano
5e9bc28abe feat(add-task): enhance dependency detection with semantic search
This commit significantly improves the  functionality by implementing
fuzzy semantic search to find contextually relevant dependencies:

- Add Fuse.js for powerful fuzzy search capability with weighted multi-field matching
- Implement score-based relevance ranking with high/medium relevance tiers
- Enhance context generation to include detailed information about similar tasks
- Fix context shadowing issue that prevented detailed task information from
  reaching the AI model
- Add informative CLI output showing semantic search results and dependency patterns
- Improve formatting of dependency information in prompts with task titles

The result is that newly created tasks are automatically placed within the correct
dependency structure without manual intervention, with the AI having much better
context about which tasks are most relevant to the new one being created.

This significantly improves the user experience by reducing the need to manually
update task dependencies after creation, all without increasing token usage or costs.
2025-05-22 01:09:40 -04:00
Eyal Toledano
d2e64318e2 fix(ai-services): add logic for API key checking in fallback sequence 2025-05-21 22:49:25 -04:00
Eyal Toledano
4c835264ac task management 2025-05-21 21:23:39 -04:00
github-actions[bot]
c882f89a8c Version Packages 2025-05-20 18:40:38 +02:00
Ralph Khreish
20e1b72a17 Merge pull request #549 from eyaltoledano/changeset-release/main
Version Packages
2025-05-20 00:34:13 +02:00
github-actions[bot]
db631f43a5 Version Packages 2025-05-19 22:31:08 +00:00
Ralph Khreish
3b9402f1f8 Merge Release 0.14.0 #529
Release 0.14.0
2025-05-20 00:30:46 +02:00
Ralph Khreish
c8c0fc2a57 fix: improve ollama object to telemetry structure (#546) 2025-05-19 23:05:45 +02:00
HR
60b8e97a1c fix: roomodes typo (#544) 2025-05-19 17:00:06 +02:00
github-actions[bot]
3a6d6dd671 chore: rc version bump 2025-05-18 08:08:54 +00:00
Ralph Khreish
f4a83ec047 feat: add ollama support (#536) 2025-05-18 10:07:31 +02:00
Eyal Toledano
0699f64299 Merge pull request #442 from eyaltoledano/telemetry
feat(telemetry): Implement AI usage telemetry pattern and apply to ad…
2025-05-17 22:34:01 -04:00
Eyal Toledano
60b8f5faa3 fix(expand-task): Ensure advanced parsing logic works and trimmed AI response properly if any jsonToParse modifications need to be made on initial parse of response. 2025-05-17 22:26:37 -04:00
Eyal Toledano
cd6e42249e fix(parse-prd): simplifies append and force variable names across the chain to avoid confusion. parse-prd append tested on MCP and the fix is good to go. Also adjusts e2e test to properly capture costs. 2025-05-17 20:10:53 -04:00
Eyal Toledano
fcd80623b6 linting 2025-05-17 18:43:15 -04:00
Eyal Toledano
026815353f fix(ai): Correctly imports generateText in openai.js, adds specific cause and reason for OpenRouter failures in the openrouter.js catch, performs complexity analysis on all tm tasks, adds new tasks to further improve the maxTokens to take input and output maximum into account. Adjusts default fallback max tokens so 3.5 does not fail. 2025-05-17 18:42:57 -04:00
Eyal Toledano
8a3b611fc2 fix(telemetry): renames _aggregateTelemetry to aggregateTelemetry to avoid confusion about it being a private function (it's not) 2025-05-17 17:48:45 -04:00
Eyal Toledano
6ba42b53dc fix: dupe export 2025-05-16 18:17:33 -04:00
Eyal Toledano
3e304232ab Solves merge conflicts with origin/next. 2025-05-16 18:15:11 -04:00
Eyal Toledano
70fa5b0031 fix(config): adjusts getUserId to optionally create/fill in the (currently hardcoded) userId to the telemetry object if it is not found. This prevents the telemetry call from landing as null for users who may have a taskmasterconfig but no userId in the globals. 2025-05-16 17:41:48 -04:00
github-actions[bot]
314c0de8c4 chore: rc version bump 2025-05-16 21:37:00 +00:00
Ralph Khreish
58b417a8ce Add complexity score to task (#528)
* feat: added complexity score handling to list tasks

* feat: added handling for complexity score in find task by id

* test: remove console dir

* chore: add changeset

* format: fixed formatting issues

* ref: reorder imports

* feat: updated handling for findTaskById to take complexityReport as input

* test: fix findTaskById complexity report testcases

* fix: added handling for complexity report path

* chore: add changeset

* fix: moved complexity report handling to list tasks rather than list tasks direct

* fix: add complexity handling to next task in list command

* fix: added handling for show cli

* fix: fixed next cli command handling

* fix: fixed handling for complexity report path in mcp

* feat: added handling to get-task

* feat: added handling for next-task in mcp

* feat: add handling for report path override

* chore: remove unecessary changeset

* ref: remove unecessary comments

* feat: update list and find next task

* fix: fixed running tests

* fix: fixed findTaskById

* fix: fixed findTaskById and tests

* fix: fixed addComplexityToTask util

* fix: fixed mcp server project root input

* chore: cleanup

---------

Co-authored-by: Shrey Paharia <shreypaharia@gmail.com>
2025-05-16 23:24:25 +02:00
Ralph Khreish
bc19bc7927 Merge remote-tracking branch 'origin/next' into telemetry 2025-05-16 18:16:58 +02:00
Eyal Toledano
da636f6681 fix(e2e): further improves the end to end script to take into account the changes made for each AI provider as it now responds with an obejct not just the result straight up. 2025-05-14 19:04:47 -04:00
Eyal Toledano
ca5ec03cd8 fix(ai,tasks): Enhance AI provider robustness and task processing
This commit introduces several improvements to AI interactions and
task management functionalities:

- AI Provider Enhancements (for Telemetry & Robustness):
    - :
        - Added a check in  to ensure
          is a string, throwing an error if not. This prevents downstream
           errors (e.g., in ).
    - , , :
        - Standardized return structures for their respective
          and  functions to consistently include /
          and  fields. This aligns them with other providers (like
          Anthropic, Google, Perplexity) for consistent telemetry data
          collection, as part of implementing subtask 77.14 and similar work.

- Task Expansion ():
    - Updated  to be more explicit
      about using an empty array  for empty  to
      better guide AI output.
    - Implemented a pre-emptive cleanup step in
      to replace malformed  with
      before JSON parsing. This improves resilience to AI output quirks,
      particularly observed with Perplexity.

- Adjusts issue in commands.js where successfulRemovals would be undefined. It's properly invoked from the result variable now.

- Updates supported models for Gemini
These changes address issues observed during E2E tests, enhance the
reliability of AI-driven task analysis and expansion, and promote
consistent telemetry data across multiple AI providers.
2025-05-14 19:04:03 -04:00
Eyal Toledano
79a41543d5 fix(ai): Align Perplexity provider with standard telemetry response structure
This commit updates the Perplexity AI provider () to ensure its functions return data in a structure consistent with other providers and the expectations of the unified AI service layer ().

Specifically:
-  now returns an object  instead of only the text string.
-  now returns an object  instead of only the result object.

These changes ensure that  can correctly extract both the primary AI-generated content and the token usage data for telemetry purposes when Perplexity models are used. This resolves issues encountered during E2E testing where complexity analysis (which can use Perplexity for its research role) failed due to unexpected response formats.

The  function was already compliant.
2025-05-14 11:46:35 -04:00
Eyal Toledano
9f4bac8d6a fix(ai): Improve AI object response handling in parse-prd
This commit updates  to more robustly handle responses from .

Previously, the module strictly expected the AI-generated object to be nested under . This change ensures that it now first checks if  itself contains the expected task data object, and then falls back to checking .

This enhancement increases compatibility with varying AI provider response structures, similar to the improvements recently made in .
2025-05-13 13:21:51 -04:00
Eyal Toledano
e53d5e1577 feat(ai): Enhance Google provider telemetry and AI object response handling
This commit introduces two key improvements:

1.  **Google Provider Telemetry:**
    - Updated  to include token usage data (, ) in the responses from  and .
    - This aligns the Google provider with others for consistent AI usage telemetry.

2.  **Robust AI Object Response Handling:**
    - Modified  to more flexibly handle responses from .
    - The add-task module now check for the AI-generated object in both  and , improving compatibility with different AI provider response structures (e.g., Gemini).

These changes enhance the reliability of AI interactions, particularly with the Google provider, and ensure accurate telemetry collection.
2025-05-13 12:13:35 -04:00
Eyal Toledano
59230c4d91 chore: task management and formatting. 2025-05-09 14:12:21 -04:00
Eyal Toledano
04b6a3cb21 feat(telemetry): Integrate AI usage telemetry into analyze-complexity
This commit applies the standard telemetry pattern to the analyze-task-complexity command and its corresponding MCP tool.

Key Changes:

1.  Core Logic (scripts/modules/task-manager/analyze-task-complexity.js):
    -   The call to generateTextService now includes commandName: 'analyze-complexity' and outputType.
    -   The full response { mainResult, telemetryData } is captured.
    -   mainResult (the AI-generated text) is used for parsing the complexity report JSON.
    -   If running in CLI mode (outputFormat === 'text'), displayAiUsageSummary is called with the telemetryData.
    -   The function now returns { report: ..., telemetryData: ... }.

2.  Direct Function (mcp-server/src/core/direct-functions/analyze-task-complexity.js):
    -   The call to the core analyzeTaskComplexity function now passes the necessary context for telemetry (commandName, outputType).
    -   The successful response object now correctly extracts coreResult.telemetryData and includes it in the data.telemetryData field returned to the MCP client.
2025-05-08 19:34:00 -04:00
Eyal Toledano
37178ff1b9 feat(telemetry): Integrate AI usage telemetry into update-subtask
This commit applies the standard telemetry pattern to the update-subtask command and its corresponding MCP tool.

Key Changes:

1.  Core Logic (scripts/modules/task-manager/update-subtask-by-id.js):
    -   The call to generateTextService now includes commandName: 'update-subtask' and outputType.
    -   The full response { mainResult, telemetryData } is captured.
    -   mainResult (the AI-generated text) is used for the appended content.
    -   If running in CLI mode (outputFormat === 'text'), displayAiUsageSummary is called with the telemetryData.
    -   The function now returns { updatedSubtask: ..., telemetryData: ... }.

2.  Direct Function (mcp-server/src/core/direct-functions/update-subtask-by-id.js):
    -   The call to the core updateSubtaskById function now passes the necessary context for telemetry (commandName, outputType).
    -   The successful response object now correctly extracts coreResult.telemetryData and includes it in the data.telemetryData field returned to the MCP client.
2025-05-08 19:04:25 -04:00
Eyal Toledano
bbc8b9cc1f feat(telemetry): Integrate AI usage telemetry into update-tasks
This commit applies the standard telemetry pattern to the update-tasks command and its corresponding MCP tool.

Key Changes:

1.  Core Logic (scripts/modules/task-manager/update-tasks.js):
    -   The call to generateTextService now includes commandName: 'update-tasks' and outputType.
    -   The full response { mainResult, telemetryData } is captured.
    -   mainResult (the AI-generated text) is used for parsing the updated task JSON.
    -   If running in CLI mode (outputFormat === 'text'), displayAiUsageSummary is called with the telemetryData.
    -   The function now returns { success: true, updatedTasks: ..., telemetryData: ... }.

2.  Direct Function (mcp-server/src/core/direct-functions/update-tasks.js):
    -   The call to the core updateTasks function now passes the necessary context for telemetry (commandName, outputType).
    -   The successful response object now correctly extracts coreResult.telemetryData and includes it in the data.telemetryData field returned to the MCP client.
2025-05-08 18:51:29 -04:00
Eyal Toledano
c955431753 feat(telemetry): Integrate AI usage telemetry into update-tasks
This commit applies the standard telemetry pattern to the  command and its corresponding MCP tool.

Key Changes:

1.  **Core Logic ():**
    -   The call to  now includes  and .
    -   The full response  is captured.
    -    (the AI-generated text) is used for parsing the updated task JSON.
    -   If running in CLI mode (),  is called with the .
    -   The function now returns .

2.  **Direct Function ():**
    -   The call to the core  function now passes the necessary context for telemetry (, ).
    -   The successful response object now correctly extracts  and includes it in the  field returned to the MCP client.
2025-05-08 18:37:41 -04:00
Eyal Toledano
21c3cb8cda feat(telemetry): Integrate telemetry for expand-all, aggregate results
This commit implements AI usage telemetry for the `expand-all-tasks` command/tool and refactors its CLI output for clarity and consistency.

Key Changes:

1.  **Telemetry Integration for `expand-all-tasks` (Subtask 77.8):**\n    -   The `expandAllTasks` core logic (`scripts/modules/task-manager/expand-all-tasks.js`) now calls the `expandTask` function for each eligible task and collects the individual `telemetryData` returned.\n    -   A new helper function `_aggregateTelemetry` (in `utils.js`) is used to sum up token counts and costs from all individual expansions into a single `telemetryData` object for the entire `expand-all` operation.\n    -   The `expandAllTasksDirect` wrapper (`mcp-server/src/core/direct-functions/expand-all-tasks.js`) now receives and passes this aggregated `telemetryData` in the MCP response.\n    -   For CLI usage, `displayAiUsageSummary` is called once with the aggregated telemetry.

2.  **Improved CLI Output for `expand-all`:**\n    -   The `expandAllTasks` core function now handles displaying a final "Expansion Summary" box (showing Attempted, Expanded, Skipped, Failed counts) directly after the aggregated telemetry summary.\n    -   This consolidates all summary output within the core function for better flow and removes redundant logging from the command action in `scripts/modules/commands.js`.\n    -   The summary box border is green for success and red if any expansions failed.

3.  **Code Refinements:**\n    -   Ensured `chalk` and `boxen` are imported in `expand-all-tasks.js` for the new summary box.\n    -   Minor adjustments to logging messages for clarity.
2025-05-08 18:22:00 -04:00
Eyal Toledano
ab84afd036 feat(telemetry): Integrate usage telemetry for expand-task, fix return types
This commit integrates AI usage telemetry for the `expand-task` command/tool and resolves issues related to incorrect return type handling and logging.

Key Changes:

1.  **Telemetry Integration for `expand-task` (Subtask 77.7):**\n    -   Applied the standard telemetry pattern to the `expandTask` core logic (`scripts/modules/task-manager/expand-task.js`) and the `expandTaskDirect` wrapper (`mcp-server/src/core/direct-functions/expand-task.js`).\n    -   AI service calls now pass `commandName` and `outputType`.\n    -   Core function returns `{ task, telemetryData }`.\n    -   Direct function correctly extracts `task` and passes `telemetryData` in the MCP response `data` field.\n    -   Telemetry summary is now displayed in the CLI output for the `expand` command.

2.  **Fix AI Service Return Type Handling (`ai-services-unified.js`):**\n    -   Corrected the `_unifiedServiceRunner` function to properly handle the return objects from provider-specific functions (`generateText`, `generateObject`).\n    -   It now correctly extracts `providerResponse.text` or `providerResponse.object` into the `mainResult` field based on `serviceType`, resolving the "text.trim is not a function" error encountered during `expand-task`.

3.  **Log Cleanup:**\n    -   Removed various redundant or excessive `console.log` statements across multiple files (as indicated by recent changes) to reduce noise and improve clarity, particularly for MCP interactions.
2025-05-08 16:02:23 -04:00
Eyal Toledano
f89d2aacc0 feat(telemetry): Integrate AI usage telemetry into parse-prd
Implements AI usage telemetry capture and propagation for the  command and MCP tool, following the established telemetry pattern.

Key changes:

-   **Core ():**
    -   Modified the  call to include  and .
    -   Updated to receive  from .
    -   Adjusted to return an object .
    -   Added a call to  to show telemetry data in the CLI output when not in MCP mode.

-   **Direct Function ():**
    -   Updated the call to the core  function to pass , , and .
    -   Modified to correctly handle the new return structure from the core function.
    -   Ensures  received from the core function is included in the  field of the successful MCP response.

-   **MCP Tool ():**
    -   No changes required; existing  correctly passes through the  object containing .

-   **CLI Command ():**
    -   The  command's action now relies on the core  function to handle CLI success messages and telemetry display.

This ensures that AI usage for the  functionality is tracked and can be displayed or logged as appropriate for both CLI and MCP interactions.
2025-05-07 14:22:42 -04:00
Eyal Toledano
0288311965 fix(parse-prd): resolves issue preventing --append flag from properly working in the CLI context. Adds changeset. 2025-05-07 14:17:41 -04:00
Eyal Toledano
8ae772086d fix(next): adjusts CLI output for next when the result is a subtask. previously incorrect suggested creating subtasks for the subtask. 2025-05-07 14:07:50 -04:00
Eyal Toledano
2b3ae8bf89 tests: adjusts the tests to properly pass. 2025-05-07 13:54:01 -04:00
Eyal Toledano
245c3cb398 feat(telemetry): Implement AI usage telemetry pattern and apply to add-task
This commit introduces a standardized pattern for capturing and propagating AI usage telemetry (cost, tokens, model used) across the Task Master stack and applies it to the 'add-task' functionality.

Key changes include:

- **Telemetry Pattern Definition:**
  - Added  defining the integration pattern for core logic, direct functions, MCP tools, and CLI commands.
  - Updated related rules (, ,
 Usage: mcp [OPTIONS] COMMAND [ARGS]...

 MCP development tools

╭─ Options ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ --help          Show this message and exit.                                                                                                │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Commands ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ version   Show the MCP version.                                                                                                            │
│ dev       Run a MCP server with the MCP Inspector.                                                                                         │
│ run       Run a MCP server.                                                                                                                │
│ install   Install a MCP server in the Claude desktop app.                                                                                  │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯, , ) to reference the new telemetry rule.

- **Core Telemetry Implementation ():**
  - Refactored the unified AI service to generate and return a  object alongside the main AI result.
  - Fixed an MCP server startup crash by removing redundant local loading of  and instead using the  imported from  for cost calculations.
  - Added  to the  object.

- ** Integration:**
  - Modified  (core) to receive  from the AI service, return it, and call the new UI display function for CLI output.
  - Updated  to receive  from the core function and include it in the  payload of its response.
  - Ensured  (MCP tool) correctly passes the  through via .
  - Updated  to correctly pass context (, ) to the core  function and rely on it for CLI telemetry display.

- **UI Enhancement:**
  - Added  function to  to show telemetry details in the CLI.

- **Project Management:**
  - Added subtasks 77.6 through 77.12 to track the rollout of this telemetry pattern to other AI-powered commands (, , , , , , ).

This establishes the foundation for tracking AI usage across the application.
2025-05-07 13:41:25 -04:00
142 changed files with 15141 additions and 1825 deletions

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Resolve all issues related to MCP

View File

@@ -1,9 +0,0 @@
---
'task-master-ai': patch
---
Fix CLI --force flag for parse-prd command
Previously, the --force flag was not respected when running `parse-prd`, causing the command to prompt for confirmation or fail even when --force was provided. This patch ensures that the flag is correctly passed and handled, allowing users to overwrite existing tasks.json files as intended.
- Fixes #477

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': minor
---
.taskmasterconfig now supports a baseUrl field per model role (main, research, fallback), allowing endpoint overrides for any provider.

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Task Master no longer tells you to update when you're already up to date

View File

@@ -1,12 +0,0 @@
{
"mode": "exit",
"tag": "rc",
"initialVersions": {
"task-master-ai": "0.13.2"
},
"changesets": [
"beige-doodles-type",
"red-oranges-attend",
"red-suns-wash"
]
}

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Fix ERR_MODULE_NOT_FOUND when trying to run MCP Server

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Add src directory to exports

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Fix the error handling of task status settings

View File

@@ -0,0 +1,7 @@
---
'task-master-ai': minor
---
Add TASK_MASTER_PROJECT_ROOT env variable supported in mcp.json and .env for project root resolution
- Some users were having issues where the MCP wasn't able to detect the location of their project root, you can now set the `TASK_MASTER_PROJECT_ROOT` environment variable to the root of your project.

View File

@@ -1,7 +0,0 @@
---
'task-master-ai': patch
---
Remove caching layer from MCP direct functions for task listing, next task, and complexity report
- Fixes issues users where having where they were getting stale data

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Fix for issue #409 LOG_LEVEL Pydantic validation error

View File

@@ -1,7 +0,0 @@
---
'task-master-ai': patch
---
Fix initial .env.example to work out of the box
- Closes #419

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Fix default fallback model and maxTokens in Taskmaster initialization

View File

@@ -0,0 +1,5 @@
---
'task-master-ai': patch
---
Fix add-task MCP command causing an error

View File

@@ -1,5 +0,0 @@
---
'task-master-ai': patch
---
Fix bug when updating tasks on the MCP server (#412)

View File

@@ -1,11 +0,0 @@
---
'task-master-ai': patch
---
Fix duplicate output on CLI help screen
- Prevent the Task Master CLI from printing the help screen more than once when using `-h` or `--help`.
- Removed redundant manual event handlers and guards for help output; now only the Commander `.helpInformation` override is used for custom help.
- Simplified logic so that help is only shown once for both "no arguments" and help flag flows.
- Ensures a clean, branded help experience with no repeated content.
- Fixes #339

View File

@@ -25,6 +25,7 @@ This document outlines the architecture and usage patterns for interacting with
* Implements **retry logic** for specific API errors (`_attemptProviderCallWithRetries`).
* Resolves API keys automatically via `_resolveApiKey` (using `resolveEnvVariable`).
* Maps requests to the correct provider implementation (in `src/ai-providers/`) via `PROVIDER_FUNCTIONS`.
* Returns a structured object containing the primary AI result (`mainResult`) and telemetry data (`telemetryData`). See [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc) for details on how this telemetry data is propagated and handled.
* **Provider Implementations (`src/ai-providers/*.js`):**
* Contain provider-specific wrappers around Vercel AI SDK functions (`generateText`, `generateObject`).

View File

@@ -42,6 +42,7 @@ alwaysApply: false
- Resolves API keys (from `.env` or `session.env`).
- Implements fallback and retry logic.
- Orchestrates calls to provider-specific implementations (`src/ai-providers/`).
- Telemetry data generated by the AI service layer is propagated upwards through core logic, direct functions, and MCP tools. See [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc) for the detailed integration pattern.
- **[`src/ai-providers/*.js`](mdc:src/ai-providers/): Provider-Specific Implementations**
- **Purpose**: Provider-specific wrappers for Vercel AI SDK functions.

View File

@@ -49,6 +49,7 @@ Task Master offers two primary ways to interact:
- Maintain valid dependency structure with `add_dependency`/`remove_dependency` tools or `task-master add-dependency`/`remove-dependency` commands, `validate_dependencies` / `task-master validate-dependencies`, and `fix_dependencies` / `task-master fix-dependencies` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) when needed
- Respect dependency chains and task priorities when selecting work
- Report progress regularly using `get_tasks` / `task-master list`
- Reorganize tasks as needed using `move_task` / `task-master move --from=<id> --to=<id>` (see [`taskmaster.mdc`](mdc:.cursor/rules/taskmaster.mdc)) to change task hierarchy or ordering
## Task Complexity Analysis
@@ -154,6 +155,25 @@ Taskmaster configuration is managed through two main mechanisms:
- Task files are automatically regenerated after dependency changes
- Dependencies are visualized with status indicators in task listings and files
## Task Reorganization
- Use `move_task` / `task-master move --from=<id> --to=<id>` to move tasks or subtasks within the hierarchy
- This command supports several use cases:
- Moving a standalone task to become a subtask (e.g., `--from=5 --to=7`)
- Moving a subtask to become a standalone task (e.g., `--from=5.2 --to=7`)
- Moving a subtask to a different parent (e.g., `--from=5.2 --to=7.3`)
- Reordering subtasks within the same parent (e.g., `--from=5.2 --to=5.4`)
- Moving a task to a new, non-existent ID position (e.g., `--from=5 --to=25`)
- Moving multiple tasks at once using comma-separated IDs (e.g., `--from=10,11,12 --to=16,17,18`)
- The system includes validation to prevent data loss:
- Allows moving to non-existent IDs by creating placeholder tasks
- Prevents moving to existing task IDs that have content (to avoid overwriting)
- Validates source tasks exist before attempting to move them
- The system maintains proper parent-child relationships and dependency integrity
- Task files are automatically regenerated after the move operation
- This provides greater flexibility in organizing and refining your task structure as project understanding evolves
- This is especially useful when dealing with potential merge conflicts arising from teams creating tasks on separate branches. Solve these conflicts very easily by moving your tasks and keeping theirs.
## Iterative Subtask Implementation
Once a task has been broken down into subtasks using `expand_task` or similar methods, follow this iterative process for implementation:

View File

@@ -3,7 +3,6 @@ description: Glossary of other Cursor rules
globs: **/*
alwaysApply: true
---
# Glossary of Task Master Cursor Rules
This file provides a quick reference to the purpose of each rule file located in the `.cursor/rules` directory.
@@ -23,4 +22,5 @@ This file provides a quick reference to the purpose of each rule file located in
- **[`tests.mdc`](mdc:.cursor/rules/tests.mdc)**: Guidelines for implementing and maintaining tests for Task Master CLI.
- **[`ui.mdc`](mdc:.cursor/rules/ui.mdc)**: Guidelines for implementing and maintaining user interface components.
- **[`utilities.mdc`](mdc:.cursor/rules/utilities.mdc)**: Guidelines for implementing utility functions.
- **[`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc)**: Guidelines for integrating AI usage telemetry across Task Master.

View File

@@ -522,3 +522,8 @@ Follow these steps to add MCP support for an existing Task Master command (see [
// Add more functions as implemented
};
```
## Telemetry Integration
- Direct functions calling core logic that involves AI should receive and pass through `telemetryData` within their successful `data` payload. See [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc) for the standard pattern.
- MCP tools use `handleApiResult`, which ensures the `data` object (potentially including `telemetryData`) from the direct function is correctly included in the final response.

View File

@@ -3,7 +3,6 @@ description: Guidelines for integrating new features into the Task Master CLI
globs: scripts/modules/*.js
alwaysApply: false
---
# Task Master Feature Integration Guidelines
## Feature Placement Decision Process
@@ -196,6 +195,8 @@ The standard pattern for adding a feature follows this workflow:
- ✅ **DO**: If an MCP tool fails with vague errors (e.g., JSON parsing issues like `Unexpected token ... is not valid JSON`), **try running the equivalent CLI command directly in the terminal** (e.g., `task-master expand --all`). CLI output often provides much more specific error messages (like missing function definitions or stack traces from the core logic) that pinpoint the root cause.
- ❌ **DON'T**: Rely solely on MCP logs if the error is unclear; use the CLI as a complementary debugging tool for core logic issues.
- **Telemetry Integration**: Ensure AI calls correctly handle and propagate `telemetryData` as described in [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc).
```javascript
// 1. CORE LOGIC: Add function to appropriate module (example in task-manager.js)
/**

View File

@@ -269,11 +269,36 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Delete unnecessary subtasks or promote a subtask to a top-level task.
### 17. Move Task (`move_task`)
* **MCP Tool:** `move_task`
* **CLI Command:** `task-master move [options]`
* **Description:** `Move a task or subtask to a new position within the task hierarchy.`
* **Key Parameters/Options:**
* `from`: `Required. ID of the task/subtask to move (e.g., "5" or "5.2"). Can be comma-separated for multiple tasks.` (CLI: `--from <id>`)
* `to`: `Required. ID of the destination (e.g., "7" or "7.3"). Must match the number of source IDs if comma-separated.` (CLI: `--to <id>`)
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Reorganize tasks by moving them within the hierarchy. Supports various scenarios like:
* Moving a task to become a subtask
* Moving a subtask to become a standalone task
* Moving a subtask to a different parent
* Reordering subtasks within the same parent
* Moving a task to a new, non-existent ID (automatically creates placeholders)
* Moving multiple tasks at once with comma-separated IDs
* **Validation Features:**
* Allows moving tasks to non-existent destination IDs (creates placeholder tasks)
* Prevents moving to existing task IDs that already have content (to avoid overwriting)
* Validates that source tasks exist before attempting to move them
* Maintains proper parent-child relationships
* **Example CLI:** `task-master move --from=5.2 --to=7.3` to move subtask 5.2 to become subtask 7.3.
* **Example Multi-Move:** `task-master move --from=10,11,12 --to=16,17,18` to move multiple tasks to new positions.
* **Common Use:** Resolving merge conflicts in tasks.json when multiple team members create tasks on different branches.
---
## Dependency Management
### 17. Add Dependency (`add_dependency`)
### 18. Add Dependency (`add_dependency`)
* **MCP Tool:** `add_dependency`
* **CLI Command:** `task-master add-dependency [options]`
@@ -284,7 +309,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <path>`)
* **Usage:** Establish the correct order of execution between tasks.
### 18. Remove Dependency (`remove_dependency`)
### 19. Remove Dependency (`remove_dependency`)
* **MCP Tool:** `remove_dependency`
* **CLI Command:** `task-master remove-dependency [options]`
@@ -295,7 +320,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Update task relationships when the order of execution changes.
### 19. Validate Dependencies (`validate_dependencies`)
### 20. Validate Dependencies (`validate_dependencies`)
* **MCP Tool:** `validate_dependencies`
* **CLI Command:** `task-master validate-dependencies [options]`
@@ -304,7 +329,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* `file`: `Path to your Taskmaster 'tasks.json' file. Default relies on auto-detection.` (CLI: `-f, --file <file>`)
* **Usage:** Audit the integrity of your task dependencies.
### 20. Fix Dependencies (`fix_dependencies`)
### 21. Fix Dependencies (`fix_dependencies`)
* **MCP Tool:** `fix_dependencies`
* **CLI Command:** `task-master fix-dependencies [options]`
@@ -317,7 +342,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
## Analysis & Reporting
### 21. Analyze Project Complexity (`analyze_project_complexity`)
### 22. Analyze Project Complexity (`analyze_project_complexity`)
* **MCP Tool:** `analyze_project_complexity`
* **CLI Command:** `task-master analyze-complexity [options]`
@@ -330,7 +355,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
* **Usage:** Used before breaking down tasks to identify which ones need the most attention.
* **Important:** This MCP tool makes AI calls and can take up to a minute to complete. Please inform users to hang tight while the operation is in progress.
### 22. View Complexity Report (`complexity_report`)
### 23. View Complexity Report (`complexity_report`)
* **MCP Tool:** `complexity_report`
* **CLI Command:** `task-master complexity-report [options]`
@@ -343,7 +368,7 @@ This document provides a detailed reference for interacting with Taskmaster, cov
## File Management
### 23. Generate Task Files (`generate`)
### 24. Generate Task Files (`generate`)
* **MCP Tool:** `generate`
* **CLI Command:** `task-master generate [options]`

228
.cursor/rules/telemetry.mdc Normal file
View File

@@ -0,0 +1,228 @@
---
description: Guidelines for integrating AI usage telemetry across Task Master.
globs: scripts/modules/**/*.js,mcp-server/src/**/*.js
alwaysApply: true
---
# AI Usage Telemetry Integration
This document outlines the standard pattern for capturing, propagating, and handling AI usage telemetry data (cost, tokens, model, etc.) across the Task Master stack. This ensures consistent telemetry for both CLI and MCP interactions.
## Overview
Telemetry data is generated within the unified AI service layer ([`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js)) and then passed upwards through the calling functions.
- **Data Source**: [`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js) (specifically its `generateTextService`, `generateObjectService`, etc.) returns an object like `{ mainResult: AI_CALL_OUTPUT, telemetryData: TELEMETRY_OBJECT }`.
- **`telemetryData` Object Structure**:
```json
{
"timestamp": "ISO_STRING_DATE",
"userId": "USER_ID_FROM_CONFIG",
"commandName": "invoking_command_or_tool_name",
"modelUsed": "ai_model_id",
"providerName": "ai_provider_name",
"inputTokens": NUMBER,
"outputTokens": NUMBER,
"totalTokens": NUMBER,
"totalCost": NUMBER, // e.g., 0.012414
"currency": "USD" // e.g., "USD"
}
```
## Integration Pattern by Layer
The key principle is that each layer receives telemetry data from the layer below it (if applicable) and passes it to the layer above it, or handles it for display in the case of the CLI.
### 1. Core Logic Functions (e.g., in `scripts/modules/task-manager/`)
Functions in this layer that invoke AI services are responsible for handling the `telemetryData` they receive from [`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js).
- **Actions**:
1. Call the appropriate AI service function (e.g., `generateObjectService`).
- Pass `commandName` (e.g., `add-task`, `expand-task`) and `outputType` (e.g., `cli` or `mcp`) in the `params` object to the AI service. The `outputType` can be derived from context (e.g., presence of `mcpLog`).
2. The AI service returns an object, e.g., `aiServiceResponse = { mainResult: {/*AI output*/}, telemetryData: {/*telemetry data*/} }`.
3. Extract `aiServiceResponse.mainResult` for the core processing.
4. **Must return an object that includes `aiServiceResponse.telemetryData`**.
Example: `return { operationSpecificData: /*...*/, telemetryData: aiServiceResponse.telemetryData };`
- **CLI Output Handling (If Applicable)**:
- If the core function also handles CLI output (e.g., it has an `outputFormat` parameter that can be `'text'` or `'cli'`):
1. Check if `outputFormat === 'text'` (or `'cli'`).
2. If so, and if `aiServiceResponse.telemetryData` is available, call `displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli')` from [`scripts/modules/ui.js`](mdc:scripts/modules/ui.js).
- This ensures telemetry is displayed directly to CLI users after the main command output.
- **Example Snippet (Core Logic in `scripts/modules/task-manager/someAiAction.js`)**:
```javascript
import { generateObjectService } from '../ai-services-unified.js';
import { displayAiUsageSummary } from '../ui.js';
async function performAiRelatedAction(params, context, outputFormat = 'text') {
const { commandNameFromContext, /* other context vars */ } = context;
let aiServiceResponse = null;
try {
aiServiceResponse = await generateObjectService({
// ... other parameters for AI service ...
commandName: commandNameFromContext || 'default-action-name',
outputType: context.mcpLog ? 'mcp' : 'cli' // Derive outputType
});
const usefulAiOutput = aiServiceResponse.mainResult.object;
// ... do work with usefulAiOutput ...
if (outputFormat === 'text' && aiServiceResponse.telemetryData) {
displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli');
}
return {
actionData: /* results of processing */,
telemetryData: aiServiceResponse.telemetryData
};
} catch (error) {
// ... handle error ...
throw error;
}
}
```
### 2. Direct Function Wrappers (in `mcp-server/src/core/direct-functions/`)
These functions adapt core logic for the MCP server, ensuring structured responses.
- **Actions**:
1. Call the corresponding core logic function.
- Pass necessary context (e.g., `session`, `mcpLog`, `projectRoot`).
- Provide the `commandName` (typically derived from the MCP tool name) and `outputType: 'mcp'` in the context object passed to the core function.
- If the core function supports an `outputFormat` parameter, pass `'json'` to suppress CLI-specific UI.
2. The core logic function returns an object (e.g., `coreResult = { actionData: ..., telemetryData: ... }`).
3. Include `coreResult.telemetryData` as a field within the `data` object of the successful response returned by the direct function.
- **Example Snippet (Direct Function `someAiActionDirect.js`)**:
```javascript
import { performAiRelatedAction } from '../../../../scripts/modules/task-manager/someAiAction.js'; // Core function
import { createLogWrapper } from '../../tools/utils.js'; // MCP Log wrapper
export async function someAiActionDirect(args, log, context = {}) {
const { session } = context;
// ... prepare arguments for core function from args, including args.projectRoot ...
try {
const coreResult = await performAiRelatedAction(
{ /* parameters for core function */ },
{ // Context for core function
session,
mcpLog: createLogWrapper(log),
projectRoot: args.projectRoot,
commandNameFromContext: 'mcp_tool_some_ai_action', // Example command name
outputType: 'mcp'
},
'json' // Request 'json' output format from core function
);
return {
success: true,
data: {
operationSpecificData: coreResult.actionData,
telemetryData: coreResult.telemetryData // Pass telemetry through
}
};
} catch (error) {
// ... error handling, return { success: false, error: ... } ...
}
}
```
### 3. MCP Tools (in `mcp-server/src/tools/`)
These are the exposed endpoints for MCP clients.
- **Actions**:
1. Call the corresponding direct function wrapper.
2. The direct function returns an object structured like `{ success: true, data: { operationSpecificData: ..., telemetryData: ... } }` (or an error object).
3. Pass this entire result object to `handleApiResult(result, log)` from [`mcp-server/src/tools/utils.js`](mdc:mcp-server/src/tools/utils.js).
4. `handleApiResult` ensures that the `data` field from the direct function's response (which correctly includes `telemetryData`) is part of the final MCP response.
- **Example Snippet (MCP Tool `some_ai_action.js`)**:
```javascript
import { someAiActionDirect } from '../core/task-master-core.js';
import { handleApiResult, withNormalizedProjectRoot } from './utils.js';
// ... zod for parameters ...
export function registerSomeAiActionTool(server) {
server.addTool({
name: "some_ai_action",
// ... description, parameters ...
execute: withNormalizedProjectRoot(async (args, { log, session }) => {
try {
const resultFromDirectFunction = await someAiActionDirect(
{ /* args including projectRoot */ },
log,
{ session }
);
return handleApiResult(resultFromDirectFunction, log); // This passes the nested telemetryData through
} catch (error) {
// ... error handling ...
}
})
});
}
```
### 4. CLI Commands (`scripts/modules/commands.js`)
These define the command-line interface.
- **Actions**:
1. Call the appropriate core logic function.
2. Pass `outputFormat: 'text'` (or ensure the core function defaults to text-based output for CLI).
3. The core logic function (as per Section 1) is responsible for calling `displayAiUsageSummary` if telemetry data is available and it's in CLI mode.
4. The command action itself **should not** call `displayAiUsageSummary` if the core logic function already handles this. This avoids duplicate display.
- **Example Snippet (CLI Command in `commands.js`)**:
```javascript
// In scripts/modules/commands.js
import { performAiRelatedAction } from './task-manager/someAiAction.js'; // Core function
programInstance
.command('some-cli-ai-action')
// ... .option() ...
.action(async (options) => {
try {
const projectRoot = findProjectRoot() || '.'; // Example root finding
// ... prepare parameters for core function from command options ...
await performAiRelatedAction(
{ /* parameters for core function */ },
{ // Context for core function
projectRoot,
commandNameFromContext: 'some-cli-ai-action',
outputType: 'cli'
},
'text' // Explicitly request text output format for CLI
);
// Core function handles displayAiUsageSummary internally for 'text' outputFormat
} catch (error) {
// ... error handling ...
}
});
```
## Summary Flow
The telemetry data flows as follows:
1. **[`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js)**: Generates `telemetryData` and returns `{ mainResult, telemetryData }`.
2. **Core Logic Function**:
* Receives `{ mainResult, telemetryData }`.
* Uses `mainResult`.
* If CLI (`outputFormat: 'text'`), calls `displayAiUsageSummary(telemetryData)`.
* Returns `{ operationSpecificData, telemetryData }`.
3. **Direct Function Wrapper**:
* Receives `{ operationSpecificData, telemetryData }` from core logic.
* Returns `{ success: true, data: { operationSpecificData, telemetryData } }`.
4. **MCP Tool**:
* Receives direct function response.
* `handleApiResult` ensures the final MCP response to the client is `{ success: true, data: { operationSpecificData, telemetryData } }`.
5. **CLI Command**:
* Calls core logic with `outputFormat: 'text'`. Display is handled by core logic.
This pattern ensures telemetry is captured and appropriately handled/exposed across all interaction modes.

40
.github/workflows/update-models-md.yml vendored Normal file
View File

@@ -0,0 +1,40 @@
name: Update models.md from supported-models.json
on:
push:
branches:
- main
- next
paths:
- 'scripts/modules/supported-models.json'
- 'docs/scripts/models-json-to-markdown.js'
jobs:
update_markdown:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: 20
- name: Run transformation script
run: node docs/scripts/models-json-to-markdown.js
- name: Format Markdown with Prettier
run: npx prettier --write docs/models.md
- name: Stage docs/models.md
run: git add docs/models.md
- name: Commit & Push docs/models.md
uses: actions-js/push@master
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
branch: ${{ github.ref_name }}
message: 'docs: Auto-update and format models.md'
author_name: 'github-actions[bot]'
author_email: 'github-actions[bot]@users.noreply.github.com'

View File

@@ -1,31 +1,32 @@
{
"models": {
"main": {
"provider": "anthropic",
"modelId": "claude-3-7-sonnet-20250219",
"maxTokens": 100000,
"temperature": 0.2
},
"research": {
"provider": "perplexity",
"modelId": "sonar-pro",
"maxTokens": 8700,
"temperature": 0.1
},
"fallback": {
"provider": "anthropic",
"modelId": "claude-3-7-sonnet-20250219",
"maxTokens": 120000,
"temperature": 0.2
}
},
"global": {
"logLevel": "info",
"debug": false,
"defaultSubtasks": 5,
"defaultPriority": "medium",
"projectName": "Taskmaster",
"ollamaBaseUrl": "http://localhost:11434/api",
"azureOpenaiBaseUrl": "https://your-endpoint.openai.azure.com/"
}
"models": {
"main": {
"provider": "anthropic",
"modelId": "claude-sonnet-4-20250514",
"maxTokens": 50000,
"temperature": 0.2
},
"research": {
"provider": "perplexity",
"modelId": "sonar-pro",
"maxTokens": 8700,
"temperature": 0.1
},
"fallback": {
"provider": "anthropic",
"modelId": "claude-3-7-sonnet-20250219",
"maxTokens": 128000,
"temperature": 0.2
}
},
"global": {
"logLevel": "info",
"debug": false,
"defaultSubtasks": 5,
"defaultPriority": "medium",
"projectName": "Taskmaster",
"ollamaBaseUrl": "http://localhost:11434/api",
"userId": "1234567890",
"azureOpenaiBaseUrl": "https://your-endpoint.openai.azure.com/"
}
}

View File

@@ -1,5 +1,299 @@
# task-master-ai
## 0.15.0
### Minor Changes
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`09add37`](https://github.com/eyaltoledano/claude-task-master/commit/09add37423d70b809d5c28f3cde9fccd5a7e64e7) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Added comprehensive Ollama model validation and interactive setup support
- **Interactive Setup Enhancement**: Added "Custom Ollama model" option to `task-master models --setup`, matching the existing OpenRouter functionality
- **Live Model Validation**: When setting Ollama models, Taskmaster now validates against the local Ollama instance by querying `/api/tags` endpoint
- **Configurable Endpoints**: Uses the `ollamaBaseUrl` from `.taskmasterconfig` (with role-specific `baseUrl` overrides supported)
- **Robust Error Handling**:
- Detects when Ollama server is not running and provides clear error messages
- Validates model existence and lists available alternatives when model not found
- Graceful fallback behavior for connection issues
- **Full Platform Support**: Both MCP server tools and CLI commands support the new validation
- **Improved User Experience**: Clear feedback during model validation with informative success/error messages
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`4c83526`](https://github.com/eyaltoledano/claude-task-master/commit/4c835264ac6c1f74896cddabc3b3c69a5c435417) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds and updates supported AI models with costs:
- Added new OpenRouter models: GPT-4.1 series, O3, Codex Mini, Llama 4 Maverick, Llama 4 Scout, Qwen3-235b
- Added Mistral models: Devstral Small, Mistral Nemo
- Updated Ollama models with latest variants: Devstral, Qwen3, Mistral-small3.1, Llama3.3
- Updated Gemini model to latest 2.5 Flash preview version
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`70f4054`](https://github.com/eyaltoledano/claude-task-master/commit/70f4054f268f9f8257870e64c24070263d4e2966) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Add `--research` flag to parse-prd command, enabling enhanced task generation from PRD files. When used, Taskmaster leverages the research model to:
- Research current technologies and best practices relevant to the project
- Identify technical challenges and security concerns not explicitly mentioned in the PRD
- Include specific library recommendations with version numbers
- Provide more detailed implementation guidance based on industry standards
- Create more accurate dependency relationships between tasks
This results in higher quality, more actionable tasks with minimal additional effort.
_NOTE_ That this is an experimental feature. Research models don't typically do great at structured output. You may find some failures when using research mode, so please share your feedback so we can improve this.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`5e9bc28`](https://github.com/eyaltoledano/claude-task-master/commit/5e9bc28abea36ec7cd25489af7fcc6cbea51038b) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - This change significantly enhances the `add-task` command's intelligence. When you add a new task, Taskmaster now automatically: - Analyzes your existing tasks to find those most relevant to your new task's description. - Provides the AI with detailed context from these relevant tasks.
This results in newly created tasks being more accurately placed within your project's dependency structure, saving you time and any need to update tasks just for dependencies, all without significantly increasing AI costs. You'll get smarter, more connected tasks right from the start.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`34c769b`](https://github.com/eyaltoledano/claude-task-master/commit/34c769bcd0faf65ddec3b95de2ba152a8be3ec5c) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Enhance analyze-complexity to support analyzing specific task IDs. - You can now analyze individual tasks or selected task groups by using the new `--id` option with comma-separated IDs, or `--from` and `--to` options to specify a range of tasks. - The feature intelligently merges analysis results with existing reports, allowing incremental analysis while preserving previous results.
- [#558](https://github.com/eyaltoledano/claude-task-master/pull/558) [`86d8f00`](https://github.com/eyaltoledano/claude-task-master/commit/86d8f00af809887ee0ba0ba7157cc555e0d07c38) Thanks [@ShreyPaharia](https://github.com/ShreyPaharia)! - Add next task to set task status response
Status: DONE
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`04af16d`](https://github.com/eyaltoledano/claude-task-master/commit/04af16de27295452e134b17b3c7d0f44bbb84c29) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Add move command to enable moving tasks and subtasks within the task hierarchy. This new command supports moving standalone tasks to become subtasks, subtasks to become standalone tasks, and moving subtasks between different parents. The implementation handles circular dependencies, validation, and proper updating of parent-child relationships.
**Usage:**
- CLI command: `task-master move --from=<id> --to=<id>`
- MCP tool: `move_task` with parameters:
- `from`: ID of task/subtask to move (e.g., "5" or "5.2")
- `to`: ID of destination (e.g., "7" or "7.3")
- `file` (optional): Custom path to tasks.json
**Example scenarios:**
- Move task to become subtask: `--from="5" --to="7"`
- Move subtask to standalone task: `--from="5.2" --to="7"`
- Move subtask to different parent: `--from="5.2" --to="7.3"`
- Reorder subtask within same parent: `--from="5.2" --to="5.4"`
- Move multiple tasks at once: `--from="10,11,12" --to="16,17,18"`
- Move task to new ID: `--from="5" --to="25"` (creates a new task with ID 25)
**Multiple Task Support:**
The command supports moving multiple tasks simultaneously by providing comma-separated lists for both `--from` and `--to` parameters. The number of source and destination IDs must match. This is particularly useful for resolving merge conflicts in task files when multiple team members have created tasks on different branches.
**Validation Features:**
- Allows moving tasks to new, non-existent IDs (automatically creates placeholders)
- Prevents moving to existing task IDs that already contain content (to avoid overwriting)
- Validates source tasks exist before attempting to move them
- Ensures proper parent-child relationships are maintained
### Patch Changes
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`231e569`](https://github.com/eyaltoledano/claude-task-master/commit/231e569e84804a2e5ba1f9da1a985d0851b7e949) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adjusts default main model model to Claude Sonnet 4. Adjusts default fallback to Claude Sonney 3.7"
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`b371808`](https://github.com/eyaltoledano/claude-task-master/commit/b371808524f2c2986f4940d78fcef32c125d01f2) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds llms-install.md to the root to enable AI agents to programmatically install the Taskmaster MCP server. This is specifically being introduced for the Cline MCP marketplace and will be adjusted over time for other MCP clients as needed.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`a59dd03`](https://github.com/eyaltoledano/claude-task-master/commit/a59dd037cfebb46d38bc44dd216c7c23933be641) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds AGENTS.md to power Claude Code integration more natively based on Anthropic's best practice and Claude-specific MCP client behaviours. Also adds in advanced workflows that tie Taskmaster commands together into one Claude workflow."
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`e0e1155`](https://github.com/eyaltoledano/claude-task-master/commit/e0e115526089bf41d5d60929956edf5601ff3e23) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Fixes issue with force/append flag combinations for parse-prd.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`34df2c8`](https://github.com/eyaltoledano/claude-task-master/commit/34df2c8bbddc0e157c981d32502bbe6b9468202e) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - You can now add tasks to a newly initialized project without having to parse a prd. This will automatically create the missing tasks.json file and create the first task. Lets you vibe if you want to vibe."
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`d2e6431`](https://github.com/eyaltoledano/claude-task-master/commit/d2e64318e2f4bfc3457792e310cc4ff9210bba30) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Fixes an issue where the research fallback would attempt to make API calls without checking for a valid API key first. This ensures proper error handling when the main task generation and first fallback both fail. Closes #421 #519.
## 0.15.0-rc.0
### Minor Changes
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`09add37`](https://github.com/eyaltoledano/claude-task-master/commit/09add37423d70b809d5c28f3cde9fccd5a7e64e7) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Added comprehensive Ollama model validation and interactive setup support
- **Interactive Setup Enhancement**: Added "Custom Ollama model" option to `task-master models --setup`, matching the existing OpenRouter functionality
- **Live Model Validation**: When setting Ollama models, Taskmaster now validates against the local Ollama instance by querying `/api/tags` endpoint
- **Configurable Endpoints**: Uses the `ollamaBaseUrl` from `.taskmasterconfig` (with role-specific `baseUrl` overrides supported)
- **Robust Error Handling**:
- Detects when Ollama server is not running and provides clear error messages
- Validates model existence and lists available alternatives when model not found
- Graceful fallback behavior for connection issues
- **Full Platform Support**: Both MCP server tools and CLI commands support the new validation
- **Improved User Experience**: Clear feedback during model validation with informative success/error messages
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`4c83526`](https://github.com/eyaltoledano/claude-task-master/commit/4c835264ac6c1f74896cddabc3b3c69a5c435417) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds and updates supported AI models with costs:
- Added new OpenRouter models: GPT-4.1 series, O3, Codex Mini, Llama 4 Maverick, Llama 4 Scout, Qwen3-235b
- Added Mistral models: Devstral Small, Mistral Nemo
- Updated Ollama models with latest variants: Devstral, Qwen3, Mistral-small3.1, Llama3.3
- Updated Gemini model to latest 2.5 Flash preview version
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`70f4054`](https://github.com/eyaltoledano/claude-task-master/commit/70f4054f268f9f8257870e64c24070263d4e2966) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Add `--research` flag to parse-prd command, enabling enhanced task generation from PRD files. When used, Taskmaster leverages the research model to:
- Research current technologies and best practices relevant to the project
- Identify technical challenges and security concerns not explicitly mentioned in the PRD
- Include specific library recommendations with version numbers
- Provide more detailed implementation guidance based on industry standards
- Create more accurate dependency relationships between tasks
This results in higher quality, more actionable tasks with minimal additional effort.
_NOTE_ That this is an experimental feature. Research models don't typically do great at structured output. You may find some failures when using research mode, so please share your feedback so we can improve this.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`5e9bc28`](https://github.com/eyaltoledano/claude-task-master/commit/5e9bc28abea36ec7cd25489af7fcc6cbea51038b) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - This change significantly enhances the `add-task` command's intelligence. When you add a new task, Taskmaster now automatically: - Analyzes your existing tasks to find those most relevant to your new task's description. - Provides the AI with detailed context from these relevant tasks.
This results in newly created tasks being more accurately placed within your project's dependency structure, saving you time and any need to update tasks just for dependencies, all without significantly increasing AI costs. You'll get smarter, more connected tasks right from the start.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`34c769b`](https://github.com/eyaltoledano/claude-task-master/commit/34c769bcd0faf65ddec3b95de2ba152a8be3ec5c) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Enhance analyze-complexity to support analyzing specific task IDs. - You can now analyze individual tasks or selected task groups by using the new `--id` option with comma-separated IDs, or `--from` and `--to` options to specify a range of tasks. - The feature intelligently merges analysis results with existing reports, allowing incremental analysis while preserving previous results.
- [#558](https://github.com/eyaltoledano/claude-task-master/pull/558) [`86d8f00`](https://github.com/eyaltoledano/claude-task-master/commit/86d8f00af809887ee0ba0ba7157cc555e0d07c38) Thanks [@ShreyPaharia](https://github.com/ShreyPaharia)! - Add next task to set task status response
Status: DONE
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`04af16d`](https://github.com/eyaltoledano/claude-task-master/commit/04af16de27295452e134b17b3c7d0f44bbb84c29) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Add move command to enable moving tasks and subtasks within the task hierarchy. This new command supports moving standalone tasks to become subtasks, subtasks to become standalone tasks, and moving subtasks between different parents. The implementation handles circular dependencies, validation, and proper updating of parent-child relationships.
**Usage:**
- CLI command: `task-master move --from=<id> --to=<id>`
- MCP tool: `move_task` with parameters:
- `from`: ID of task/subtask to move (e.g., "5" or "5.2")
- `to`: ID of destination (e.g., "7" or "7.3")
- `file` (optional): Custom path to tasks.json
**Example scenarios:**
- Move task to become subtask: `--from="5" --to="7"`
- Move subtask to standalone task: `--from="5.2" --to="7"`
- Move subtask to different parent: `--from="5.2" --to="7.3"`
- Reorder subtask within same parent: `--from="5.2" --to="5.4"`
- Move multiple tasks at once: `--from="10,11,12" --to="16,17,18"`
- Move task to new ID: `--from="5" --to="25"` (creates a new task with ID 25)
**Multiple Task Support:**
The command supports moving multiple tasks simultaneously by providing comma-separated lists for both `--from` and `--to` parameters. The number of source and destination IDs must match. This is particularly useful for resolving merge conflicts in task files when multiple team members have created tasks on different branches.
**Validation Features:**
- Allows moving tasks to new, non-existent IDs (automatically creates placeholders)
- Prevents moving to existing task IDs that already contain content (to avoid overwriting)
- Validates source tasks exist before attempting to move them
- Ensures proper parent-child relationships are maintained
### Patch Changes
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`231e569`](https://github.com/eyaltoledano/claude-task-master/commit/231e569e84804a2e5ba1f9da1a985d0851b7e949) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adjusts default main model model to Claude Sonnet 4. Adjusts default fallback to Claude Sonney 3.7"
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`b371808`](https://github.com/eyaltoledano/claude-task-master/commit/b371808524f2c2986f4940d78fcef32c125d01f2) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds llms-install.md to the root to enable AI agents to programmatically install the Taskmaster MCP server. This is specifically being introduced for the Cline MCP marketplace and will be adjusted over time for other MCP clients as needed.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`a59dd03`](https://github.com/eyaltoledano/claude-task-master/commit/a59dd037cfebb46d38bc44dd216c7c23933be641) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds AGENTS.md to power Claude Code integration more natively based on Anthropic's best practice and Claude-specific MCP client behaviours. Also adds in advanced workflows that tie Taskmaster commands together into one Claude workflow."
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`e0e1155`](https://github.com/eyaltoledano/claude-task-master/commit/e0e115526089bf41d5d60929956edf5601ff3e23) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Fixes issue with force/append flag combinations for parse-prd.
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`34df2c8`](https://github.com/eyaltoledano/claude-task-master/commit/34df2c8bbddc0e157c981d32502bbe6b9468202e) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - You can now add tasks to a newly initialized project without having to parse a prd. This will automatically create the missing tasks.json file and create the first task. Lets you vibe if you want to vibe."
- [#567](https://github.com/eyaltoledano/claude-task-master/pull/567) [`d2e6431`](https://github.com/eyaltoledano/claude-task-master/commit/d2e64318e2f4bfc3457792e310cc4ff9210bba30) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Fixes an issue where the research fallback would attempt to make API calls without checking for a valid API key first. This ensures proper error handling when the main task generation and first fallback both fail. Closes #421 #519.
## 0.14.0
### Minor Changes
- [#521](https://github.com/eyaltoledano/claude-task-master/pull/521) [`ed17cb0`](https://github.com/eyaltoledano/claude-task-master/commit/ed17cb0e0a04dedde6c616f68f24f3660f68dd04) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - .taskmasterconfig now supports a baseUrl field per model role (main, research, fallback), allowing endpoint overrides for any provider.
- [#536](https://github.com/eyaltoledano/claude-task-master/pull/536) [`f4a83ec`](https://github.com/eyaltoledano/claude-task-master/commit/f4a83ec047b057196833e3a9b861d4bceaec805d) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Add Ollama as a supported AI provider.
- You can now add it by running `task-master models --setup` and selecting it.
- Ollama is a local model provider, so no API key is required.
- Ollama models are available at `http://localhost:11434/api` by default.
- You can change the default URL by setting the `OLLAMA_BASE_URL` environment variable or by adding a `baseUrl` property to the `ollama` model role in `.taskmasterconfig`.
- If you want to use a custom API key, you can set it in the `OLLAMA_API_KEY` environment variable.
- [#528](https://github.com/eyaltoledano/claude-task-master/pull/528) [`58b417a`](https://github.com/eyaltoledano/claude-task-master/commit/58b417a8ce697e655f749ca4d759b1c20014c523) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Display task complexity scores in task lists, next task, and task details views.
### Patch Changes
- [#402](https://github.com/eyaltoledano/claude-task-master/pull/402) [`01963af`](https://github.com/eyaltoledano/claude-task-master/commit/01963af2cb6f77f43b2ad8a6e4a838ec205412bc) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Resolve all issues related to MCP
- [#478](https://github.com/eyaltoledano/claude-task-master/pull/478) [`4117f71`](https://github.com/eyaltoledano/claude-task-master/commit/4117f71c18ee4d321a9c91308d00d5d69bfac61e) Thanks [@joedanz](https://github.com/joedanz)! - Fix CLI --force flag for parse-prd command
Previously, the --force flag was not respected when running `parse-prd`, causing the command to prompt for confirmation or fail even when --force was provided. This patch ensures that the flag is correctly passed and handled, allowing users to overwrite existing tasks.json files as intended.
- Fixes #477
- [#511](https://github.com/eyaltoledano/claude-task-master/pull/511) [`17294ff`](https://github.com/eyaltoledano/claude-task-master/commit/17294ff25918d64278674e558698a1a9ad785098) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Task Master no longer tells you to update when you're already up to date
- [#442](https://github.com/eyaltoledano/claude-task-master/pull/442) [`2b3ae8b`](https://github.com/eyaltoledano/claude-task-master/commit/2b3ae8bf89dc471c4ce92f3a12ded57f61faa449) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds costs information to AI commands using input/output tokens and model costs.
- [#402](https://github.com/eyaltoledano/claude-task-master/pull/402) [`01963af`](https://github.com/eyaltoledano/claude-task-master/commit/01963af2cb6f77f43b2ad8a6e4a838ec205412bc) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix ERR_MODULE_NOT_FOUND when trying to run MCP Server
- [#402](https://github.com/eyaltoledano/claude-task-master/pull/402) [`01963af`](https://github.com/eyaltoledano/claude-task-master/commit/01963af2cb6f77f43b2ad8a6e4a838ec205412bc) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Add src directory to exports
- [#523](https://github.com/eyaltoledano/claude-task-master/pull/523) [`da317f2`](https://github.com/eyaltoledano/claude-task-master/commit/da317f2607ca34db1be78c19954996f634c40923) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix the error handling of task status settings
- [#527](https://github.com/eyaltoledano/claude-task-master/pull/527) [`a8dabf4`](https://github.com/eyaltoledano/claude-task-master/commit/a8dabf44856713f488960224ee838761716bba26) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Remove caching layer from MCP direct functions for task listing, next task, and complexity report
- Fixes issues users where having where they were getting stale data
- [#417](https://github.com/eyaltoledano/claude-task-master/pull/417) [`a1f8d52`](https://github.com/eyaltoledano/claude-task-master/commit/a1f8d52474fdbdf48e17a63e3f567a6d63010d9f) Thanks [@ksylvan](https://github.com/ksylvan)! - Fix for issue #409 LOG_LEVEL Pydantic validation error
- [#442](https://github.com/eyaltoledano/claude-task-master/pull/442) [`0288311`](https://github.com/eyaltoledano/claude-task-master/commit/0288311965ae2a343ebee4a0c710dde94d2ae7e7) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Small fixes - `next` command no longer incorrectly suggests that subtasks be broken down into subtasks in the CLI - fixes the `append` flag so it properly works in the CLI
- [#501](https://github.com/eyaltoledano/claude-task-master/pull/501) [`0a61184`](https://github.com/eyaltoledano/claude-task-master/commit/0a611843b56a856ef0a479dc34078326e05ac3a8) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix initial .env.example to work out of the box
- Closes #419
- [#435](https://github.com/eyaltoledano/claude-task-master/pull/435) [`a96215a`](https://github.com/eyaltoledano/claude-task-master/commit/a96215a359b25061fd3b3f3c7b10e8ac0390c062) Thanks [@lebsral](https://github.com/lebsral)! - Fix default fallback model and maxTokens in Taskmaster initialization
- [#517](https://github.com/eyaltoledano/claude-task-master/pull/517) [`e96734a`](https://github.com/eyaltoledano/claude-task-master/commit/e96734a6cc6fec7731de72eb46b182a6e3743d02) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix bug when updating tasks on the MCP server (#412)
- [#496](https://github.com/eyaltoledano/claude-task-master/pull/496) [`efce374`](https://github.com/eyaltoledano/claude-task-master/commit/efce37469bc58eceef46763ba32df1ed45242211) Thanks [@joedanz](https://github.com/joedanz)! - Fix duplicate output on CLI help screen
- Prevent the Task Master CLI from printing the help screen more than once when using `-h` or `--help`.
- Removed redundant manual event handlers and guards for help output; now only the Commander `.helpInformation` override is used for custom help.
- Simplified logic so that help is only shown once for both "no arguments" and help flag flows.
- Ensures a clean, branded help experience with no repeated content.
- Fixes #339
## 0.14.0-rc.1
### Minor Changes
- [#536](https://github.com/eyaltoledano/claude-task-master/pull/536) [`f4a83ec`](https://github.com/eyaltoledano/claude-task-master/commit/f4a83ec047b057196833e3a9b861d4bceaec805d) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Add Ollama as a supported AI provider.
- You can now add it by running `task-master models --setup` and selecting it.
- Ollama is a local model provider, so no API key is required.
- Ollama models are available at `http://localhost:11434/api` by default.
- You can change the default URL by setting the `OLLAMA_BASE_URL` environment variable or by adding a `baseUrl` property to the `ollama` model role in `.taskmasterconfig`.
- If you want to use a custom API key, you can set it in the `OLLAMA_API_KEY` environment variable.
### Patch Changes
- [#442](https://github.com/eyaltoledano/claude-task-master/pull/442) [`2b3ae8b`](https://github.com/eyaltoledano/claude-task-master/commit/2b3ae8bf89dc471c4ce92f3a12ded57f61faa449) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Adds costs information to AI commands using input/output tokens and model costs.
- [#442](https://github.com/eyaltoledano/claude-task-master/pull/442) [`0288311`](https://github.com/eyaltoledano/claude-task-master/commit/0288311965ae2a343ebee4a0c710dde94d2ae7e7) Thanks [@eyaltoledano](https://github.com/eyaltoledano)! - Small fixes - `next` command no longer incorrectly suggests that subtasks be broken down into subtasks in the CLI - fixes the `append` flag so it properly works in the CLI
## 0.14.0-rc.0
### Minor Changes
- [#521](https://github.com/eyaltoledano/claude-task-master/pull/521) [`ed17cb0`](https://github.com/eyaltoledano/claude-task-master/commit/ed17cb0e0a04dedde6c616f68f24f3660f68dd04) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - .taskmasterconfig now supports a baseUrl field per model role (main, research, fallback), allowing endpoint overrides for any provider.
- [#528](https://github.com/eyaltoledano/claude-task-master/pull/528) [`58b417a`](https://github.com/eyaltoledano/claude-task-master/commit/58b417a8ce697e655f749ca4d759b1c20014c523) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Display task complexity scores in task lists, next task, and task details views.
### Patch Changes
- [#478](https://github.com/eyaltoledano/claude-task-master/pull/478) [`4117f71`](https://github.com/eyaltoledano/claude-task-master/commit/4117f71c18ee4d321a9c91308d00d5d69bfac61e) Thanks [@joedanz](https://github.com/joedanz)! - Fix CLI --force flag for parse-prd command
Previously, the --force flag was not respected when running `parse-prd`, causing the command to prompt for confirmation or fail even when --force was provided. This patch ensures that the flag is correctly passed and handled, allowing users to overwrite existing tasks.json files as intended.
- Fixes #477
- [#511](https://github.com/eyaltoledano/claude-task-master/pull/511) [`17294ff`](https://github.com/eyaltoledano/claude-task-master/commit/17294ff25918d64278674e558698a1a9ad785098) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Task Master no longer tells you to update when you're already up to date
- [#523](https://github.com/eyaltoledano/claude-task-master/pull/523) [`da317f2`](https://github.com/eyaltoledano/claude-task-master/commit/da317f2607ca34db1be78c19954996f634c40923) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix the error handling of task status settings
- [#527](https://github.com/eyaltoledano/claude-task-master/pull/527) [`a8dabf4`](https://github.com/eyaltoledano/claude-task-master/commit/a8dabf44856713f488960224ee838761716bba26) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Remove caching layer from MCP direct functions for task listing, next task, and complexity report
- Fixes issues users where having where they were getting stale data
- [#417](https://github.com/eyaltoledano/claude-task-master/pull/417) [`a1f8d52`](https://github.com/eyaltoledano/claude-task-master/commit/a1f8d52474fdbdf48e17a63e3f567a6d63010d9f) Thanks [@ksylvan](https://github.com/ksylvan)! - Fix for issue #409 LOG_LEVEL Pydantic validation error
- [#501](https://github.com/eyaltoledano/claude-task-master/pull/501) [`0a61184`](https://github.com/eyaltoledano/claude-task-master/commit/0a611843b56a856ef0a479dc34078326e05ac3a8) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix initial .env.example to work out of the box
- Closes #419
- [#435](https://github.com/eyaltoledano/claude-task-master/pull/435) [`a96215a`](https://github.com/eyaltoledano/claude-task-master/commit/a96215a359b25061fd3b3f3c7b10e8ac0390c062) Thanks [@lebsral](https://github.com/lebsral)! - Fix default fallback model and maxTokens in Taskmaster initialization
- [#517](https://github.com/eyaltoledano/claude-task-master/pull/517) [`e96734a`](https://github.com/eyaltoledano/claude-task-master/commit/e96734a6cc6fec7731de72eb46b182a6e3743d02) Thanks [@Crunchyman-ralph](https://github.com/Crunchyman-ralph)! - Fix bug when updating tasks on the MCP server (#412)
- [#496](https://github.com/eyaltoledano/claude-task-master/pull/496) [`efce374`](https://github.com/eyaltoledano/claude-task-master/commit/efce37469bc58eceef46763ba32df1ed45242211) Thanks [@joedanz](https://github.com/joedanz)! - Fix duplicate output on CLI help screen
- Prevent the Task Master CLI from printing the help screen more than once when using `-h` or `--help`.
- Removed redundant manual event handlers and guards for help output; now only the Commander `.helpInformation` override is used for custom help.
- Simplified logic so that help is only shown once for both "no arguments" and help flag flows.
- Ensures a clean, branded help experience with no repeated content.
- Fixes #339
## 0.13.1
### Patch Changes

104
README.md
View File

@@ -11,18 +11,39 @@ A task management system for AI-driven development with Claude, designed to work
## Requirements
Taskmaster utilizes AI across several commands, and those require a separate API key. You can use a variety of models from different AI providers provided you add your API keys. For example, if you want to use Claude 3.7, you'll need an Anthropic API key.
You can define 3 types of models to be used: the main model, the research model, and the fallback model (in case either the main or research fail). Whatever model you use, its provider API key must be present in either mcp.json or .env.
At least one (1) of the following is required:
- Anthropic API key (Claude API)
- OpenAI SDK (for Perplexity API integration, optional)
- OpenAI API key
- Google Gemini API key
- Perplexity API key (for research model)
- xAI API Key (for research or main model)
- OpenRouter API Key (for research or main model)
Using the research model is optional but highly recommended. You will need at least ONE API key. Adding all API keys enables you to seamlessly switch between model providers at will.
## Quick Start
### Option 1 | MCP (Recommended):
### Option 1: MCP (Recommended)
MCP (Model Control Protocol) provides the easiest way to get started with Task Master directly in your editor.
MCP (Model Control Protocol) lets you run Task Master directly from your editor.
1. **Add the MCP config to your editor** (Cursor recommended, but it works with other text editors):
#### 1. Add your MCP config at the following path depending on your editor
```json
| Editor | Scope | Linux/macOS Path | Windows Path | Key |
| ------------ | ------- | ------------------------------------- | ------------------------------------------------- | ------------ |
| **Cursor** | Global | `~/.cursor/mcp.json` | `%USERPROFILE%\.cursor\mcp.json` | `mcpServers` |
| | Project | `<project_folder>/.cursor/mcp.json` | `<project_folder>\.cursor\mcp.json` | `mcpServers` |
| **Windsurf** | Global | `~/.codeium/windsurf/mcp_config.json` | `%USERPROFILE%\.codeium\windsurf\mcp_config.json` | `mcpServers` |
| **VSCode** | Project | `<project_folder>/.vscode/mcp.json` | `<project_folder>\.vscode\mcp.json` | `servers` |
##### Cursor & Windsurf (`mcpServers`)
```jsonc
{
"mcpServers": {
"taskmaster-ai": {
@@ -36,30 +57,83 @@ MCP (Model Control Protocol) provides the easiest way to get started with Task M
"MISTRAL_API_KEY": "YOUR_MISTRAL_KEY_HERE",
"OPENROUTER_API_KEY": "YOUR_OPENROUTER_KEY_HERE",
"XAI_API_KEY": "YOUR_XAI_KEY_HERE",
"AZURE_OPENAI_API_KEY": "YOUR_AZURE_KEY_HERE"
"AZURE_OPENAI_API_KEY": "YOUR_AZURE_KEY_HERE",
"OLLAMA_API_KEY": "YOUR_OLLAMA_API_KEY_HERE"
}
}
}
}
```
2. **Enable the MCP** in your editor
> 🔑 Replace `YOUR_…_KEY_HERE` with your real API keys. You can remove keys you don't use.
3. **Prompt the AI** to initialize Task Master:
##### VSCode (`servers` + `type`)
```
Can you please initialize taskmaster-ai into my project?
```jsonc
{
"servers": {
"taskmaster-ai": {
"command": "npx",
"args": ["-y", "--package=task-master-ai", "task-master-ai"],
"env": {
"ANTHROPIC_API_KEY": "YOUR_ANTHROPIC_API_KEY_HERE",
"PERPLEXITY_API_KEY": "YOUR_PERPLEXITY_API_KEY_HERE",
"OPENAI_API_KEY": "YOUR_OPENAI_KEY_HERE",
"GOOGLE_API_KEY": "YOUR_GOOGLE_KEY_HERE",
"MISTRAL_API_KEY": "YOUR_MISTRAL_KEY_HERE",
"OPENROUTER_API_KEY": "YOUR_OPENROUTER_KEY_HERE",
"XAI_API_KEY": "YOUR_XAI_KEY_HERE",
"AZURE_OPENAI_API_KEY": "YOUR_AZURE_KEY_HERE"
},
"type": "stdio"
}
}
}
```
4. **Use common commands** directly through your AI assistant:
> 🔑 Replace `YOUR_…_KEY_HERE` with your real API keys. You can remove keys you don't use.
#### 2. (Cursor-only) Enable Taskmaster MCP
Open Cursor Settings (Ctrl+Shift+J) ➡ Click on MCP tab on the left ➡ Enable task-master-ai with the toggle
#### 3. (Optional) Configure the models you want to use
In your editors AI chat pane, say:
```txt
Can you parse my PRD at scripts/prd.txt?
What's the next task I should work on?
Can you help me implement task 3?
Can you help me expand task 4?
Change the main, research and fallback models to <model_name>, <model_name> and <model_name> respectively.
```
[Table of available models](docs/models.md)
#### 4. Initialize Task Master
In your editors AI chat pane, say:
```txt
Initialize taskmaster-ai in my project
```
#### 5. Make sure you have a PRD in `<project_folder>/scripts/prd.txt`
An example of a PRD is located into `<project_folder>/scripts/example_prd.txt`.
**Always start with a detailed PRD.**
The more detailed your PRD, the better the generated tasks will be.
#### 6. Common Commands
Use your AI assistant to:
- Parse requirements: `Can you parse my PRD at scripts/prd.txt?`
- Plan next step: `Whats the next task I should work on?`
- Implement a task: `Can you help me implement task 3?`
- Expand a task: `Can you help me expand task 4?`
[More examples on how to use Task Master in chat](docs/examples.md)
### Option 2: Using Command Line
#### Installation

413
assets/AGENTS.md Normal file
View File

@@ -0,0 +1,413 @@
# Task Master AI - Claude Code Integration Guide
## Essential Commands
### Core Workflow Commands
```bash
# Project Setup
task-master init # Initialize Task Master in current project
task-master parse-prd scripts/prd.txt # Generate tasks from PRD document
task-master models --setup # Configure AI models interactively
# Daily Development Workflow
task-master list # Show all tasks with status
task-master next # Get next available task to work on
task-master show <id> # View detailed task information (e.g., task-master show 1.2)
task-master set-status --id=<id> --status=done # Mark task complete
# Task Management
task-master add-task --prompt="description" --research # Add new task with AI assistance
task-master expand --id=<id> --research --force # Break task into subtasks
task-master update-task --id=<id> --prompt="changes" # Update specific task
task-master update --from=<id> --prompt="changes" # Update multiple tasks from ID onwards
task-master update-subtask --id=<id> --prompt="notes" # Add implementation notes to subtask
# Analysis & Planning
task-master analyze-complexity --research # Analyze task complexity
task-master complexity-report # View complexity analysis
task-master expand --all --research # Expand all eligible tasks
# Dependencies & Organization
task-master add-dependency --id=<id> --depends-on=<id> # Add task dependency
task-master move --from=<id> --to=<id> # Reorganize task hierarchy
task-master validate-dependencies # Check for dependency issues
task-master generate # Update task markdown files (usually auto-called)
```
## Key Files & Project Structure
### Core Files
- `tasks/tasks.json` - Main task data file (auto-managed)
- `.taskmasterconfig` - AI model configuration (use `task-master models` to modify)
- `scripts/prd.txt` - Product Requirements Document for parsing
- `tasks/*.txt` - Individual task files (auto-generated from tasks.json)
- `.env` - API keys for CLI usage
### Claude Code Integration Files
- `CLAUDE.md` - Auto-loaded context for Claude Code (this file)
- `.claude/settings.json` - Claude Code tool allowlist and preferences
- `.claude/commands/` - Custom slash commands for repeated workflows
- `.mcp.json` - MCP server configuration (project-specific)
### Directory Structure
```
project/
├── tasks/
│ ├── tasks.json # Main task database
│ ├── task-1.md # Individual task files
│ └── task-2.md
├── scripts/
│ ├── prd.txt # Product requirements
│ └── task-complexity-report.json
├── .claude/
│ ├── settings.json # Claude Code configuration
│ └── commands/ # Custom slash commands
├── .taskmasterconfig # AI models & settings
├── .env # API keys
├── .mcp.json # MCP configuration
└── CLAUDE.md # This file - auto-loaded by Claude Code
```
## MCP Integration
Task Master provides an MCP server that Claude Code can connect to. Configure in `.mcp.json`:
```json
{
"mcpServers": {
"task-master-ai": {
"command": "npx",
"args": ["-y", "--package=task-master-ai", "task-master-ai"],
"env": {
"ANTHROPIC_API_KEY": "your_key_here",
"PERPLEXITY_API_KEY": "your_key_here",
"OPENAI_API_KEY": "OPENAI_API_KEY_HERE",
"GOOGLE_API_KEY": "GOOGLE_API_KEY_HERE",
"XAI_API_KEY": "XAI_API_KEY_HERE",
"OPENROUTER_API_KEY": "OPENROUTER_API_KEY_HERE",
"MISTRAL_API_KEY": "MISTRAL_API_KEY_HERE",
"AZURE_OPENAI_API_KEY": "AZURE_OPENAI_API_KEY_HERE",
"OLLAMA_API_KEY": "OLLAMA_API_KEY_HERE"
}
}
}
}
```
### Essential MCP Tools
```javascript
help; // = shows available taskmaster commands
// Project setup
initialize_project; // = task-master init
parse_prd; // = task-master parse-prd
// Daily workflow
get_tasks; // = task-master list
next_task; // = task-master next
get_task; // = task-master show <id>
set_task_status; // = task-master set-status
// Task management
add_task; // = task-master add-task
expand_task; // = task-master expand
update_task; // = task-master update-task
update_subtask; // = task-master update-subtask
update; // = task-master update
// Analysis
analyze_project_complexity; // = task-master analyze-complexity
complexity_report; // = task-master complexity-report
```
## Claude Code Workflow Integration
### Standard Development Workflow
#### 1. Project Initialization
```bash
# Initialize Task Master
task-master init
# Create or obtain PRD, then parse it
task-master parse-prd scripts/prd.txt
# Analyze complexity and expand tasks
task-master analyze-complexity --research
task-master expand --all --research
```
If tasks already exist, another PRD can be parsed (with new information only!) using parse-prd with --append flag. This will add the generated tasks to the existing list of tasks..
#### 2. Daily Development Loop
```bash
# Start each session
task-master next # Find next available task
task-master show <id> # Review task details
# During implementation, check in code context into the tasks and subtasks
task-master update-subtask --id=<id> --prompt="implementation notes..."
# Complete tasks
task-master set-status --id=<id> --status=done
```
#### 3. Multi-Claude Workflows
For complex projects, use multiple Claude Code sessions:
```bash
# Terminal 1: Main implementation
cd project && claude
# Terminal 2: Testing and validation
cd project-test-worktree && claude
# Terminal 3: Documentation updates
cd project-docs-worktree && claude
```
### Custom Slash Commands
Create `.claude/commands/taskmaster-next.md`:
```markdown
Find the next available Task Master task and show its details.
Steps:
1. Run `task-master next` to get the next task
2. If a task is available, run `task-master show <id>` for full details
3. Provide a summary of what needs to be implemented
4. Suggest the first implementation step
```
Create `.claude/commands/taskmaster-complete.md`:
```markdown
Complete a Task Master task: $ARGUMENTS
Steps:
1. Review the current task with `task-master show $ARGUMENTS`
2. Verify all implementation is complete
3. Run any tests related to this task
4. Mark as complete: `task-master set-status --id=$ARGUMENTS --status=done`
5. Show the next available task with `task-master next`
```
## Tool Allowlist Recommendations
Add to `.claude/settings.json`:
```json
{
"allowedTools": [
"Edit",
"Bash(task-master *)",
"Bash(git commit:*)",
"Bash(git add:*)",
"Bash(npm run *)",
"mcp__task_master_ai__*"
]
}
```
## Configuration & Setup
### API Keys Required
At least **one** of these API keys must be configured:
- `ANTHROPIC_API_KEY` (Claude models) - **Recommended**
- `PERPLEXITY_API_KEY` (Research features) - **Highly recommended**
- `OPENAI_API_KEY` (GPT models)
- `GOOGLE_API_KEY` (Gemini models)
- `MISTRAL_API_KEY` (Mistral models)
- `OPENROUTER_API_KEY` (Multiple models)
- `XAI_API_KEY` (Grok models)
An API key is required for any provider used across any of the 3 roles defined in the `models` command.
### Model Configuration
```bash
# Interactive setup (recommended)
task-master models --setup
# Set specific models
task-master models --set-main claude-3-5-sonnet-20241022
task-master models --set-research perplexity-llama-3.1-sonar-large-128k-online
task-master models --set-fallback gpt-4o-mini
```
## Task Structure & IDs
### Task ID Format
- Main tasks: `1`, `2`, `3`, etc.
- Subtasks: `1.1`, `1.2`, `2.1`, etc.
- Sub-subtasks: `1.1.1`, `1.1.2`, etc.
### Task Status Values
- `pending` - Ready to work on
- `in-progress` - Currently being worked on
- `done` - Completed and verified
- `deferred` - Postponed
- `cancelled` - No longer needed
- `blocked` - Waiting on external factors
### Task Fields
```json
{
"id": "1.2",
"title": "Implement user authentication",
"description": "Set up JWT-based auth system",
"status": "pending",
"priority": "high",
"dependencies": ["1.1"],
"details": "Use bcrypt for hashing, JWT for tokens...",
"testStrategy": "Unit tests for auth functions, integration tests for login flow",
"subtasks": []
}
```
## Claude Code Best Practices with Task Master
### Context Management
- Use `/clear` between different tasks to maintain focus
- This CLAUDE.md file is automatically loaded for context
- Use `task-master show <id>` to pull specific task context when needed
### Iterative Implementation
1. `task-master show <subtask-id>` - Understand requirements
2. Explore codebase and plan implementation
3. `task-master update-subtask --id=<id> --prompt="detailed plan"` - Log plan
4. `task-master set-status --id=<id> --status=in-progress` - Start work
5. Implement code following logged plan
6. `task-master update-subtask --id=<id> --prompt="what worked/didn't work"` - Log progress
7. `task-master set-status --id=<id> --status=done` - Complete task
### Complex Workflows with Checklists
For large migrations or multi-step processes:
1. Create a markdown PRD file describing the new changes: `touch task-migration-checklist.md` (prds can be .txt or .md)
2. Use Taskmaster to parse the new prd with `task-master parse-prd --append` (also available in MCP)
3. Use Taskmaster to expand the newly generated tasks into subtasks. Consdier using `analyze-complexity` with the correct --to and --from IDs (the new ids) to identify the ideal subtask amounts for each task. Then expand them.
4. Work through items systematically, checking them off as completed
5. Use `task-master update-subtask` to log progress on each task/subtask and/or updating/researching them before/during implementation if getting stuck
### Git Integration
Task Master works well with `gh` CLI:
```bash
# Create PR for completed task
gh pr create --title "Complete task 1.2: User authentication" --body "Implements JWT auth system as specified in task 1.2"
# Reference task in commits
git commit -m "feat: implement JWT auth (task 1.2)"
```
### Parallel Development with Git Worktrees
```bash
# Create worktrees for parallel task development
git worktree add ../project-auth feature/auth-system
git worktree add ../project-api feature/api-refactor
# Run Claude Code in each worktree
cd ../project-auth && claude # Terminal 1: Auth work
cd ../project-api && claude # Terminal 2: API work
```
## Troubleshooting
### AI Commands Failing
```bash
# Check API keys are configured
cat .env # For CLI usage
# Verify model configuration
task-master models
# Test with different model
task-master models --set-fallback gpt-4o-mini
```
### MCP Connection Issues
- Check `.mcp.json` configuration
- Verify Node.js installation
- Use `--mcp-debug` flag when starting Claude Code
- Use CLI as fallback if MCP unavailable
### Task File Sync Issues
```bash
# Regenerate task files from tasks.json
task-master generate
# Fix dependency issues
task-master fix-dependencies
```
DO NOT RE-INITIALIZE. That will not do anything beyond re-adding the same Taskmaster core files.
## Important Notes
### AI-Powered Operations
These commands make AI calls and may take up to a minute:
- `parse_prd` / `task-master parse-prd`
- `analyze_project_complexity` / `task-master analyze-complexity`
- `expand_task` / `task-master expand`
- `expand_all` / `task-master expand --all`
- `add_task` / `task-master add-task`
- `update` / `task-master update`
- `update_task` / `task-master update-task`
- `update_subtask` / `task-master update-subtask`
### File Management
- Never manually edit `tasks.json` - use commands instead
- Never manually edit `.taskmasterconfig` - use `task-master models`
- Task markdown files in `tasks/` are auto-generated
- Run `task-master generate` after manual changes to tasks.json
### Claude Code Session Management
- Use `/clear` frequently to maintain focused context
- Create custom slash commands for repeated Task Master workflows
- Configure tool allowlist to streamline permissions
- Use headless mode for automation: `claude -p "task-master next"`
### Multi-Task Updates
- Use `update --from=<id>` to update multiple future tasks
- Use `update-task --id=<id>` for single task updates
- Use `update-subtask --id=<id>` for implementation logging
### Research Mode
- Add `--research` flag for research-based AI enhancement
- Requires a research model API key like Perplexity (`PERPLEXITY_API_KEY`) in environment
- Provides more informed task creation and updates
- Recommended for complex technical tasks
---
_This guide ensures Claude Code has immediate access to Task Master's essential functionality for agentic development workflows._

View File

@@ -6,3 +6,4 @@ GOOGLE_API_KEY="your_google_api_key_here" # Optional, for Google Gem
MISTRAL_API_KEY="your_mistral_key_here" # Optional, for Mistral AI models.
XAI_API_KEY="YOUR_XAI_KEY_HERE" # Optional, for xAI AI models.
AZURE_OPENAI_API_KEY="your_azure_key_here" # Optional, for Azure OpenAI models (requires endpoint in .taskmasterconfig).
OLLAMA_API_KEY="your_ollama_api_key_here" # Optional: For remote Ollama servers that require authentication.

View File

@@ -39,7 +39,7 @@
{
"slug": "debug",
"name": "Debug",
"roleDefinition": "You are Roo, an expert software debugger specializing in systematic problem diagnosis and resolution. When activated by another mdode, your task is to meticulously analyze the provided debugging request (potentially referencing Taskmaster tasks, logs, or metrics), use diagnostic tools as instructed to investigate the issue, identify the root cause, and report your findings and recommended next steps back via `attempt_completion`. You focus solely on diagnostics within the scope defined by the delegated task.",
"roleDefinition": "You are Roo, an expert software debugger specializing in systematic problem diagnosis and resolution. When activated by another mode, your task is to meticulously analyze the provided debugging request (potentially referencing Taskmaster tasks, logs, or metrics), use diagnostic tools as instructed to investigate the issue, identify the root cause, and report your findings and recommended next steps back via `attempt_completion`. You focus solely on diagnostics within the scope defined by the delegated task.",
"customInstructions": "Reflect on 5-7 different possible sources of the problem, distill those down to 1-2 most likely sources, and then add logs to validate your assumptions. Explicitly ask the user to confirm the diagnosis before fixing the problem.",
"groups": [
"read",

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,368 @@
We want to refine how Task Master handles AI model token limits to be more precise, by:
1. Distinguishing between `maxInputTokens` and `maxOutputTokens` in the configuration.
2. Dynamically adjusting the `maxOutputTokens` for an API call based on the actual prompt length to stay within the model's total context window (or respecting separate input/output limits if the API and model support that).
3. Ensuring that `ai-services-unified.js` uses these more granular limits.
This is a good improvement for both cost control and preventing errors.
Here's a plan:
**Phase 1: Configuration and Core Logic Updates**
1. **Update `.taskmasterconfig` Structure:**
- I'll modify the `models` section in your `.taskmasterconfig`. For each role (`main`, `research`, `fallback`), `maxTokens` will be replaced with `maxInputTokens` and `maxOutputTokens`.
- We'll need to decide on reasonable default values for these new fields. We can look at the current `maxTokens` and the model's known limits to make an initial guess.
2. **Update `MODEL_MAP` in `ai-services-unified.js`:**
- This array already stores cost data. We need to ensure it also stores the _absolute_ maximum input and output tokens for each model listed (e.g., `model_max_input_tokens`, `model_max_output_tokens`). If these fields are not present, they will need to be added. The values in `.taskmasterconfig` will then represent user-defined operational limits, which should ideally be validated against these absolute maximums.
3. **Update `config-manager.js`:**
- Getter functions like `getParametersForRole` will be updated to fetch `maxInputTokens` and `maxOutputTokens` instead of the singular `maxTokens`.
- New getters might be needed if we want to access the model's absolute limits directly from `MODEL_MAP` via `config-manager.js`.
4. **Update `ai-services-unified.js` (`_unifiedServiceRunner`):**
- **Token Counting:** This is a crucial step. Before an API call, we need to estimate the token count of the combined `systemPrompt` and `userPrompt`.
- The Vercel AI SDK or the individual provider SDKs might offer utilities for this. For example, some SDKs expose a `tokenizer` or a way to count tokens for a given string.
- If a direct utility isn't available through the Vercel SDK for the specific provider, we might need to use a library like `tiktoken` for OpenAI/Anthropic models or investigate provider-specific tokenization. This could be complex as tokenization varies between models.
- For now, let's assume we can get a reasonable estimate.
- **Dynamic Output Token Calculation & Validation:**
- Retrieve `configured_max_input_tokens` and `configured_max_output_tokens` from `config-manager.js` for the current role.
- Retrieve `model_absolute_max_input_tokens` and `model_absolute_max_output_tokens` from `MODEL_MAP`.
- Let `prompt_tokens = countTokens(systemPrompt + userPrompt)`.
- **Input Validation:** If `prompt_tokens > configured_max_input_tokens` OR `prompt_tokens > model_absolute_max_input_tokens`, throw an error. (We might also consider auto-truncation strategies in the future, but an error is safer to start).
- **Output Calculation:** The `max_tokens` parameter sent to the API (which typically refers to the _max number of tokens to generate_) should be `configured_max_output_tokens`. We also need to ensure this doesn't violate the model's absolute output limit.
- Some models have a _total_ context window (input + output). If this is the case for a model, the `max_tokens` parameter for the API call might need to be `min(configured_max_output_tokens, model_absolute_total_tokens - prompt_tokens)`. However, many modern APIs handle separate input and output limits, simplifying this. We'll aim to pass `configured_max_output_tokens` as the API's `max_tokens` parameter, assuming the input validation has passed.
- **API Call Parameter:** Update the `callParams` to use the correctly determined `max_tokens` for generation (which will be our `configured_max_output_tokens`).
**Phase 2: Error Handling and Refinements**
1. **Enhanced Error Handling:** Provide clear error messages if prompt tokens exceed input limits, or if API calls fail due to token issues despite our calculations.
2. **Validation:** Add validation (perhaps in `config-manager.js` or when `task-master models --setup` is run) to ensure `configured_max_input_tokens` and `configured_max_output_tokens` in `.taskmasterconfig` do not exceed the `model_absolute_max_input_tokens` and `model_absolute_max_output_tokens` from `MODEL_MAP`.
Let's start by inspecting `scripts/modules/config-manager.js` to see how parameters and `MODEL_MAP` are currently handled. This will inform the changes needed for `.taskmasterconfig` and `ai-services-unified.js`.
I will now read `scripts/modules/config-manager.js`.
Okay, I've reviewed `scripts/modules/config-manager.js`. Here's what I've gathered and how it impacts the plan:
- **`MODEL_MAP` Source:** `MODEL_MAP` is loaded from `supported-models.json`. This is excellent, as it means we can update the model capabilities (including new token limits) in a structured JSON file.
- **Configuration Loading:** `_loadAndValidateConfig` handles loading `.taskmasterconfig` and merging it with `DEFAULTS`.
- **Getters:** There are specific getters for `maxTokens` for each role (e.g., `getMainMaxTokens`). We will need to update these.
- **`getParametersForRole`:** This function already exists and is a good candidate for returning the new `maxInputTokens` and `maxOutputTokens`.
Here's the refined plan:
**Phase 1: Configuration and Data Structures**
1. **Update `supported-models.json`:**
- For each model entry in `supported-models.json`, we need to add `maxInputTokens` and `maxOutputTokens` fields. These should reflect the _absolute maximums_ for that specific model.
- Example entry change:
```json
// Before
{
"id": "claude-3-7-sonnet-20250219",
"name": "Claude 3.7 Sonnet (Preview)",
"context_window": 200000, // This might be total context
"cost_per_1m_tokens": { "input": 3, "output": 15, "currency": "USD" }
}
// After (assuming 200k is total, and we make a reasonable split or find official numbers)
{
"id": "claude-3-7-sonnet-20250219",
"name": "Claude 3.7 Sonnet (Preview)",
"maxInputTokens": 190000, // Example
"maxOutputTokens": 8192, // Example, often smaller for generation
"cost_per_1m_tokens": { "input": 3, "output": 15, "currency": "USD" }
}
```
- I will need to find the official input/output token limits for the models currently in your `MODEL_MAP`. If you have this information handy, it would speed things up. Otherwise, I can make educated guesses or search for them.
2. **Update `.taskmasterconfig` (Defaults and User File):**
- In `scripts/modules/config-manager.js`, modify the `DEFAULTS` object. For each role (`main`, `research`, `fallback`), replace `maxTokens` with:
- `maxInputTokens`: A sensible default (e.g., a large portion of the model's capability, but user-configurable).
- `maxOutputTokens`: A sensible default for generation (e.g., 4096 or 8192).
- You will then need to manually update your existing `.taskmasterconfig` file to reflect this new structure. I can provide the snippet for you to paste.
3. **Update `config-manager.js`:**
- Modify `getParametersForRole(role, explicitRoot = null)`:
- It currently fetches `maxTokens` and `temperature`.
- Update it to fetch `maxInputTokens`, `maxOutputTokens`, and `temperature` from the loaded config for the given role.
- Remove the role-specific `getMaxTokens` functions (e.g., `getMainMaxTokens`, `getResearchMaxTokens`, `getFallbackMaxTokens`). The `getParametersForRole` will be the central way to get these.
- (Optional, for later validation) Consider adding a new function `getModelCapabilities(providerName, modelId)` that reads from `MODEL_MAP` to return the absolute `maxInputTokens` and `maxOutputTokens` for a given model. This would be useful for validating the user's settings in `.taskmasterconfig`.
**Phase 2: Core Logic in `ai-services-unified.js`**
1. **Token Counting (`_unifiedServiceRunner`):**
- This is the most complex part. We need a reliable way to count tokens for the prompts.
- **Strategy 1 (Ideal):** Leverage Vercel AI SDK. The SDK might provide a way to get a tokenizer for the active model or a utility function. We'll need to investigate its capabilities.
- **Strategy 2 (Fallback):** Use a library like `tiktoken` for models compatible with OpenAI's tokenization (many are, including some Anthropic models). For other models, we might need provider-specific tokenizers or make estimations (less ideal).
- **Initial Approach:** Let's try to find a Vercel AI SDK utility first. If not, we'll start with `tiktoken` as a common case and acknowledge that other models might need specific handling later.
- The function `_unifiedServiceRunner` will call this token counting utility:
```javascript
// Placeholder for token counting
function countTokens(text, modelId /* or providerName */) {
// ... implementation using SDK or library ...
// This is a simplification; actual tokenization is model-specific.
// For now, a rough estimate might be (text.length / 4) as a placeholder
// if a proper tokenizer isn't immediately available.
if (!text) return 0;
return Math.ceil(text.length / 3.5); // Very rough general estimate
}
const promptTokens = countTokens(systemPrompt) + countTokens(prompt);
```
2. **Dynamic Output Token Calculation & Validation (`_unifiedServiceRunner`):**
- Fetch parameters using the updated `getParametersForRole` from `config-manager.js`:
```javascript
const roleParams = getParametersForRole(
currentRole,
effectiveProjectRoot
);
// roleParams will now contain { maxInputTokens, maxOutputTokens, temperature }
```
- Fetch model's absolute limits from `MODEL_MAP` (we'll need a helper in `config-manager.js` or do it directly in `ai-services-unified.js` for now):
```javascript
// Simplified; ideally use a robust getter from config-manager
const modelInfo = MODEL_MAP[providerName?.toLowerCase()]?.find(
(m) => m.id === modelId
);
const modelAbsoluteMaxInput = modelInfo?.maxInputTokens || Infinity;
const modelAbsoluteMaxOutput =
modelInfo?.maxOutputTokens || roleParams.maxOutputTokens; // Fallback to configured if not in map
```
- **Input Validation:**
```javascript
if (promptTokens > roleParams.maxInputTokens) {
throw new Error(
`Prompt (${promptTokens} tokens) exceeds configured max input tokens (${roleParams.maxInputTokens}) for role '${currentRole}'.`
);
}
if (promptTokens > modelAbsoluteMaxInput) {
throw new Error(
`Prompt (${promptTokens} tokens) exceeds model's absolute max input tokens (${modelAbsoluteMaxInput}) for ${modelId}.`
);
}
```
- **API Call Parameter (`max_tokens` for generation):**
The `max_tokens` parameter passed to the provider's API call should be `roleParams.maxOutputTokens`. We must also ensure this doesn't exceed the model's absolute output capability.
```javascript
const apiMaxOutputTokens = Math.min(
roleParams.maxOutputTokens,
modelAbsoluteMaxOutput
);
const callParams = {
apiKey,
modelId,
// Use apiMaxOutputTokens for the actual API call
maxTokens: apiMaxOutputTokens, // This usually means max tokens to GENERATE
temperature: roleParams.temperature,
messages,
baseUrl,
...(serviceType === 'generateObject' && { schema, objectName }),
...restApiParams
};
```
3. **Update `logAiUsage`:**
- The cost calculation in `logAiUsage` seems correct as it already uses `inputCost` and `outputCost` per 1M tokens. This part should remain compatible.
**Next Steps:**
1. **Modify `supported-models.json`:** I need the content of this file to propose the new `maxInputTokens` and `maxOutputTokens` fields. Please provide it.
2. **Decide on Tokenizer Strategy:** What are your thoughts on the token counting? Are you aware of any utilities within Vercel AI SDK for this, or should we plan to integrate `tiktoken` initially?
Once I have the content of `supported-models.json`, I can draft the changes for it and then proceed to `config-manager.js` and `.taskmasterconfig`.
```json
// Before
{
"id": "claude-3-7-sonnet-20250219",
"name": "Claude 3.7 Sonnet (Preview)",
"context_window": 200000, // This might be total context
"cost_per_1m_tokens": { "input": 3, "output": 15, "currency": "USD" }
}
// After (assuming 200k is total, and we make a reasonable split or find official numbers)
{
"id": "claude-3-7-sonnet-20250219",
"name": "Claude 3.7 Sonnet (Preview)",
"maxInputTokens": 190000, // Example
"maxOutputTokens": 8192, // Example, often smaller for generation
"cost_per_1m_tokens": { "input": 3, "output": 15, "currency": "USD" }
}
```
```javascript
// Placeholder for token counting
function countTokens(text, modelId /* or providerName */) {
// ... implementation using SDK or library ...
// This is a simplification; actual tokenization is model-specific.
// For now, a rough estimate might be (text.length / 4) as a placeholder
// if a proper tokenizer isn't immediately available.
if (!text) return 0;
return Math.ceil(text.length / 3.5); // Very rough general estimate
}
const promptTokens = countTokens(systemPrompt) + countTokens(prompt);
```
```javascript
const roleParams = getParametersForRole(currentRole, effectiveProjectRoot);
// roleParams will now contain { maxInputTokens, maxOutputTokens, temperature }
```
```javascript
// Simplified; ideally use a robust getter from config-manager
const modelInfo = MODEL_MAP[providerName?.toLowerCase()]?.find(
(m) => m.id === modelId
);
const modelAbsoluteMaxInput = modelInfo?.maxInputTokens || Infinity;
const modelAbsoluteMaxOutput =
modelInfo?.maxOutputTokens || roleParams.maxOutputTokens; // Fallback to configured if not in map
```
```javascript
if (promptTokens > roleParams.maxInputTokens) {
throw new Error(
`Prompt (${promptTokens} tokens) exceeds configured max input tokens (${roleParams.maxInputTokens}) for role '${currentRole}'.`
);
}
if (promptTokens > modelAbsoluteMaxInput) {
throw new Error(
`Prompt (${promptTokens} tokens) exceeds model's absolute max input tokens (${modelAbsoluteMaxInput}) for ${modelId}.`
);
}
```
```javascript
const apiMaxOutputTokens = Math.min(
roleParams.maxOutputTokens,
modelAbsoluteMaxOutput
);
const callParams = {
apiKey,
modelId,
// Use apiMaxOutputTokens for the actual API call
maxTokens: apiMaxOutputTokens, // This usually means max tokens to GENERATE
temperature: roleParams.temperature,
messages,
baseUrl,
...(serviceType === 'generateObject' && { schema, objectName }),
...restApiParams
};
```
Okay, I have the contents of `supported-models.json`.
It seems many models have a `max_tokens` field, which I assume is the _total context window_. Some don't have it, and for others (like OpenAI `gpt-4o`), the listed `max_tokens` (16384) is known to be its _output_ token limit when using the Chat Completions API, while the context window is much larger (128k). This highlights the complexity: `max_tokens` in `supported-models.json` is used inconsistently.
**Revised Plan for `supported-models.json` and Token Definitions:**
To bring clarity, we'll introduce two new fields and ensure their meaning is consistent:
- `contextWindowTokens`: The total number of tokens the model can process (input + output). This would replace the current ambiguous `max_tokens`.
- `maxOutputTokens`: The maximum number of tokens the model can _generate_ in a single response. This is often smaller than the total context window, especially for larger models.
If a model _only_ specifies a total context window, we'll have to make a reasonable assumption for `maxOutputTokens` (e.g., 4096 or 8192, or a fraction of the total context window). If it only specifies an output token limit (like some OpenAI models in certain API modes), we'll need to find its total context window.
**Updated `supported-models.json` Structure (Example):**
```json
// For a model like Anthropic Claude 3.7 Sonnet (Preview)
{
"id": "claude-3-7-sonnet-20250219",
"swe_score": 0.623,
"cost_per_1m_tokens": { "input": 3.0, "output": 15.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 200000, // From Anthropic's documentation
"maxOutputTokens": 8192 // Anthropic default, user can override in .taskmasterconfig
}
// For a model like OpenAI GPT-4o
{
"id": "gpt-4o",
"swe_score": 0.332,
"cost_per_1m_tokens": { "input": 2.5, "output": 10.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 128000, // Official context window
"maxOutputTokens": 16384 // Max output for chat completions is 16k for gpt-4o (used to be 4k/8k for older gpt-4)
// but the model card mentions 128k total. The API call parameter for `max_tokens` sets this output cap.
}
```
I will proceed to generate the updated `supported-models.json` content. This will be a significant change. I will make my best effort to find the correct `contextWindowTokens` and `maxOutputTokens` for each model. If official numbers are ambiguous or not readily available, I'll use sensible defaults and add a comment.
**Regarding Tokenizer Strategy:**
- **Vercel AI SDK:** The `ai` package (Vercel AI SDK) itself is a lightweight wrapper. Tokenization is usually handled by the underlying provider-specific SDKs (e.g., `@anthropic-ai/sdk`, `openai`). The Vercel SDK doesn't provide a universal tokenizer.
- **Provider SDKs:**
- `@anthropic-ai/sdk`: Does not expose a public tokenizer directly. Anthropic recommends counting based on their guidelines (roughly 3.5 chars/token for English).
- `openai` (for Node.js): The `gpt-3-encoder` or `tiktoken` libraries are commonly used. `tiktoken` is more current.
- **`tiktoken`:** This is a good general-purpose library for OpenAI models and those that use compatible tokenization (many models fine-tuned from Llama, etc., might be close). It supports various encodings.
- **Recommendation:**
1. Start by integrating `tiktoken`. We can select the encoding based on the provider or even specific model if needed (e.g., `cl100k_base` for gpt-4, gpt-3.5-turbo, DALL-E models).
2. For providers where `tiktoken` is not accurate (e.g., Google's Gemini, Perplexity if they have proprietary tokenizers), we might have to rely on character-based estimations (e.g., `length / N`) as a rougher guide or investigate if their specific SDKs offer token counting.
3. The Vercel AI SDK's `experimental_streamObject` and other functions _might_ internally handle some aspects of token counting for request preparation, but we need explicit counting for our logic _before_ the call.
For now, let's assume we'll add a `countTokens` utility that uses `tiktoken` for OpenAI and Anthropic (as Anthropic's guidance is character-based but `cl100k_base` is often a decent proxy for their tokenization for rough estimates, though not perfect), and a character-based fallback for others.
I will now generate the proposed changes for `scripts/modules/supported-models.json`. This will be a large diff.
After this, we'll move to:
1. Updating `.taskmasterconfig` defaults in `config-manager.js` and providing you the snippet for your user file.
2. Updating `config-manager.js` getters.
3. Implementing the logic in `ai-services-unified.js`.
```json
// For a model like Anthropic Claude 3.7 Sonnet (Preview)
{
"id": "claude-3-7-sonnet-20250219",
"swe_score": 0.623,
"cost_per_1m_tokens": { "input": 3.0, "output": 15.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 200000, // From Anthropic's documentation
"maxOutputTokens": 8192 // Anthropic default, user can override in .taskmasterconfig
}
// For a model like OpenAI GPT-4o
{
"id": "gpt-4o",
"swe_score": 0.332,
"cost_per_1m_tokens": { "input": 2.5, "output": 10.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 128000, // Official context window
"maxOutputTokens": 16384 // Max output for chat completions is 16k for gpt-4o (used to be 4k/8k for older gpt-4)
// but the model card mentions 128k total. The API call parameter for `max_tokens` sets this output cap.
}
```
```json
// For a model like Anthropic Claude 3.7 Sonnet (Preview)
{
"id": "claude-3-7-sonnet-20250219",
"swe_score": 0.623,
"cost_per_1m_tokens": { "input": 3.0, "output": 15.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 200000, // From Anthropic's documentation
"maxOutputTokens": 8192 // Anthropic default, user can override in .taskmasterconfig
}
// For a model like OpenAI GPT-4o
{
"id": "gpt-4o",
"swe_score": 0.332,
"cost_per_1m_tokens": { "input": 2.5, "output": 10.0 },
"allowed_roles": ["main", "fallback"],
"contextWindowTokens": 128000, // Official context window
"maxOutputTokens": 16384 // Max output for chat completions is 16k for gpt-4o (used to be 4k/8k for older gpt-4)
// but the model card mentions 128k total. The API call parameter for `max_tokens` sets this output cap.
}
```

View File

@@ -187,6 +187,32 @@ task-master validate-dependencies
task-master fix-dependencies
```
## Move Tasks
```bash
# Move a task or subtask to a new position
task-master move --from=<id> --to=<id>
# Examples:
# Move task to become a subtask
task-master move --from=5 --to=7
# Move subtask to become a standalone task
task-master move --from=5.2 --to=7
# Move subtask to a different parent
task-master move --from=5.2 --to=7.3
# Reorder subtasks within the same parent
task-master move --from=5.2 --to=5.4
# Move a task to a new ID position (creates placeholder if doesn't exist)
task-master move --from=5 --to=25
# Move multiple tasks at once (must have the same number of IDs)
task-master move --from=10,11,12 --to=16,17,18
```
## Add a New Task
```bash

View File

@@ -30,7 +30,7 @@ I need to regenerate the subtasks for task 3 with a different approach. Can you
## Handling changes
```
We've decided to use MongoDB instead of PostgreSQL. Can you update all future tasks to reflect this change?
I've decided to use MongoDB instead of PostgreSQL. Can you update all future tasks to reflect this change?
```
## Completing work
@@ -40,6 +40,34 @@ I've finished implementing the authentication system described in task 2. All te
Please mark it as complete and tell me what I should work on next.
```
## Reorganizing tasks
```
I think subtask 5.2 would fit better as part of task 7. Can you move it there?
```
(Agent runs: `task-master move --from=5.2 --to=7.3`)
```
Task 8 should actually be a subtask of task 4. Can you reorganize this?
```
(Agent runs: `task-master move --from=8 --to=4.1`)
```
I just merged the main branch and there's a conflict in tasks.json. My teammates created tasks 10-15 on their branch while I created tasks 10-12 on my branch. Can you help me resolve this by moving my tasks?
```
(Agent runs:
```bash
task-master move --from=10 --to=16
task-master move --from=11 --to=17
task-master move --from=12 --to=18
```
)
## Analyzing complexity
```

125
docs/models.md Normal file
View File

@@ -0,0 +1,125 @@
# Available Models as of May 26, 2025
## Main Models
| Provider | Model Name | SWE Score | Input Cost | Output Cost |
| ---------- | ---------------------------------------------- | --------- | ---------- | ----------- |
| anthropic | claude-sonnet-4-20250514 | 0.727 | 3 | 15 |
| anthropic | claude-opus-4-20250514 | 0.725 | 15 | 75 |
| anthropic | claude-3-7-sonnet-20250219 | 0.623 | 3 | 15 |
| anthropic | claude-3-5-sonnet-20241022 | 0.49 | 3 | 15 |
| openai | gpt-4o | 0.332 | 2.5 | 10 |
| openai | o1 | 0.489 | 15 | 60 |
| openai | o3 | 0.5 | 10 | 40 |
| openai | o3-mini | 0.493 | 1.1 | 4.4 |
| openai | o4-mini | 0.45 | 1.1 | 4.4 |
| openai | o1-mini | 0.4 | 1.1 | 4.4 |
| openai | o1-pro | — | 150 | 600 |
| openai | gpt-4-5-preview | 0.38 | 75 | 150 |
| openai | gpt-4-1-mini | — | 0.4 | 1.6 |
| openai | gpt-4-1-nano | — | 0.1 | 0.4 |
| openai | gpt-4o-mini | 0.3 | 0.15 | 0.6 |
| google | gemini-2.5-pro-preview-05-06 | 0.638 | — | — |
| google | gemini-2.5-pro-preview-03-25 | 0.638 | — | — |
| google | gemini-2.5-flash-preview-04-17 | — | — | — |
| google | gemini-2.0-flash | 0.754 | 0.15 | 0.6 |
| google | gemini-2.0-flash-lite | — | — | — |
| perplexity | sonar-reasoning-pro | 0.211 | 2 | 8 |
| perplexity | sonar-reasoning | 0.211 | 1 | 5 |
| xai | grok-3 | — | 3 | 15 |
| xai | grok-3-fast | — | 5 | 25 |
| ollama | devstral:latest | — | 0 | 0 |
| ollama | qwen3:latest | — | 0 | 0 |
| ollama | qwen3:14b | — | 0 | 0 |
| ollama | qwen3:32b | — | 0 | 0 |
| ollama | mistral-small3.1:latest | — | 0 | 0 |
| ollama | llama3.3:latest | — | 0 | 0 |
| ollama | phi4:latest | — | 0 | 0 |
| openrouter | google/gemini-2.5-flash-preview-05-20 | — | 0.15 | 0.6 |
| openrouter | google/gemini-2.5-flash-preview-05-20:thinking | — | 0.15 | 3.5 |
| openrouter | google/gemini-2.5-pro-exp-03-25 | — | 0 | 0 |
| openrouter | deepseek/deepseek-chat-v3-0324:free | — | 0 | 0 |
| openrouter | deepseek/deepseek-chat-v3-0324 | — | 0.27 | 1.1 |
| openrouter | openai/gpt-4.1 | — | 2 | 8 |
| openrouter | openai/gpt-4.1-mini | — | 0.4 | 1.6 |
| openrouter | openai/gpt-4.1-nano | — | 0.1 | 0.4 |
| openrouter | openai/o3 | — | 10 | 40 |
| openrouter | openai/codex-mini | — | 1.5 | 6 |
| openrouter | openai/gpt-4o-mini | — | 0.15 | 0.6 |
| openrouter | openai/o4-mini | 0.45 | 1.1 | 4.4 |
| openrouter | openai/o4-mini-high | — | 1.1 | 4.4 |
| openrouter | openai/o1-pro | — | 150 | 600 |
| openrouter | meta-llama/llama-3.3-70b-instruct | — | 120 | 600 |
| openrouter | meta-llama/llama-4-maverick | — | 0.18 | 0.6 |
| openrouter | meta-llama/llama-4-scout | — | 0.08 | 0.3 |
| openrouter | qwen/qwen-max | — | 1.6 | 6.4 |
| openrouter | qwen/qwen-turbo | — | 0.05 | 0.2 |
| openrouter | qwen/qwen3-235b-a22b | — | 0.14 | 2 |
| openrouter | mistralai/mistral-small-3.1-24b-instruct:free | — | 0 | 0 |
| openrouter | mistralai/mistral-small-3.1-24b-instruct | — | 0.1 | 0.3 |
| openrouter | mistralai/devstral-small | — | 0.1 | 0.3 |
| openrouter | mistralai/mistral-nemo | — | 0.03 | 0.07 |
| openrouter | thudm/glm-4-32b:free | — | 0 | 0 |
## Research Models
| Provider | Model Name | SWE Score | Input Cost | Output Cost |
| ---------- | -------------------------- | --------- | ---------- | ----------- |
| openai | gpt-4o-search-preview | 0.33 | 2.5 | 10 |
| openai | gpt-4o-mini-search-preview | 0.3 | 0.15 | 0.6 |
| perplexity | sonar-pro | — | 3 | 15 |
| perplexity | sonar | — | 1 | 1 |
| perplexity | deep-research | 0.211 | 2 | 8 |
| xai | grok-3 | — | 3 | 15 |
| xai | grok-3-fast | — | 5 | 25 |
## Fallback Models
| Provider | Model Name | SWE Score | Input Cost | Output Cost |
| ---------- | ---------------------------------------------- | --------- | ---------- | ----------- |
| anthropic | claude-sonnet-4-20250514 | 0.727 | 3 | 15 |
| anthropic | claude-opus-4-20250514 | 0.725 | 15 | 75 |
| anthropic | claude-3-7-sonnet-20250219 | 0.623 | 3 | 15 |
| anthropic | claude-3-5-sonnet-20241022 | 0.49 | 3 | 15 |
| openai | gpt-4o | 0.332 | 2.5 | 10 |
| openai | o3 | 0.5 | 10 | 40 |
| openai | o4-mini | 0.45 | 1.1 | 4.4 |
| google | gemini-2.5-pro-preview-05-06 | 0.638 | — | — |
| google | gemini-2.5-pro-preview-03-25 | 0.638 | — | — |
| google | gemini-2.5-flash-preview-04-17 | — | — | — |
| google | gemini-2.0-flash | 0.754 | 0.15 | 0.6 |
| google | gemini-2.0-flash-lite | — | — | — |
| perplexity | sonar-reasoning-pro | 0.211 | 2 | 8 |
| perplexity | sonar-reasoning | 0.211 | 1 | 5 |
| xai | grok-3 | — | 3 | 15 |
| xai | grok-3-fast | — | 5 | 25 |
| ollama | devstral:latest | — | 0 | 0 |
| ollama | qwen3:latest | — | 0 | 0 |
| ollama | qwen3:14b | — | 0 | 0 |
| ollama | qwen3:32b | — | 0 | 0 |
| ollama | mistral-small3.1:latest | — | 0 | 0 |
| ollama | llama3.3:latest | — | 0 | 0 |
| ollama | phi4:latest | — | 0 | 0 |
| openrouter | google/gemini-2.5-flash-preview-05-20 | — | 0.15 | 0.6 |
| openrouter | google/gemini-2.5-flash-preview-05-20:thinking | — | 0.15 | 3.5 |
| openrouter | google/gemini-2.5-pro-exp-03-25 | — | 0 | 0 |
| openrouter | deepseek/deepseek-chat-v3-0324:free | — | 0 | 0 |
| openrouter | openai/gpt-4.1 | — | 2 | 8 |
| openrouter | openai/gpt-4.1-mini | — | 0.4 | 1.6 |
| openrouter | openai/gpt-4.1-nano | — | 0.1 | 0.4 |
| openrouter | openai/o3 | — | 10 | 40 |
| openrouter | openai/codex-mini | — | 1.5 | 6 |
| openrouter | openai/gpt-4o-mini | — | 0.15 | 0.6 |
| openrouter | openai/o4-mini | 0.45 | 1.1 | 4.4 |
| openrouter | openai/o4-mini-high | — | 1.1 | 4.4 |
| openrouter | openai/o1-pro | — | 150 | 600 |
| openrouter | meta-llama/llama-3.3-70b-instruct | — | 120 | 600 |
| openrouter | meta-llama/llama-4-maverick | — | 0.18 | 0.6 |
| openrouter | meta-llama/llama-4-scout | — | 0.08 | 0.3 |
| openrouter | qwen/qwen-max | — | 1.6 | 6.4 |
| openrouter | qwen/qwen-turbo | — | 0.05 | 0.2 |
| openrouter | qwen/qwen3-235b-a22b | — | 0.14 | 2 |
| openrouter | mistralai/mistral-small-3.1-24b-instruct:free | — | 0 | 0 |
| openrouter | mistralai/mistral-small-3.1-24b-instruct | — | 0.1 | 0.3 |
| openrouter | mistralai/mistral-nemo | — | 0.03 | 0.07 |
| openrouter | thudm/glm-4-32b:free | — | 0 | 0 |

View File

@@ -0,0 +1,131 @@
import fs from 'fs';
import path from 'path';
import { fileURLToPath } from 'url';
const __filename = fileURLToPath(import.meta.url);
const __dirname = path.dirname(__filename);
const supportedModelsPath = path.join(
__dirname,
'..',
'modules',
'supported-models.json'
);
const outputMarkdownPath = path.join(
__dirname,
'..',
'..',
'docs',
'models.md'
);
function formatCost(cost) {
if (cost === null || cost === undefined) {
return '—';
}
return cost;
}
function formatSweScore(score) {
if (score === null || score === undefined || score === 0) {
return '—';
}
return score.toString();
}
function generateMarkdownTable(title, models) {
if (!models || models.length === 0) {
return `## ${title}\n\nNo models in this category.\n\n`;
}
let table = `## ${title}\n\n`;
table += '| Provider | Model Name | SWE Score | Input Cost | Output Cost |\n';
table += '|---|---|---|---|---|\n';
models.forEach((model) => {
table += `| ${model.provider} | ${model.modelName} | ${formatSweScore(model.sweScore)} | ${formatCost(model.inputCost)} | ${formatCost(model.outputCost)} |\n`;
});
table += '\n';
return table;
}
function main() {
try {
const correctSupportedModelsPath = path.join(
__dirname,
'..',
'..',
'scripts',
'modules',
'supported-models.json'
);
const correctOutputMarkdownPath = path.join(__dirname, '..', 'models.md');
const supportedModelsContent = fs.readFileSync(
correctSupportedModelsPath,
'utf8'
);
const supportedModels = JSON.parse(supportedModelsContent);
const mainModels = [];
const researchModels = [];
const fallbackModels = [];
for (const provider in supportedModels) {
if (Object.hasOwnProperty.call(supportedModels, provider)) {
const models = supportedModels[provider];
models.forEach((model) => {
const modelEntry = {
provider: provider,
modelName: model.id,
sweScore: model.swe_score,
inputCost: model.cost_per_1m_tokens
? model.cost_per_1m_tokens.input
: null,
outputCost: model.cost_per_1m_tokens
? model.cost_per_1m_tokens.output
: null
};
if (model.allowed_roles.includes('main')) {
mainModels.push(modelEntry);
}
if (model.allowed_roles.includes('research')) {
researchModels.push(modelEntry);
}
if (model.allowed_roles.includes('fallback')) {
fallbackModels.push(modelEntry);
}
});
}
}
const date = new Date();
const monthNames = [
'January',
'February',
'March',
'April',
'May',
'June',
'July',
'August',
'September',
'October',
'November',
'December'
];
const formattedDate = `${monthNames[date.getMonth()]} ${date.getDate()}, ${date.getFullYear()}`;
let markdownContent = `# Available Models as of ${formattedDate}\n\n`;
markdownContent += generateMarkdownTable('Main Models', mainModels);
markdownContent += generateMarkdownTable('Research Models', researchModels);
markdownContent += generateMarkdownTable('Fallback Models', fallbackModels);
fs.writeFileSync(correctOutputMarkdownPath, markdownContent, 'utf8');
console.log(`Successfully updated ${correctOutputMarkdownPath}`);
} catch (error) {
console.error('Error transforming models.json to models.md:', error);
process.exit(1);
}
}
main();

View File

@@ -268,7 +268,61 @@ task-master update --from=4 --prompt="Update to use MongoDB, researching best pr
This will rewrite or re-scope subsequent tasks in tasks.json while preserving completed work.
### 6. Breaking Down Complex Tasks
### 6. Reorganizing Tasks
If you need to reorganize your task structure:
```
I think subtask 5.2 would fit better as part of task 7 instead. Can you move it there?
```
The agent will execute:
```bash
task-master move --from=5.2 --to=7.3
```
You can reorganize tasks in various ways:
- Moving a standalone task to become a subtask: `--from=5 --to=7`
- Moving a subtask to become a standalone task: `--from=5.2 --to=7`
- Moving a subtask to a different parent: `--from=5.2 --to=7.3`
- Reordering subtasks within the same parent: `--from=5.2 --to=5.4`
- Moving a task to a new ID position: `--from=5 --to=25` (even if task 25 doesn't exist yet)
- Moving multiple tasks at once: `--from=10,11,12 --to=16,17,18` (must have same number of IDs, Taskmaster will look through each position)
When moving tasks to new IDs:
- The system automatically creates placeholder tasks for non-existent destination IDs
- This prevents accidental data loss during reorganization
- Any tasks that depend on moved tasks will have their dependencies updated
- When moving a parent task, all its subtasks are automatically moved with it and renumbered
This is particularly useful as your project understanding evolves and you need to refine your task structure.
### 7. Resolving Merge Conflicts with Tasks
When working with a team, you might encounter merge conflicts in your tasks.json file if multiple team members create tasks on different branches. The move command makes resolving these conflicts straightforward:
```
I just merged the main branch and there's a conflict with tasks.json. My teammates created tasks 10-15 while I created tasks 10-12 on my branch. Can you help me resolve this?
```
The agent will help you:
1. Keep your teammates' tasks (10-15)
2. Move your tasks to new positions to avoid conflicts:
```bash
# Move your tasks to new positions (e.g., 16-18)
task-master move --from=10 --to=16
task-master move --from=11 --to=17
task-master move --from=12 --to=18
```
This approach preserves everyone's work while maintaining a clean task structure, making it much easier to handle task conflicts than trying to manually merge JSON files.
### 8. Breaking Down Complex Tasks
For complex tasks that need more granularity:

131
llms-install.md Normal file
View File

@@ -0,0 +1,131 @@
``# Taskmaster AI Installation Guide
This guide helps AI assistants install and configure Taskmaster for users in their development projects.
## What is Taskmaster?
Taskmaster is an AI-driven task management system designed for development workflows. It helps break down projects into manageable tasks, track dependencies, and maintain development momentum through structured, AI-enhanced planning.
## Installation Steps
### Step 1: Add MCP Configuration
Add the following configuration to the user's MCP settings file (`.cursor/mcp.json` for Cursor, or equivalent for other editors):
```json
{
"mcpServers": {
"taskmaster-ai": {
"command": "npx",
"args": ["-y", "--package=task-master-ai", "task-master-ai"],
"env": {
"ANTHROPIC_API_KEY": "user_will_add_their_key_here",
"PERPLEXITY_API_KEY": "user_will_add_their_key_here",
"OPENAI_API_KEY": "user_will_add_their_key_here",
"GOOGLE_API_KEY": "user_will_add_their_key_here",
"MISTRAL_API_KEY": "user_will_add_their_key_here",
"OPENROUTER_API_KEY": "user_will_add_their_key_here",
"XAI_API_KEY": "user_will_add_their_key_here"
}
}
}
}
```
### Step 2: API Key Requirements
Inform the user they need **at least one** API key from the following providers:
- **Anthropic** (for Claude models) - Recommended
- **OpenAI** (for GPT models)
- **Google** (for Gemini models)
- **Perplexity** (for research features) - Highly recommended
- **Mistral** (for Mistral models)
- **OpenRouter** (access to multiple models)
- **xAI** (for Grok models)
The user will be able to define 3 separate roles (can be the same provider or separate providers) for main AI operations, research operations (research providers/models only), and a fallback model in case of errors.
### Step 3: Initialize Project
Once the MCP server is configured and API keys are added, initialize Taskmaster in the user's project:
> Can you initialize Task Master in my project?
This will run the `initialize_project` tool to set up the basic file structure.
### Step 4: Create Initial Tasks
Users have two options for creating initial tasks:
**Option A: Parse a PRD (Recommended)**
If they have a Product Requirements Document:
> Can you parse my PRD file at [path/to/prd.txt] to generate initial tasks?
If the user does not have a PRD, the AI agent can help them create one and store it in scripts/prd.txt for parsing.
**Option B: Start from scratch**
> Can you help me add my first task: [describe the task]
## Common Usage Patterns
### Daily Workflow
> What's the next task I should work on?
> Can you show me the details for task [ID]?
> Can you mark task [ID] as done?
### Task Management
> Can you break down task [ID] into subtasks?
> Can you add a new task: [description]
> Can you analyze the complexity of my tasks?
### Project Organization
> Can you show me all my pending tasks?
> Can you move task [ID] to become a subtask of [parent ID]?
> Can you update task [ID] with this new information: [details]
## Verification Steps
After installation, verify everything is working:
1. **Check MCP Connection**: The AI should be able to access Task Master tools
2. **Test Basic Commands**: Try `get_tasks` to list current tasks
3. **Verify API Keys**: Ensure AI-powered commands work (like `add_task`)
Note: An API key fallback exists that allows the MCP server to read API keys from `.env` instead of the MCP JSON config. It is recommended to have keys in both places in case the MCP server is unable to read keys from its environment for whatever reason.
When adding keys to `.env` only, the `models` tool will explain that the keys are not OK for MCP. Despite this, the fallback should kick in and the API keys will be read from the `.env` file.
## Troubleshooting
**If MCP server doesn't start:**
- Verify the JSON configuration is valid
- Check that Node.js is installed
- Ensure API keys are properly formatted
**If AI commands fail:**
- Verify at least one API key is configured
- Check API key permissions and quotas
- Try using a different model via the `models` tool
## CLI Fallback
Taskmaster is also available via CLI commands, by installing with `npm install task-master-ai@latest` in a terminal. Running `task-master help` will show all available commands, which offer a 1:1 experience with the MCP server. As the AI agent, you should refer to the system prompts and rules provided to you to identify Taskmaster-specific rules that help you understand how and when to use it.
## Next Steps
Once installed, users can:
- Create new tasks with `add-task` or parse a PRD (scripts/prd.txt) into tasks with `parse-prd`
- Set up model preferences with `models` tool
- Expand tasks into subtasks with `expand-all` and `expand-task`
- Explore advanced features like research mode and complexity analysis
For detailed documentation, refer to the Task Master docs directory.``

View File

@@ -94,6 +94,7 @@ export async function addTaskDirect(args, log, context = {}) {
let manualTaskData = null;
let newTaskId;
let telemetryData;
if (isManualCreation) {
// Create manual task data object
@@ -109,7 +110,7 @@ export async function addTaskDirect(args, log, context = {}) {
);
// Call the addTask function with manual task data
newTaskId = await addTask(
const result = await addTask(
tasksPath,
null, // prompt is null for manual creation
taskDependencies,
@@ -117,13 +118,17 @@ export async function addTaskDirect(args, log, context = {}) {
{
session,
mcpLog,
projectRoot
projectRoot,
commandName: 'add-task',
outputType: 'mcp'
},
'json', // outputFormat
manualTaskData, // Pass the manual task data
false, // research flag is false for manual creation
projectRoot // Pass projectRoot
);
newTaskId = result.newTaskId;
telemetryData = result.telemetryData;
} else {
// AI-driven task creation
log.info(
@@ -131,7 +136,7 @@ export async function addTaskDirect(args, log, context = {}) {
);
// Call the addTask function, passing the research flag
newTaskId = await addTask(
const result = await addTask(
tasksPath,
prompt, // Use the prompt for AI creation
taskDependencies,
@@ -139,12 +144,16 @@ export async function addTaskDirect(args, log, context = {}) {
{
session,
mcpLog,
projectRoot
projectRoot,
commandName: 'add-task',
outputType: 'mcp'
},
'json', // outputFormat
null, // manualTaskData is null for AI creation
research // Pass the research flag
);
newTaskId = result.newTaskId;
telemetryData = result.telemetryData;
}
// Restore normal logging
@@ -154,7 +163,8 @@ export async function addTaskDirect(args, log, context = {}) {
success: true,
data: {
taskId: newTaskId,
message: `Successfully added new task #${newTaskId}`
message: `Successfully added new task #${newTaskId}`,
telemetryData: telemetryData
}
};
} catch (error) {

View File

@@ -18,6 +18,9 @@ import { createLogWrapper } from '../../tools/utils.js'; // Import the new utili
* @param {string} args.outputPath - Explicit absolute path to save the report.
* @param {string|number} [args.threshold] - Minimum complexity score to recommend expansion (1-10)
* @param {boolean} [args.research] - Use Perplexity AI for research-backed complexity analysis
* @param {string} [args.ids] - Comma-separated list of task IDs to analyze
* @param {number} [args.from] - Starting task ID in a range to analyze
* @param {number} [args.to] - Ending task ID in a range to analyze
* @param {string} [args.projectRoot] - Project root path.
* @param {Object} log - Logger object
* @param {Object} [context={}] - Context object containing session data
@@ -26,7 +29,16 @@ import { createLogWrapper } from '../../tools/utils.js'; // Import the new utili
*/
export async function analyzeTaskComplexityDirect(args, log, context = {}) {
const { session } = context;
const { tasksJsonPath, outputPath, threshold, research, projectRoot } = args;
const {
tasksJsonPath,
outputPath,
threshold,
research,
projectRoot,
ids,
from,
to
} = args;
const logWrapper = createLogWrapper(log);
@@ -58,6 +70,14 @@ export async function analyzeTaskComplexityDirect(args, log, context = {}) {
log.info(`Analyzing task complexity from: ${tasksPath}`);
log.info(`Output report will be saved to: ${resolvedOutputPath}`);
if (ids) {
log.info(`Analyzing specific task IDs: ${ids}`);
} else if (from || to) {
const fromStr = from !== undefined ? from : 'first';
const toStr = to !== undefined ? to : 'last';
log.info(`Analyzing tasks in range: ${fromStr} to ${toStr}`);
}
if (research) {
log.info('Using research role for complexity analysis');
}
@@ -68,7 +88,10 @@ export async function analyzeTaskComplexityDirect(args, log, context = {}) {
output: outputPath,
threshold: threshold,
research: research === true, // Ensure boolean
projectRoot: projectRoot // Pass projectRoot here
projectRoot: projectRoot, // Pass projectRoot here
id: ids, // Pass the ids parameter to the core function as 'id'
from: from, // Pass from parameter
to: to // Pass to parameter
};
// --- End Initial Checks ---
@@ -79,17 +102,19 @@ export async function analyzeTaskComplexityDirect(args, log, context = {}) {
}
let report;
let coreResult;
try {
// --- Call Core Function (Pass context separately) ---
// Pass coreOptions as the first argument
// Pass context object { session, mcpLog } as the second argument
report = await analyzeTaskComplexity(
coreOptions, // Pass options object
{ session, mcpLog: logWrapper } // Pass context object
// Removed the explicit 'json' format argument, assuming context handling is sufficient
// If issues persist, we might need to add an explicit format param to analyzeTaskComplexity
);
coreResult = await analyzeTaskComplexity(coreOptions, {
session,
mcpLog: logWrapper,
commandName: 'analyze-complexity',
outputType: 'mcp'
});
report = coreResult.report;
} catch (error) {
log.error(
`Error in analyzeTaskComplexity core function: ${error.message}`
@@ -125,8 +150,11 @@ export async function analyzeTaskComplexityDirect(args, log, context = {}) {
};
}
// Added a check to ensure report is defined before accessing its properties
if (!report || typeof report !== 'object') {
if (
!coreResult ||
!coreResult.report ||
typeof coreResult.report !== 'object'
) {
log.error(
'Core analysis function returned an invalid or undefined response.'
);
@@ -141,8 +169,8 @@ export async function analyzeTaskComplexityDirect(args, log, context = {}) {
try {
// Ensure complexityAnalysis exists and is an array
const analysisArray = Array.isArray(report.complexityAnalysis)
? report.complexityAnalysis
const analysisArray = Array.isArray(coreResult.report.complexityAnalysis)
? coreResult.report.complexityAnalysis
: [];
// Count tasks by complexity (remains the same)
@@ -159,15 +187,16 @@ export async function analyzeTaskComplexityDirect(args, log, context = {}) {
return {
success: true,
data: {
message: `Task complexity analysis complete. Report saved to ${outputPath}`, // Use outputPath from args
reportPath: outputPath, // Use outputPath from args
message: `Task complexity analysis complete. Report saved to ${outputPath}`,
reportPath: outputPath,
reportSummary: {
taskCount: analysisArray.length,
highComplexityTasks,
mediumComplexityTasks,
lowComplexityTasks
},
fullReport: report // Now includes the full report
fullReport: coreResult.report,
telemetryData: coreResult.telemetryData
}
};
} catch (parseError) {

View File

@@ -63,12 +63,18 @@ export async function expandAllTasksDirect(args, log, context = {}) {
{ session, mcpLog, projectRoot }
);
// Core function now returns a summary object
// Core function now returns a summary object including the *aggregated* telemetryData
return {
success: true,
data: {
message: `Expand all operation completed. Expanded: ${result.expandedCount}, Failed: ${result.failedCount}, Skipped: ${result.skippedCount}`,
details: result // Include the full result details
details: {
expandedCount: result.expandedCount,
failedCount: result.failedCount,
skippedCount: result.skippedCount,
tasksToExpand: result.tasksToExpand
},
telemetryData: result.telemetryData // Pass the aggregated object
}
};
} catch (error) {

View File

@@ -193,13 +193,19 @@ export async function expandTaskDirect(args, log, context = {}) {
if (!wasSilent) enableSilentMode();
// Call the core expandTask function with the wrapped logger and projectRoot
const updatedTaskResult = await expandTask(
const coreResult = await expandTask(
tasksPath,
taskId,
numSubtasks,
useResearch,
additionalContext,
{ mcpLog, session, projectRoot },
{
mcpLog,
session,
projectRoot,
commandName: 'expand-task',
outputType: 'mcp'
},
forceFlag
);
@@ -215,16 +221,17 @@ export async function expandTaskDirect(args, log, context = {}) {
? updatedTask.subtasks.length - subtasksCountBefore
: 0;
// Return the result
// Return the result, including telemetryData
log.info(
`Successfully expanded task ${taskId} with ${subtasksAdded} new subtasks`
);
return {
success: true,
data: {
task: updatedTask,
task: coreResult.task,
subtasksAdded,
hasExistingSubtasks
hasExistingSubtasks,
telemetryData: coreResult.telemetryData
},
fromCache: false
};

View File

@@ -18,7 +18,7 @@ import {
*/
export async function listTasksDirect(args, log) {
// Destructure the explicit tasksJsonPath from args
const { tasksJsonPath, status, withSubtasks } = args;
const { tasksJsonPath, reportPath, status, withSubtasks } = args;
if (!tasksJsonPath) {
log.error('listTasksDirect called without tasksJsonPath');
@@ -49,6 +49,7 @@ export async function listTasksDirect(args, log) {
const resultData = listTasks(
tasksJsonPath,
statusFilter,
reportPath,
withSubtasksFilter,
'json'
);
@@ -63,6 +64,7 @@ export async function listTasksDirect(args, log) {
}
};
}
log.info(
`Core listTasks function retrieved ${resultData.tasks.length} tasks`
);

View File

@@ -0,0 +1,99 @@
/**
* Direct function wrapper for moveTask
*/
import { moveTask } from '../../../../scripts/modules/task-manager.js';
import { findTasksJsonPath } from '../utils/path-utils.js';
import {
enableSilentMode,
disableSilentMode
} from '../../../../scripts/modules/utils.js';
/**
* Move a task or subtask to a new position
* @param {Object} args - Function arguments
* @param {string} args.tasksJsonPath - Explicit path to the tasks.json file
* @param {string} args.sourceId - ID of the task/subtask to move (e.g., '5' or '5.2')
* @param {string} args.destinationId - ID of the destination (e.g., '7' or '7.3')
* @param {string} args.file - Alternative path to the tasks.json file
* @param {string} args.projectRoot - Project root directory
* @param {Object} log - Logger object
* @returns {Promise<{success: boolean, data?: Object, error?: Object}>}
*/
export async function moveTaskDirect(args, log, context = {}) {
const { session } = context;
// Validate required parameters
if (!args.sourceId) {
return {
success: false,
error: {
message: 'Source ID is required',
code: 'MISSING_SOURCE_ID'
}
};
}
if (!args.destinationId) {
return {
success: false,
error: {
message: 'Destination ID is required',
code: 'MISSING_DESTINATION_ID'
}
};
}
try {
// Find tasks.json path if not provided
let tasksPath = args.tasksJsonPath || args.file;
if (!tasksPath) {
if (!args.projectRoot) {
return {
success: false,
error: {
message:
'Project root is required if tasksJsonPath is not provided',
code: 'MISSING_PROJECT_ROOT'
}
};
}
tasksPath = findTasksJsonPath(args, log);
}
// Enable silent mode to prevent console output during MCP operation
enableSilentMode();
// Call the core moveTask function, always generate files
const result = await moveTask(
tasksPath,
args.sourceId,
args.destinationId,
true
);
// Restore console output
disableSilentMode();
return {
success: true,
data: {
movedTask: result.movedTask,
message: `Successfully moved task/subtask ${args.sourceId} to ${args.destinationId}`
}
};
} catch (error) {
// Restore console output in case of error
disableSilentMode();
log.error(`Failed to move task: ${error.message}`);
return {
success: false,
error: {
message: error.message,
code: 'MOVE_TASK_ERROR'
}
};
}
}

View File

@@ -4,7 +4,10 @@
*/
import { findNextTask } from '../../../../scripts/modules/task-manager.js';
import { readJSON } from '../../../../scripts/modules/utils.js';
import {
readJSON,
readComplexityReport
} from '../../../../scripts/modules/utils.js';
import {
enableSilentMode,
disableSilentMode
@@ -20,7 +23,7 @@ import {
*/
export async function nextTaskDirect(args, log) {
// Destructure expected args
const { tasksJsonPath } = args;
const { tasksJsonPath, reportPath } = args;
if (!tasksJsonPath) {
log.error('nextTaskDirect called without tasksJsonPath');
@@ -55,8 +58,11 @@ export async function nextTaskDirect(args, log) {
};
}
// Read the complexity report
const complexityReport = readComplexityReport(reportPath);
// Find the next task
const nextTask = findNextTask(data.tasks);
const nextTask = findNextTask(data.tasks, complexityReport);
if (!nextTask) {
log.info(

View File

@@ -31,6 +31,7 @@ export async function parsePRDDirect(args, log, context = {}) {
numTasks: numTasksArg,
force,
append,
research,
projectRoot
} = args;
@@ -105,19 +106,23 @@ export async function parsePRDDirect(args, log, context = {}) {
}
}
const useForce = force === true;
const useAppend = append === true;
if (useAppend) {
if (append) {
logWrapper.info('Append mode enabled.');
if (useForce) {
if (force) {
logWrapper.warn(
'Both --force and --append flags were provided. --force takes precedence; append mode will be ignored.'
);
}
}
if (research) {
logWrapper.info(
'Research mode enabled. Using Perplexity AI for enhanced PRD analysis.'
);
}
logWrapper.info(
`Parsing PRD via direct function. Input: ${inputPath}, Output: ${outputPath}, NumTasks: ${numTasks}, Force: ${useForce}, Append: ${useAppend}, ProjectRoot: ${projectRoot}`
`Parsing PRD via direct function. Input: ${inputPath}, Output: ${outputPath}, NumTasks: ${numTasks}, Force: ${force}, Append: ${append}, Research: ${research}, ProjectRoot: ${projectRoot}`
);
const wasSilent = isSilentMode();
@@ -131,21 +136,29 @@ export async function parsePRDDirect(args, log, context = {}) {
inputPath,
outputPath,
numTasks,
{ session, mcpLog: logWrapper, projectRoot, useForce, useAppend },
{
session,
mcpLog: logWrapper,
projectRoot,
force,
append,
research,
commandName: 'parse-prd',
outputType: 'mcp'
},
'json'
);
// parsePRD returns { success: true, tasks: processedTasks } on success
if (result && result.success && Array.isArray(result.tasks)) {
logWrapper.success(
`Successfully parsed PRD. Generated ${result.tasks.length} tasks.`
);
// Adjust check for the new return structure
if (result && result.success) {
const successMsg = `Successfully parsed PRD and generated tasks in ${result.tasksPath}`;
logWrapper.success(successMsg);
return {
success: true,
data: {
message: `Successfully parsed PRD and generated ${result.tasks.length} tasks.`,
outputPath: outputPath,
taskCount: result.tasks.length
message: successMsg,
outputPath: result.tasksPath,
telemetryData: result.telemetryData
}
};
} else {

View File

@@ -9,7 +9,7 @@ import {
disableSilentMode,
isSilentMode
} from '../../../../scripts/modules/utils.js';
import { nextTaskDirect } from './next-task.js';
/**
* Direct function wrapper for setTaskStatus with error handling.
*
@@ -19,7 +19,7 @@ import {
*/
export async function setTaskStatusDirect(args, log) {
// Destructure expected args, including the resolved tasksJsonPath
const { tasksJsonPath, id, status } = args;
const { tasksJsonPath, id, status, complexityReportPath } = args;
try {
log.info(`Setting task status with args: ${JSON.stringify(args)}`);
@@ -85,6 +85,39 @@ export async function setTaskStatusDirect(args, log) {
},
fromCache: false // This operation always modifies state and should never be cached
};
// If the task was completed, attempt to fetch the next task
if (result.data.status === 'done') {
try {
log.info(`Attempting to fetch next task for task ${taskId}`);
const nextResult = await nextTaskDirect(
{
tasksJsonPath: tasksJsonPath,
reportPath: complexityReportPath
},
log
);
if (nextResult.success) {
log.info(
`Successfully retrieved next task: ${nextResult.data.nextTask}`
);
result.data = {
...result.data,
nextTask: nextResult.data.nextTask,
isNextSubtask: nextResult.data.isSubtask,
nextSteps: nextResult.data.nextSteps
};
} else {
log.warn(
`Failed to retrieve next task: ${nextResult.error?.message || 'Unknown error'}`
);
}
} catch (nextErr) {
log.error(`Error retrieving next task: ${nextErr.message}`);
}
}
return result;
} catch (error) {
log.error(`Error setting task status: ${error.message}`);

View File

@@ -3,7 +3,11 @@
* Direct function implementation for showing task details
*/
import { findTaskById, readJSON } from '../../../../scripts/modules/utils.js';
import {
findTaskById,
readComplexityReport,
readJSON
} from '../../../../scripts/modules/utils.js';
import { findTasksJsonPath } from '../utils/path-utils.js';
/**
@@ -12,6 +16,7 @@ import { findTasksJsonPath } from '../utils/path-utils.js';
* @param {Object} args - Command arguments.
* @param {string} args.id - Task ID to show.
* @param {string} [args.file] - Optional path to the tasks file (passed to findTasksJsonPath).
* @param {string} args.reportPath - Explicit path to the complexity report file.
* @param {string} [args.status] - Optional status to filter subtasks by.
* @param {string} args.projectRoot - Absolute path to the project root directory (already normalized by tool).
* @param {Object} log - Logger object.
@@ -22,7 +27,7 @@ export async function showTaskDirect(args, log) {
// Destructure session from context if needed later, otherwise ignore
// const { session } = context;
// Destructure projectRoot and other args. projectRoot is assumed normalized.
const { id, file, status, projectRoot } = args;
const { id, file, reportPath, status, projectRoot } = args;
log.info(
`Showing task direct function. ID: ${id}, File: ${file}, Status Filter: ${status}, ProjectRoot: ${projectRoot}`
@@ -59,9 +64,12 @@ export async function showTaskDirect(args, log) {
};
}
const complexityReport = readComplexityReport(reportPath);
const { task, originalSubtaskCount } = findTaskById(
tasksData.tasks,
id,
complexityReport,
status
);

View File

@@ -108,18 +108,24 @@ export async function updateSubtaskByIdDirect(args, log, context = {}) {
try {
// Execute core updateSubtaskById function
const updatedSubtask = await updateSubtaskById(
const coreResult = await updateSubtaskById(
tasksPath,
subtaskIdStr,
prompt,
useResearch,
{ mcpLog: logWrapper, session, projectRoot },
{
mcpLog: logWrapper,
session,
projectRoot,
commandName: 'update-subtask',
outputType: 'mcp'
},
'json'
);
if (updatedSubtask === null) {
if (!coreResult || coreResult.updatedSubtask === null) {
const message = `Subtask ${id} or its parent task not found.`;
logWrapper.error(message); // Log as error since it couldn't be found
logWrapper.error(message);
return {
success: false,
error: { code: 'SUBTASK_NOT_FOUND', message: message },
@@ -136,9 +142,10 @@ export async function updateSubtaskByIdDirect(args, log, context = {}) {
message: `Successfully updated subtask with ID ${subtaskIdStr}`,
subtaskId: subtaskIdStr,
parentId: subtaskIdStr.split('.')[0],
subtask: updatedSubtask,
subtask: coreResult.updatedSubtask,
tasksPath,
useResearch
useResearch,
telemetryData: coreResult.telemetryData
},
fromCache: false
};

View File

@@ -110,7 +110,7 @@ export async function updateTaskByIdDirect(args, log, context = {}) {
try {
// Execute core updateTaskById function with proper parameters
const updatedTask = await updateTaskById(
const coreResult = await updateTaskById(
tasksPath,
taskId,
prompt,
@@ -118,19 +118,26 @@ export async function updateTaskByIdDirect(args, log, context = {}) {
{
mcpLog: logWrapper,
session,
projectRoot
projectRoot,
commandName: 'update-task',
outputType: 'mcp'
},
'json'
);
// Check if the core function indicated the task wasn't updated (e.g., status was 'done')
if (updatedTask === null) {
// Check if the core function returned null or an object without success
if (!coreResult || coreResult.updatedTask === null) {
// Core function logs the reason, just return success with info
const message = `Task ${taskId} was not updated (likely already completed).`;
logWrapper.info(message);
return {
success: true,
data: { message: message, taskId: taskId, updated: false },
data: {
message: message,
taskId: taskId,
updated: false,
telemetryData: coreResult?.telemetryData
},
fromCache: false
};
}
@@ -146,7 +153,8 @@ export async function updateTaskByIdDirect(args, log, context = {}) {
tasksPath: tasksPath,
useResearch: useResearch,
updated: true,
updatedTask: updatedTask
updatedTask: coreResult.updatedTask,
telemetryData: coreResult.telemetryData
},
fromCache: false
};

View File

@@ -85,7 +85,6 @@ export async function updateTasksDirect(args, log, context = {}) {
'json'
);
// updateTasks returns { success: true, updatedTasks: [...] } on success
if (result && result.success && Array.isArray(result.updatedTasks)) {
logWrapper.success(
`Successfully updated ${result.updatedTasks.length} tasks.`
@@ -95,7 +94,8 @@ export async function updateTasksDirect(args, log, context = {}) {
data: {
message: `Successfully updated ${result.updatedTasks.length} tasks.`,
tasksFile,
updatedCount: result.updatedTasks.length
updatedCount: result.updatedTasks.length,
telemetryData: result.telemetryData
}
};
} else {

View File

@@ -30,6 +30,7 @@ import { addDependencyDirect } from './direct-functions/add-dependency.js';
import { removeTaskDirect } from './direct-functions/remove-task.js';
import { initializeProjectDirect } from './direct-functions/initialize-project.js';
import { modelsDirect } from './direct-functions/models.js';
import { moveTaskDirect } from './direct-functions/move-task.js';
// Re-export utility functions
export { findTasksJsonPath } from './utils/path-utils.js';
@@ -60,7 +61,8 @@ export const directFunctions = new Map([
['addDependencyDirect', addDependencyDirect],
['removeTaskDirect', removeTaskDirect],
['initializeProjectDirect', initializeProjectDirect],
['modelsDirect', modelsDirect]
['modelsDirect', modelsDirect],
['moveTaskDirect', moveTaskDirect]
]);
// Re-export all direct function implementations
@@ -89,5 +91,6 @@ export {
addDependencyDirect,
removeTaskDirect,
initializeProjectDirect,
modelsDirect
modelsDirect,
moveTaskDirect
};

View File

@@ -339,6 +339,49 @@ export function findPRDDocumentPath(projectRoot, explicitPath, log) {
return null;
}
export function findComplexityReportPath(projectRoot, explicitPath, log) {
// If explicit path is provided, check if it exists
if (explicitPath) {
const fullPath = path.isAbsolute(explicitPath)
? explicitPath
: path.resolve(projectRoot, explicitPath);
if (fs.existsSync(fullPath)) {
log.info(`Using provided PRD document path: ${fullPath}`);
return fullPath;
} else {
log.warn(
`Provided PRD document path not found: ${fullPath}, will search for alternatives`
);
}
}
// Common locations and file patterns for PRD documents
const commonLocations = [
'', // Project root
'scripts/'
];
const commonFileNames = [
'complexity-report.json',
'task-complexity-report.json'
];
// Check all possible combinations
for (const location of commonLocations) {
for (const fileName of commonFileNames) {
const potentialPath = path.join(projectRoot, location, fileName);
if (fs.existsSync(potentialPath)) {
log.info(`Found PRD document at: ${potentialPath}`);
return potentialPath;
}
}
}
log.warn(`No PRD document found in common locations within ${projectRoot}`);
return null;
}
/**
* Resolves the tasks output directory path
* @param {string} projectRoot - The project root directory

View File

@@ -49,6 +49,24 @@ export function registerAnalyzeProjectComplexityTool(server) {
.describe(
'Path to the tasks file relative to project root (default: tasks/tasks.json).'
),
ids: z
.string()
.optional()
.describe(
'Comma-separated list of task IDs to analyze specifically (e.g., "1,3,5").'
),
from: z.coerce
.number()
.int()
.positive()
.optional()
.describe('Starting task ID in a range to analyze.'),
to: z.coerce
.number()
.int()
.positive()
.optional()
.describe('Ending task ID in a range to analyze.'),
projectRoot: z
.string()
.describe('The directory of the project. Must be an absolute path.')
@@ -107,7 +125,10 @@ export function registerAnalyzeProjectComplexityTool(server) {
outputPath: outputPath,
threshold: args.threshold,
research: args.research,
projectRoot: args.projectRoot
projectRoot: args.projectRoot,
ids: args.ids,
from: args.from,
to: args.to
},
log,
{ session }

View File

@@ -10,7 +10,10 @@ import {
withNormalizedProjectRoot
} from './utils.js';
import { showTaskDirect } from '../core/task-master-core.js';
import { findTasksJsonPath } from '../core/utils/path-utils.js';
import {
findTasksJsonPath,
findComplexityReportPath
} from '../core/utils/path-utils.js';
/**
* Custom processor function that removes allTasks from the response
@@ -50,6 +53,12 @@ export function registerShowTaskTool(server) {
.string()
.optional()
.describe('Path to the tasks file relative to project root'),
complexityReport: z
.string()
.optional()
.describe(
'Path to the complexity report file (relative to project root or absolute)'
),
projectRoot: z
.string()
.optional()
@@ -81,9 +90,22 @@ export function registerShowTaskTool(server) {
}
// Call the direct function, passing the normalized projectRoot
// Resolve the path to complexity report
let complexityReportPath;
try {
complexityReportPath = findComplexityReportPath(
projectRoot,
args.complexityReport,
log
);
} catch (error) {
log.error(`Error finding complexity report: ${error.message}`);
}
const result = await showTaskDirect(
{
tasksJsonPath: tasksJsonPath,
reportPath: complexityReportPath,
// Pass other relevant args
id: id,
status: status,
projectRoot: projectRoot

View File

@@ -10,7 +10,10 @@ import {
withNormalizedProjectRoot
} from './utils.js';
import { listTasksDirect } from '../core/task-master-core.js';
import { findTasksJsonPath } from '../core/utils/path-utils.js';
import {
findTasksJsonPath,
findComplexityReportPath
} from '../core/utils/path-utils.js';
/**
* Register the getTasks tool with the MCP server
@@ -38,6 +41,12 @@ export function registerListTasksTool(server) {
.describe(
'Path to the tasks file (relative to project root or absolute)'
),
complexityReport: z
.string()
.optional()
.describe(
'Path to the complexity report file (relative to project root or absolute)'
),
projectRoot: z
.string()
.describe('The directory of the project. Must be an absolute path.')
@@ -60,11 +69,23 @@ export function registerListTasksTool(server) {
);
}
// Resolve the path to complexity report
let complexityReportPath;
try {
complexityReportPath = findComplexityReportPath(
args.projectRoot,
args.complexityReport,
log
);
} catch (error) {
log.error(`Error finding complexity report: ${error.message}`);
}
const result = await listTasksDirect(
{
tasksJsonPath: tasksJsonPath,
status: args.status,
withSubtasks: args.withSubtasks
withSubtasks: args.withSubtasks,
reportPath: complexityReportPath
},
log
);

View File

@@ -28,6 +28,7 @@ import { registerAddDependencyTool } from './add-dependency.js';
import { registerRemoveTaskTool } from './remove-task.js';
import { registerInitializeProjectTool } from './initialize-project.js';
import { registerModelsTool } from './models.js';
import { registerMoveTaskTool } from './move-task.js';
/**
* Register all Task Master tools with the MCP server
@@ -61,6 +62,7 @@ export function registerTaskMasterTools(server) {
registerRemoveTaskTool(server);
registerRemoveSubtaskTool(server);
registerClearSubtasksTool(server);
registerMoveTaskTool(server);
// Group 5: Task Analysis & Expansion
registerAnalyzeProjectComplexityTool(server);

View File

@@ -0,0 +1,129 @@
/**
* tools/move-task.js
* Tool for moving tasks or subtasks to a new position
*/
import { z } from 'zod';
import {
handleApiResult,
createErrorResponse,
withNormalizedProjectRoot
} from './utils.js';
import { moveTaskDirect } from '../core/task-master-core.js';
import { findTasksJsonPath } from '../core/utils/path-utils.js';
/**
* Register the moveTask tool with the MCP server
* @param {Object} server - FastMCP server instance
*/
export function registerMoveTaskTool(server) {
server.addTool({
name: 'move_task',
description: 'Move a task or subtask to a new position',
parameters: z.object({
from: z
.string()
.describe(
'ID of the task/subtask to move (e.g., "5" or "5.2"). Can be comma-separated to move multiple tasks (e.g., "5,6,7")'
),
to: z
.string()
.describe(
'ID of the destination (e.g., "7" or "7.3"). Must match the number of source IDs if comma-separated'
),
file: z.string().optional().describe('Custom path to tasks.json file'),
projectRoot: z
.string()
.optional()
.describe(
'Root directory of the project (typically derived from session)'
)
}),
execute: withNormalizedProjectRoot(async (args, { log, session }) => {
try {
// Find tasks.json path if not provided
let tasksJsonPath = args.file;
if (!tasksJsonPath) {
tasksJsonPath = findTasksJsonPath(args, log);
}
// Parse comma-separated IDs
const fromIds = args.from.split(',').map((id) => id.trim());
const toIds = args.to.split(',').map((id) => id.trim());
// Validate matching IDs count
if (fromIds.length !== toIds.length) {
return createErrorResponse(
'The number of source and destination IDs must match',
'MISMATCHED_ID_COUNT'
);
}
// If moving multiple tasks
if (fromIds.length > 1) {
const results = [];
// Move tasks one by one, only generate files on the last move
for (let i = 0; i < fromIds.length; i++) {
const fromId = fromIds[i];
const toId = toIds[i];
// Skip if source and destination are the same
if (fromId === toId) {
log.info(`Skipping ${fromId} -> ${toId} (same ID)`);
continue;
}
const shouldGenerateFiles = i === fromIds.length - 1;
const result = await moveTaskDirect(
{
sourceId: fromId,
destinationId: toId,
tasksJsonPath,
projectRoot: args.projectRoot
},
log,
{ session }
);
if (!result.success) {
log.error(
`Failed to move ${fromId} to ${toId}: ${result.error.message}`
);
} else {
results.push(result.data);
}
}
return {
success: true,
data: {
moves: results,
message: `Successfully moved ${results.length} tasks`
}
};
} else {
// Moving a single task
return handleApiResult(
await moveTaskDirect(
{
sourceId: args.from,
destinationId: args.to,
tasksJsonPath,
projectRoot: args.projectRoot
},
log,
{ session }
),
log
);
}
} catch (error) {
return createErrorResponse(
`Failed to move task: ${error.message}`,
'MOVE_TASK_ERROR'
);
}
})
});
}

View File

@@ -10,7 +10,10 @@ import {
withNormalizedProjectRoot
} from './utils.js';
import { nextTaskDirect } from '../core/task-master-core.js';
import { findTasksJsonPath } from '../core/utils/path-utils.js';
import {
findTasksJsonPath,
findComplexityReportPath
} from '../core/utils/path-utils.js';
/**
* Register the next-task tool with the MCP server
@@ -23,6 +26,12 @@ export function registerNextTaskTool(server) {
'Find the next task to work on based on dependencies and status',
parameters: z.object({
file: z.string().optional().describe('Absolute path to the tasks file'),
complexityReport: z
.string()
.optional()
.describe(
'Path to the complexity report file (relative to project root or absolute)'
),
projectRoot: z
.string()
.describe('The directory of the project. Must be an absolute path.')
@@ -45,9 +54,21 @@ export function registerNextTaskTool(server) {
);
}
// Resolve the path to complexity report
let complexityReportPath;
try {
complexityReportPath = findComplexityReportPath(
args.projectRoot,
args.complexityReport,
log
);
} catch (error) {
log.error(`Error finding complexity report: ${error.message}`);
}
const result = await nextTaskDirect(
{
tasksJsonPath: tasksJsonPath
tasksJsonPath: tasksJsonPath,
reportPath: complexityReportPath
},
log
);

View File

@@ -49,6 +49,13 @@ export function registerParsePRDTool(server) {
.optional()
.default(false)
.describe('Append generated tasks to existing file.'),
research: z
.boolean()
.optional()
.default(false)
.describe(
'Use the research model for research-backed task generation, providing more comprehensive, accurate and up-to-date task details.'
),
projectRoot: z
.string()
.describe('The directory of the project. Must be an absolute path.')
@@ -68,6 +75,7 @@ export function registerParsePRDTool(server) {
numTasks: args.numTasks,
force: args.force,
append: args.append,
research: args.research,
projectRoot: args.projectRoot
},
log,

View File

@@ -9,8 +9,14 @@ import {
createErrorResponse,
withNormalizedProjectRoot
} from './utils.js';
import { setTaskStatusDirect } from '../core/task-master-core.js';
import { findTasksJsonPath } from '../core/utils/path-utils.js';
import {
setTaskStatusDirect,
nextTaskDirect
} from '../core/task-master-core.js';
import {
findTasksJsonPath,
findComplexityReportPath
} from '../core/utils/path-utils.js';
import { TASK_STATUS_OPTIONS } from '../../../src/constants/task-status.js';
/**
@@ -33,6 +39,12 @@ export function registerSetTaskStatusTool(server) {
"New status to set (e.g., 'pending', 'done', 'in-progress', 'review', 'deferred', 'cancelled'."
),
file: z.string().optional().describe('Absolute path to the tasks file'),
complexityReport: z
.string()
.optional()
.describe(
'Path to the complexity report file (relative to project root or absolute)'
),
projectRoot: z
.string()
.describe('The directory of the project. Must be an absolute path.')
@@ -55,11 +67,23 @@ export function registerSetTaskStatusTool(server) {
);
}
let complexityReportPath;
try {
complexityReportPath = findComplexityReportPath(
args.projectRoot,
args.complexityReport,
log
);
} catch (error) {
log.error(`Error finding complexity report: ${error.message}`);
}
const result = await setTaskStatusDirect(
{
tasksJsonPath: tasksJsonPath,
id: args.id,
status: args.status
status: args.status,
complexityReportPath
},
log
);

View File

@@ -22,7 +22,7 @@ import {
*/
function getProjectRoot(projectRootRaw, log) {
// PRECEDENCE ORDER:
// 1. Environment variable override
// 1. Environment variable override (TASK_MASTER_PROJECT_ROOT)
// 2. Explicitly provided projectRoot in args
// 3. Previously found/cached project root
// 4. Current directory if it has project markers
@@ -578,6 +578,7 @@ function getRawProjectRootFromSession(session, log) {
/**
* Higher-order function to wrap MCP tool execute methods.
* Ensures args.projectRoot is present and normalized before execution.
* Uses TASK_MASTER_PROJECT_ROOT environment variable with proper precedence.
* @param {Function} executeFn - The original async execute(args, context) function.
* @returns {Function} The wrapped async execute function.
*/
@@ -588,31 +589,52 @@ function withNormalizedProjectRoot(executeFn) {
let rootSource = 'unknown';
try {
// Determine raw root: prioritize args, then session
let rawRoot = args.projectRoot;
if (!rawRoot) {
rawRoot = getRawProjectRootFromSession(session, log);
rootSource = 'session';
} else {
rootSource = 'args';
}
// PRECEDENCE ORDER:
// 1. TASK_MASTER_PROJECT_ROOT environment variable (from process.env or session)
// 2. args.projectRoot (explicitly provided)
// 3. Session-based project root resolution
// 4. Current directory fallback
if (!rawRoot) {
log.error('Could not determine project root from args or session.');
return createErrorResponse(
'Could not determine project root. Please provide projectRoot argument or ensure session contains root info.'
);
// 1. Check for TASK_MASTER_PROJECT_ROOT environment variable first
if (process.env.TASK_MASTER_PROJECT_ROOT) {
const envRoot = process.env.TASK_MASTER_PROJECT_ROOT;
normalizedRoot = path.isAbsolute(envRoot)
? envRoot
: path.resolve(process.cwd(), envRoot);
rootSource = 'TASK_MASTER_PROJECT_ROOT environment variable';
log.info(`Using project root from ${rootSource}: ${normalizedRoot}`);
}
// Also check session environment variables for TASK_MASTER_PROJECT_ROOT
else if (session?.env?.TASK_MASTER_PROJECT_ROOT) {
const envRoot = session.env.TASK_MASTER_PROJECT_ROOT;
normalizedRoot = path.isAbsolute(envRoot)
? envRoot
: path.resolve(process.cwd(), envRoot);
rootSource = 'TASK_MASTER_PROJECT_ROOT session environment variable';
log.info(`Using project root from ${rootSource}: ${normalizedRoot}`);
}
// 2. If no environment variable, try args.projectRoot
else if (args.projectRoot) {
normalizedRoot = normalizeProjectRoot(args.projectRoot, log);
rootSource = 'args.projectRoot';
log.info(`Using project root from ${rootSource}: ${normalizedRoot}`);
}
// 3. If no args.projectRoot, try session-based resolution
else {
const sessionRoot = getProjectRootFromSession(session, log);
if (sessionRoot) {
normalizedRoot = sessionRoot; // getProjectRootFromSession already normalizes
rootSource = 'session';
log.info(`Using project root from ${rootSource}: ${normalizedRoot}`);
}
}
// Normalize the determined raw root
normalizedRoot = normalizeProjectRoot(rawRoot, log);
if (!normalizedRoot) {
log.error(
`Failed to normalize project root obtained from ${rootSource}: ${rawRoot}`
'Could not determine project root from environment, args, or session.'
);
return createErrorResponse(
`Invalid project root provided or derived from ${rootSource}: ${rawRoot}`
'Could not determine project root. Please provide projectRoot argument or ensure TASK_MASTER_PROJECT_ROOT environment variable is set.'
);
}

6
package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "task-master-ai",
"version": "0.13.2",
"version": "0.14.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "task-master-ai",
"version": "0.13.2",
"version": "0.14.0",
"license": "MIT WITH Commons-Clause",
"dependencies": {
"@ai-sdk/anthropic": "^1.2.10",
@@ -28,7 +28,7 @@
"express": "^4.21.2",
"fastmcp": "^1.20.5",
"figlet": "^1.8.0",
"fuse.js": "^7.0.0",
"fuse.js": "^7.1.0",
"gradient-string": "^3.0.0",
"helmet": "^8.1.0",
"inquirer": "^12.5.0",

View File

@@ -1,6 +1,6 @@
{
"name": "task-master-ai",
"version": "0.13.2",
"version": "0.15.0",
"description": "A task management system for ambitious AI-driven development that doesn't overwhelm and confuse Cursor.",
"main": "index.js",
"type": "module",
@@ -49,13 +49,16 @@
"@anthropic-ai/sdk": "^0.39.0",
"@openrouter/ai-sdk-provider": "^0.4.5",
"ai": "^4.3.10",
"boxen": "^8.0.1",
"chalk": "^5.4.1",
"cli-table3": "^0.6.5",
"commander": "^11.1.0",
"cors": "^2.8.5",
"dotenv": "^16.3.1",
"express": "^4.21.2",
"fastmcp": "^1.20.5",
"figlet": "^1.8.0",
"fuse.js": "^7.0.0",
"fuse.js": "^7.1.0",
"gradient-string": "^3.0.0",
"helmet": "^8.1.0",
"inquirer": "^12.5.0",
@@ -65,9 +68,6 @@
"openai": "^4.89.0",
"ora": "^8.2.0",
"uuid": "^11.1.0",
"boxen": "^8.0.1",
"chalk": "^5.4.1",
"cli-table3": "^0.6.5",
"zod": "^3.23.8"
},
"engines": {

View File

@@ -15,9 +15,13 @@ import {
getFallbackProvider,
getFallbackModelId,
getParametersForRole,
getBaseUrlForRole
getUserId,
MODEL_MAP,
getDebugFlag,
getBaseUrlForRole,
isApiKeySet
} from './config-manager.js';
import { log, resolveEnvVariable, findProjectRoot } from './utils.js';
import { log, findProjectRoot, resolveEnvVariable } from './utils.js';
import * as anthropic from '../../src/ai-providers/anthropic.js';
import * as perplexity from '../../src/ai-providers/perplexity.js';
@@ -25,8 +29,39 @@ import * as google from '../../src/ai-providers/google.js';
import * as openai from '../../src/ai-providers/openai.js';
import * as xai from '../../src/ai-providers/xai.js';
import * as openrouter from '../../src/ai-providers/openrouter.js';
import * as ollama from '../../src/ai-providers/ollama.js';
// TODO: Import other provider modules when implemented (ollama, etc.)
// Helper function to get cost for a specific model
function _getCostForModel(providerName, modelId) {
if (!MODEL_MAP || !MODEL_MAP[providerName]) {
log(
'warn',
`Provider "${providerName}" not found in MODEL_MAP. Cannot determine cost for model ${modelId}.`
);
return { inputCost: 0, outputCost: 0, currency: 'USD' }; // Default to zero cost
}
const modelData = MODEL_MAP[providerName].find((m) => m.id === modelId);
if (!modelData || !modelData.cost_per_1m_tokens) {
log(
'debug',
`Cost data not found for model "${modelId}" under provider "${providerName}". Assuming zero cost.`
);
return { inputCost: 0, outputCost: 0, currency: 'USD' }; // Default to zero cost
}
// Ensure currency is part of the returned object, defaulting if not present
const currency = modelData.cost_per_1m_tokens.currency || 'USD';
return {
inputCost: modelData.cost_per_1m_tokens.input || 0,
outputCost: modelData.cost_per_1m_tokens.output || 0,
currency: currency
};
}
// --- Provider Function Map ---
// Maps provider names (lowercase) to their respective service functions
const PROVIDER_FUNCTIONS = {
@@ -63,6 +98,11 @@ const PROVIDER_FUNCTIONS = {
generateText: openrouter.generateOpenRouterText,
streamText: openrouter.streamOpenRouterText,
generateObject: openrouter.generateOpenRouterObject
},
ollama: {
generateText: ollama.generateOllamaText,
streamText: ollama.streamOllamaText,
generateObject: ollama.generateOllamaObject
}
// TODO: Add entries for ollama, etc. when implemented
};
@@ -150,14 +190,10 @@ function _resolveApiKey(providerName, session, projectRoot = null) {
mistral: 'MISTRAL_API_KEY',
azure: 'AZURE_OPENAI_API_KEY',
openrouter: 'OPENROUTER_API_KEY',
xai: 'XAI_API_KEY'
xai: 'XAI_API_KEY',
ollama: 'OLLAMA_API_KEY'
};
// Double check this -- I have had to use an api key for ollama in the past
// if (providerName === 'ollama') {
// return null; // Ollama typically doesn't require an API key for basic setup
// }
const envVarName = keyMap[providerName];
if (!envVarName) {
throw new Error(
@@ -166,6 +202,13 @@ function _resolveApiKey(providerName, session, projectRoot = null) {
}
const apiKey = resolveEnvVariable(envVarName, session, projectRoot);
// Special handling for Ollama - API key is optional
if (providerName === 'ollama') {
return apiKey || null;
}
// For all other providers, API key is required
if (!apiKey) {
throw new Error(
`Required API key ${envVarName} for provider '${providerName}' is not set in environment, session, or .env file.`
@@ -197,18 +240,22 @@ async function _attemptProviderCallWithRetries(
while (retries <= MAX_RETRIES) {
try {
log(
'info',
`Attempt ${retries + 1}/${MAX_RETRIES + 1} calling ${fnName} (Provider: ${providerName}, Model: ${modelId}, Role: ${attemptRole})`
);
if (getDebugFlag()) {
log(
'info',
`Attempt ${retries + 1}/${MAX_RETRIES + 1} calling ${fnName} (Provider: ${providerName}, Model: ${modelId}, Role: ${attemptRole})`
);
}
// Call the specific provider function directly
const result = await providerApiFn(callParams);
log(
'info',
`${fnName} succeeded for role ${attemptRole} (Provider: ${providerName}) on attempt ${retries + 1}`
);
if (getDebugFlag()) {
log(
'info',
`${fnName} succeeded for role ${attemptRole} (Provider: ${providerName}) on attempt ${retries + 1}`
);
}
return result;
} catch (error) {
log(
@@ -221,13 +268,13 @@ async function _attemptProviderCallWithRetries(
const delay = INITIAL_RETRY_DELAY_MS * Math.pow(2, retries - 1);
log(
'info',
`Retryable error detected. Retrying in ${delay / 1000}s...`
`Something went wrong on the provider side. Retrying in ${delay / 1000}s...`
);
await new Promise((resolve) => setTimeout(resolve, delay));
} else {
log(
'error',
`Non-retryable error or max retries reached for role ${attemptRole} (${fnName} / ${providerName}).`
`Something went wrong on the provider side. Max retries reached for role ${attemptRole} (${fnName} / ${providerName}).`
);
throw error;
}
@@ -243,7 +290,15 @@ async function _attemptProviderCallWithRetries(
* Base logic for unified service functions.
* @param {string} serviceType - Type of service ('generateText', 'streamText', 'generateObject').
* @param {object} params - Original parameters passed to the service function.
* @param {string} params.role - The initial client role.
* @param {object} [params.session=null] - Optional MCP session object.
* @param {string} [params.projectRoot] - Optional project root path.
* @param {string} params.commandName - Name of the command invoking the service.
* @param {string} params.outputType - 'cli' or 'mcp'.
* @param {string} [params.systemPrompt] - Optional system prompt.
* @param {string} [params.prompt] - The prompt for the AI.
* @param {string} [params.schema] - The Zod schema for the expected object.
* @param {string} [params.objectName] - Name for object/tool.
* @returns {Promise<any>} Result from the underlying provider call.
*/
async function _unifiedServiceRunner(serviceType, params) {
@@ -255,15 +310,21 @@ async function _unifiedServiceRunner(serviceType, params) {
prompt,
schema,
objectName,
commandName,
outputType,
...restApiParams
} = params;
log('info', `${serviceType}Service called`, {
role: initialRole,
projectRoot
});
if (getDebugFlag()) {
log('info', `${serviceType}Service called`, {
role: initialRole,
commandName,
outputType,
projectRoot
});
}
// Determine the effective project root (passed in or detected)
const effectiveProjectRoot = projectRoot || findProjectRoot();
const userId = getUserId(effectiveProjectRoot);
let sequence;
if (initialRole === 'main') {
@@ -291,13 +352,13 @@ async function _unifiedServiceRunner(serviceType, params) {
roleParams,
providerFnSet,
providerApiFn,
baseUrl;
baseUrl,
providerResponse,
telemetryData = null;
try {
log('info', `New AI service call with role: ${currentRole}`);
// 1. Get Config: Provider, Model, Parameters for the current role
// Pass effectiveProjectRoot to config getters
if (currentRole === 'main') {
providerName = getMainProvider(effectiveProjectRoot);
modelId = getMainModelId(effectiveProjectRoot);
@@ -330,11 +391,24 @@ async function _unifiedServiceRunner(serviceType, params) {
continue;
}
// Pass effectiveProjectRoot to getParametersForRole
// Check if API key is set for the current provider and role (excluding 'ollama')
if (providerName?.toLowerCase() !== 'ollama') {
if (!isApiKeySet(providerName, session, effectiveProjectRoot)) {
log(
'warn',
`Skipping role '${currentRole}' (Provider: ${providerName}): API key not set or invalid.`
);
lastError =
lastError ||
new Error(
`API key for provider '${providerName}' (role: ${currentRole}) is not set.`
);
continue; // Skip to the next role in the sequence
}
}
roleParams = getParametersForRole(currentRole, effectiveProjectRoot);
baseUrl = getBaseUrlForRole(currentRole, effectiveProjectRoot);
// 2. Get Provider Function Set
providerFnSet = PROVIDER_FUNCTIONS[providerName?.toLowerCase()];
if (!providerFnSet) {
log(
@@ -347,7 +421,6 @@ async function _unifiedServiceRunner(serviceType, params) {
continue;
}
// Use the original service type to get the function
providerApiFn = providerFnSet[serviceType];
if (typeof providerApiFn !== 'function') {
log(
@@ -362,15 +435,12 @@ async function _unifiedServiceRunner(serviceType, params) {
continue;
}
// 3. Resolve API Key (will throw if required and missing)
// Pass effectiveProjectRoot to _resolveApiKey
apiKey = _resolveApiKey(
providerName?.toLowerCase(),
session,
effectiveProjectRoot
);
// 4. Construct Messages Array
const messages = [];
if (systemPrompt) {
messages.push({ role: 'system', content: systemPrompt });
@@ -395,14 +465,11 @@ async function _unifiedServiceRunner(serviceType, params) {
// }
if (prompt) {
// Ensure prompt exists before adding
messages.push({ role: 'user', content: prompt });
} else {
// Throw an error if the prompt is missing, as it's essential
throw new Error('User prompt content is missing.');
}
// 5. Prepare call parameters (using messages array)
const callParams = {
apiKey,
modelId,
@@ -414,8 +481,7 @@ async function _unifiedServiceRunner(serviceType, params) {
...restApiParams
};
// 6. Attempt the call with retries
const result = await _attemptProviderCallWithRetries(
providerResponse = await _attemptProviderCallWithRetries(
providerApiFn,
callParams,
providerName,
@@ -423,9 +489,47 @@ async function _unifiedServiceRunner(serviceType, params) {
currentRole
);
log('info', `${serviceType}Service succeeded using role: ${currentRole}`);
if (userId && providerResponse && providerResponse.usage) {
try {
telemetryData = await logAiUsage({
userId,
commandName,
providerName,
modelId,
inputTokens: providerResponse.usage.inputTokens,
outputTokens: providerResponse.usage.outputTokens,
outputType
});
} catch (telemetryError) {
// logAiUsage already logs its own errors and returns null on failure
// No need to log again here, telemetryData will remain null
}
} else if (userId && providerResponse && !providerResponse.usage) {
log(
'warn',
`Cannot log telemetry for ${commandName} (${providerName}/${modelId}): AI result missing 'usage' data. (May be expected for streams)`
);
}
return result;
let finalMainResult;
if (serviceType === 'generateText') {
finalMainResult = providerResponse.text;
} else if (serviceType === 'generateObject') {
finalMainResult = providerResponse.object;
} else if (serviceType === 'streamText') {
finalMainResult = providerResponse;
} else {
log(
'error',
`Unknown serviceType in _unifiedServiceRunner: ${serviceType}`
);
finalMainResult = providerResponse;
}
return {
mainResult: finalMainResult,
telemetryData: telemetryData
};
} catch (error) {
const cleanMessage = _extractErrorMessage(error);
log(
@@ -454,9 +558,7 @@ async function _unifiedServiceRunner(serviceType, params) {
}
}
// If loop completes, all roles failed
log('error', `All roles in the sequence [${sequence.join(', ')}] failed.`);
// Throw a new error with the cleaner message from the last failure
throw new Error(lastCleanErrorMessage);
}
@@ -470,11 +572,16 @@ async function _unifiedServiceRunner(serviceType, params) {
* @param {string} [params.projectRoot=null] - Optional project root path for .env fallback.
* @param {string} params.prompt - The prompt for the AI.
* @param {string} [params.systemPrompt] - Optional system prompt.
* // Other specific generateText params can be included here.
* @returns {Promise<string>} The generated text content.
* @param {string} params.commandName - Name of the command invoking the service.
* @param {string} [params.outputType='cli'] - 'cli' or 'mcp'.
* @returns {Promise<object>} Result object containing generated text and usage data.
*/
async function generateTextService(params) {
return _unifiedServiceRunner('generateText', params);
// Ensure default outputType if not provided
const defaults = { outputType: 'cli' };
const combinedParams = { ...defaults, ...params };
// TODO: Validate commandName exists?
return _unifiedServiceRunner('generateText', combinedParams);
}
/**
@@ -487,11 +594,18 @@ async function generateTextService(params) {
* @param {string} [params.projectRoot=null] - Optional project root path for .env fallback.
* @param {string} params.prompt - The prompt for the AI.
* @param {string} [params.systemPrompt] - Optional system prompt.
* // Other specific streamText params can be included here.
* @returns {Promise<ReadableStream<string>>} A readable stream of text deltas.
* @param {string} params.commandName - Name of the command invoking the service.
* @param {string} [params.outputType='cli'] - 'cli' or 'mcp'.
* @returns {Promise<object>} Result object containing the stream and usage data.
*/
async function streamTextService(params) {
return _unifiedServiceRunner('streamText', params);
const defaults = { outputType: 'cli' };
const combinedParams = { ...defaults, ...params };
// TODO: Validate commandName exists?
// NOTE: Telemetry for streaming might be tricky as usage data often comes at the end.
// The current implementation logs *after* the stream is returned.
// We might need to adjust how usage is captured/logged for streams.
return _unifiedServiceRunner('streamText', combinedParams);
}
/**
@@ -507,15 +621,89 @@ async function streamTextService(params) {
* @param {string} [params.systemPrompt] - Optional system prompt.
* @param {string} [params.objectName='generated_object'] - Name for object/tool.
* @param {number} [params.maxRetries=3] - Max retries for object generation.
* @returns {Promise<object>} The generated object matching the schema.
* @param {string} params.commandName - Name of the command invoking the service.
* @param {string} [params.outputType='cli'] - 'cli' or 'mcp'.
* @returns {Promise<object>} Result object containing the generated object and usage data.
*/
async function generateObjectService(params) {
const defaults = {
objectName: 'generated_object',
maxRetries: 3
maxRetries: 3,
outputType: 'cli'
};
const combinedParams = { ...defaults, ...params };
// TODO: Validate commandName exists?
return _unifiedServiceRunner('generateObject', combinedParams);
}
export { generateTextService, streamTextService, generateObjectService };
// --- Telemetry Function ---
/**
* Logs AI usage telemetry data.
* For now, it just logs to the console. Sending will be implemented later.
* @param {object} params - Telemetry parameters.
* @param {string} params.userId - Unique user identifier.
* @param {string} params.commandName - The command that triggered the AI call.
* @param {string} params.providerName - The AI provider used (e.g., 'openai').
* @param {string} params.modelId - The specific AI model ID used.
* @param {number} params.inputTokens - Number of input tokens.
* @param {number} params.outputTokens - Number of output tokens.
*/
async function logAiUsage({
userId,
commandName,
providerName,
modelId,
inputTokens,
outputTokens,
outputType
}) {
try {
const isMCP = outputType === 'mcp';
const timestamp = new Date().toISOString();
const totalTokens = (inputTokens || 0) + (outputTokens || 0);
// Destructure currency along with costs
const { inputCost, outputCost, currency } = _getCostForModel(
providerName,
modelId
);
const totalCost =
((inputTokens || 0) / 1_000_000) * inputCost +
((outputTokens || 0) / 1_000_000) * outputCost;
const telemetryData = {
timestamp,
userId,
commandName,
modelUsed: modelId, // Consistent field name from requirements
providerName, // Keep provider name for context
inputTokens: inputTokens || 0,
outputTokens: outputTokens || 0,
totalTokens,
totalCost: parseFloat(totalCost.toFixed(6)),
currency // Add currency to the telemetry data
};
if (getDebugFlag()) {
log('info', 'AI Usage Telemetry:', telemetryData);
}
// TODO (Subtask 77.2): Send telemetryData securely to the external endpoint.
return telemetryData;
} catch (error) {
log('error', `Failed to log AI usage telemetry: ${error.message}`, {
error
});
// Don't re-throw; telemetry failure shouldn't block core functionality.
return null;
}
}
export {
generateTextService,
streamTextService,
generateObjectService,
logAiUsage
};

View File

@@ -9,10 +9,11 @@ import chalk from 'chalk';
import boxen from 'boxen';
import fs from 'fs';
import https from 'https';
import http from 'http';
import inquirer from 'inquirer';
import ora from 'ora'; // Import ora
import { log, readJSON } from './utils.js';
import { log, readJSON, findProjectRoot } from './utils.js';
import {
parsePRD,
updateTasks,
@@ -30,7 +31,8 @@ import {
updateSubtaskById,
removeTask,
findTaskById,
taskExists
taskExists,
moveTask
} from './task-manager.js';
import {
@@ -47,7 +49,8 @@ import {
writeConfig,
ConfigurationError,
isConfigFilePresent,
getAvailableModels
getAvailableModels,
getBaseUrlForRole
} from './config-manager.js';
import {
@@ -62,7 +65,8 @@ import {
stopLoadingIndicator,
displayModelConfiguration,
displayAvailableModels,
displayApiKeyStatus
displayApiKeyStatus,
displayAiUsageSummary
} from './ui.js';
import { initializeProject } from '../init.js';
@@ -72,7 +76,6 @@ import {
setModel,
getApiKeyStatusReport
} from './task-manager/models.js';
import { findProjectRoot } from './utils.js';
import {
isValidTaskStatus,
TASK_STATUS_OPTIONS
@@ -151,6 +154,64 @@ async function runInteractiveSetup(projectRoot) {
});
}
// Helper function to fetch Ollama models (duplicated for CLI context)
function fetchOllamaModelsCLI(baseUrl = 'http://localhost:11434/api') {
return new Promise((resolve) => {
try {
// Parse the base URL to extract hostname, port, and base path
const url = new URL(baseUrl);
const isHttps = url.protocol === 'https:';
const port = url.port || (isHttps ? 443 : 80);
const basePath = url.pathname.endsWith('/')
? url.pathname.slice(0, -1)
: url.pathname;
const options = {
hostname: url.hostname,
port: parseInt(port, 10),
path: `${basePath}/tags`,
method: 'GET',
headers: {
Accept: 'application/json'
}
};
const requestLib = isHttps ? https : http;
const req = requestLib.request(options, (res) => {
let data = '';
res.on('data', (chunk) => {
data += chunk;
});
res.on('end', () => {
if (res.statusCode === 200) {
try {
const parsedData = JSON.parse(data);
resolve(parsedData.models || []); // Return the array of models
} catch (e) {
console.error('Error parsing Ollama response:', e);
resolve(null); // Indicate failure
}
} else {
console.error(
`Ollama API request failed with status code: ${res.statusCode}`
);
resolve(null); // Indicate failure
}
});
});
req.on('error', (e) => {
console.error('Error fetching Ollama models:', e);
resolve(null); // Indicate failure
});
req.end();
} catch (e) {
console.error('Error parsing Ollama base URL:', e);
resolve(null); // Indicate failure
}
});
}
// Helper to get choices and default index for a role
const getPromptData = (role, allowNone = false) => {
const currentModel = currentModels[role]; // Use the fetched data
@@ -178,6 +239,11 @@ async function runInteractiveSetup(projectRoot) {
value: '__CUSTOM_OPENROUTER__'
};
const customOllamaOption = {
name: '* Custom Ollama model', // Symbol updated
value: '__CUSTOM_OLLAMA__'
};
let choices = [];
let defaultIndex = 0; // Default to 'Cancel'
@@ -223,6 +289,7 @@ async function runInteractiveSetup(projectRoot) {
}
commonPrefix.push(cancelOption);
commonPrefix.push(customOpenRouterOption);
commonPrefix.push(customOllamaOption);
let prefixLength = commonPrefix.length; // Initial prefix length
@@ -353,6 +420,47 @@ async function runInteractiveSetup(projectRoot) {
setupSuccess = false;
return true; // Continue setup, but mark as failed
}
} else if (selectedValue === '__CUSTOM_OLLAMA__') {
isCustomSelection = true;
const { customId } = await inquirer.prompt([
{
type: 'input',
name: 'customId',
message: `Enter the custom Ollama Model ID for the ${role} role:`
}
]);
if (!customId) {
console.log(chalk.yellow('No custom ID entered. Skipping role.'));
return true; // Continue setup, but don't set this role
}
modelIdToSet = customId;
providerHint = 'ollama';
// Get the Ollama base URL from config for this role
const ollamaBaseUrl = getBaseUrlForRole(role, projectRoot);
// Validate against live Ollama list
const ollamaModels = await fetchOllamaModelsCLI(ollamaBaseUrl);
if (ollamaModels === null) {
console.error(
chalk.red(
`Error: Unable to connect to Ollama server at ${ollamaBaseUrl}. Please ensure Ollama is running and try again.`
)
);
setupSuccess = false;
return true; // Continue setup, but mark as failed
} else if (!ollamaModels.some((m) => m.model === modelIdToSet)) {
console.error(
chalk.red(
`Error: Model ID "${modelIdToSet}" not found in the Ollama instance. Please verify the model is pulled and available.`
)
);
console.log(
chalk.yellow(
`You can check available models with: curl ${ollamaBaseUrl}/tags`
)
);
setupSuccess = false;
return true; // Continue setup, but mark as failed
}
} else if (
selectedValue &&
typeof selectedValue === 'object' &&
@@ -506,6 +614,10 @@ function registerCommands(programInstance) {
'--append',
'Append new tasks to existing tasks.json instead of overwriting'
)
.option(
'-r, --research',
'Use Perplexity AI for research-backed task generation, providing more comprehensive and accurate task breakdown'
)
.action(async (file, options) => {
// Use input option if file argument not provided
const inputFile = file || options.input;
@@ -514,8 +626,9 @@ function registerCommands(programInstance) {
const outputPath = options.output;
const force = options.force || false;
const append = options.append || false;
const research = options.research || false;
let useForce = force;
let useAppend = false;
let useAppend = append;
// Helper function to check if tasks.json exists and confirm overwrite
async function confirmOverwriteIfNeeded() {
@@ -543,10 +656,11 @@ function registerCommands(programInstance) {
if (!(await confirmOverwriteIfNeeded())) return;
console.log(chalk.blue(`Generating ${numTasks} tasks...`));
spinner = ora('Parsing PRD and generating tasks...').start();
spinner = ora('Parsing PRD and generating tasks...\n').start();
await parsePRD(defaultPrdPath, outputPath, numTasks, {
useAppend,
useForce
append: useAppend, // Changed key from useAppend to append
force: useForce, // Changed key from useForce to force
research: research
});
spinner.succeed('Tasks generated successfully!');
return;
@@ -570,13 +684,15 @@ function registerCommands(programInstance) {
' -o, --output <file> Output file path (default: "tasks/tasks.json")\n' +
' -n, --num-tasks <number> Number of tasks to generate (default: 10)\n' +
' -f, --force Skip confirmation when overwriting existing tasks\n' +
' --append Append new tasks to existing tasks.json instead of overwriting\n\n' +
' --append Append new tasks to existing tasks.json instead of overwriting\n' +
' -r, --research Use Perplexity AI for research-backed task generation\n\n' +
chalk.cyan('Example:') +
'\n' +
' task-master parse-prd requirements.txt --num-tasks 15\n' +
' task-master parse-prd --input=requirements.txt\n' +
' task-master parse-prd --force\n' +
' task-master parse-prd requirements_v2.txt --append\n\n' +
' task-master parse-prd requirements_v2.txt --append\n' +
' task-master parse-prd requirements.txt --research\n\n' +
chalk.yellow('Note: This command will:') +
'\n' +
' 1. Look for a PRD file at scripts/prd.txt by default\n' +
@@ -604,11 +720,19 @@ function registerCommands(programInstance) {
if (append) {
console.log(chalk.blue('Appending to existing tasks...'));
}
if (research) {
console.log(
chalk.blue(
'Using Perplexity AI for research-backed task generation'
)
);
}
spinner = ora('Parsing PRD and generating tasks...').start();
spinner = ora('Parsing PRD and generating tasks...\n').start();
await parsePRD(inputFile, outputPath, numTasks, {
append: useAppend,
useForce
force: useForce,
research: research
});
spinner.succeed('Tasks generated successfully!');
} catch (error) {
@@ -1030,6 +1154,8 @@ function registerCommands(programInstance) {
// set-status command
programInstance
.command('set-status')
.alias('mark')
.alias('set')
.description('Set the status of a task')
.option(
'-i, --id <id>',
@@ -1072,10 +1198,16 @@ function registerCommands(programInstance) {
.command('list')
.description('List all tasks')
.option('-f, --file <file>', 'Path to the tasks file', 'tasks/tasks.json')
.option(
'-r, --report <report>',
'Path to the complexity report file',
'scripts/task-complexity-report.json'
)
.option('-s, --status <status>', 'Filter by status')
.option('--with-subtasks', 'Show subtasks for each task')
.action(async (options) => {
const tasksPath = options.file;
const reportPath = options.report;
const statusFilter = options.status;
const withSubtasks = options.withSubtasks || false;
@@ -1087,7 +1219,7 @@ function registerCommands(programInstance) {
console.log(chalk.blue('Including subtasks in listing'));
}
await listTasks(tasksPath, statusFilter, withSubtasks);
await listTasks(tasksPath, statusFilter, reportPath, withSubtasks);
});
// expand command
@@ -1137,12 +1269,6 @@ function registerCommands(programInstance) {
{} // Pass empty context for CLI calls
// outputFormat defaults to 'text' in expandAllTasks for CLI
);
// Optional: Display summary from result
console.log(chalk.green(`Expansion Summary:`));
console.log(chalk.green(` - Attempted: ${result.tasksToExpand}`));
console.log(chalk.green(` - Expanded: ${result.expandedCount}`));
console.log(chalk.yellow(` - Skipped: ${result.skippedCount}`));
console.log(chalk.red(` - Failed: ${result.failedCount}`));
} catch (error) {
console.error(
chalk.red(`Error expanding all tasks: ${error.message}`)
@@ -1210,6 +1336,12 @@ function registerCommands(programInstance) {
'-r, --research',
'Use Perplexity AI for research-backed complexity analysis'
)
.option(
'-i, --id <ids>',
'Comma-separated list of specific task IDs to analyze (e.g., "1,3,5")'
)
.option('--from <id>', 'Starting task ID in a range to analyze')
.option('--to <id>', 'Ending task ID in a range to analyze')
.action(async (options) => {
const tasksPath = options.file || 'tasks/tasks.json';
const outputPath = options.output;
@@ -1220,6 +1352,16 @@ function registerCommands(programInstance) {
console.log(chalk.blue(`Analyzing task complexity from: ${tasksPath}`));
console.log(chalk.blue(`Output report will be saved to: ${outputPath}`));
if (options.id) {
console.log(chalk.blue(`Analyzing specific task IDs: ${options.id}`));
} else if (options.from || options.to) {
const fromStr = options.from ? options.from : 'first';
const toStr = options.to ? options.to : 'last';
console.log(
chalk.blue(`Analyzing tasks in range: ${fromStr} to ${toStr}`)
);
}
if (useResearch) {
console.log(
chalk.blue(
@@ -1272,7 +1414,7 @@ function registerCommands(programInstance) {
// add-task command
programInstance
.command('add-task')
.description('Add a new task using AI or manual input')
.description('Add a new task using AI, optionally providing manual details')
.option('-f, --file <file>', 'Path to the tasks file', 'tasks/tasks.json')
.option(
'-p, --prompt <prompt>',
@@ -1313,74 +1455,70 @@ function registerCommands(programInstance) {
process.exit(1);
}
const tasksPath =
options.file ||
path.join(findProjectRoot() || '.', 'tasks', 'tasks.json') || // Ensure tasksPath is also relative to a found root or current dir
'tasks/tasks.json';
// Correctly determine projectRoot
const projectRoot = findProjectRoot();
let manualTaskData = null;
if (isManualCreation) {
manualTaskData = {
title: options.title,
description: options.description,
details: options.details || '',
testStrategy: options.testStrategy || ''
};
// Restore specific logging for manual creation
console.log(
chalk.blue(`Creating task manually with title: "${options.title}"`)
);
} else {
// Restore specific logging for AI creation
console.log(
chalk.blue(`Creating task with AI using prompt: "${options.prompt}"`)
);
}
// Log dependencies and priority if provided (restored)
const dependenciesArray = options.dependencies
? options.dependencies.split(',').map((id) => id.trim())
: [];
if (dependenciesArray.length > 0) {
console.log(
chalk.blue(`Dependencies: [${dependenciesArray.join(', ')}]`)
);
}
if (options.priority) {
console.log(chalk.blue(`Priority: ${options.priority}`));
}
const context = {
projectRoot,
commandName: 'add-task',
outputType: 'cli'
};
try {
// Prepare dependencies if provided
let dependencies = [];
if (options.dependencies) {
dependencies = options.dependencies
.split(',')
.map((id) => parseInt(id.trim(), 10));
}
// Create manual task data if title and description are provided
let manualTaskData = null;
if (isManualCreation) {
manualTaskData = {
title: options.title,
description: options.description,
details: options.details || '',
testStrategy: options.testStrategy || ''
};
console.log(
chalk.blue(`Creating task manually with title: "${options.title}"`)
);
if (dependencies.length > 0) {
console.log(
chalk.blue(`Dependencies: [${dependencies.join(', ')}]`)
);
}
if (options.priority) {
console.log(chalk.blue(`Priority: ${options.priority}`));
}
} else {
console.log(
chalk.blue(
`Creating task with AI using prompt: "${options.prompt}"`
)
);
if (dependencies.length > 0) {
console.log(
chalk.blue(`Dependencies: [${dependencies.join(', ')}]`)
);
}
if (options.priority) {
console.log(chalk.blue(`Priority: ${options.priority}`));
}
}
// Pass mcpLog and session for MCP mode
const newTaskId = await addTask(
options.file,
options.prompt, // Pass prompt (will be null/undefined if not provided)
dependencies,
const { newTaskId, telemetryData } = await addTask(
tasksPath,
options.prompt,
dependenciesArray,
options.priority,
{
// For CLI, session context isn't directly available like MCP
// We don't need to pass session here for CLI API key resolution
// as dotenv loads .env, and utils.resolveEnvVariable checks process.env
},
'text', // outputFormat
manualTaskData, // Pass the potentially created manualTaskData object
options.research || false // Pass the research flag value
context,
'text',
manualTaskData,
options.research
);
console.log(chalk.green(`✓ Added new task #${newTaskId}`));
console.log(chalk.gray('Next: Complete this task or add more tasks'));
// addTask handles detailed CLI success logging AND telemetry display when outputFormat is 'text'
// No need to call displayAiUsageSummary here anymore.
} catch (error) {
console.error(chalk.red(`Error adding task: ${error.message}`));
if (error.stack && getDebugFlag()) {
console.error(error.stack);
if (error.details) {
console.error(chalk.red(error.details));
}
process.exit(1);
}
@@ -1393,9 +1531,15 @@ function registerCommands(programInstance) {
`Show the next task to work on based on dependencies and status${chalk.reset('')}`
)
.option('-f, --file <file>', 'Path to the tasks file', 'tasks/tasks.json')
.option(
'-r, --report <report>',
'Path to the complexity report file',
'scripts/task-complexity-report.json'
)
.action(async (options) => {
const tasksPath = options.file;
await displayNextTask(tasksPath);
const reportPath = options.report;
await displayNextTask(tasksPath, reportPath);
});
// show command
@@ -1408,6 +1552,11 @@ function registerCommands(programInstance) {
.option('-i, --id <id>', 'Task ID to show')
.option('-s, --status <status>', 'Filter subtasks by status') // ADDED status option
.option('-f, --file <file>', 'Path to the tasks file', 'tasks/tasks.json')
.option(
'-r, --report <report>',
'Path to the complexity report file',
'scripts/task-complexity-report.json'
)
.action(async (taskId, options) => {
const idArg = taskId || options.id;
const statusFilter = options.status; // ADDED: Capture status filter
@@ -1418,8 +1567,9 @@ function registerCommands(programInstance) {
}
const tasksPath = options.file;
const reportPath = options.report;
// PASS statusFilter to the display function
await displayTaskById(tasksPath, idArg, statusFilter);
await displayTaskById(tasksPath, idArg, reportPath, statusFilter);
});
// add-dependency command
@@ -2075,7 +2225,7 @@ function registerCommands(programInstance) {
);
// Exit with error if any removals failed
if (successfulRemovals.length === 0) {
if (result.removedTasks.length === 0) {
process.exit(1);
}
}
@@ -2156,8 +2306,11 @@ Examples:
$ task-master models --setup # Run interactive setup`
)
.action(async (options) => {
const projectRoot = findProjectRoot(); // Find project root for context
const projectRoot = findProjectRoot();
if (!projectRoot) {
console.error(chalk.red('Error: Could not find project root.'));
process.exit(1);
}
// Validate flags: cannot use both --openrouter and --ollama simultaneously
if (options.openrouter && options.ollama) {
console.error(
@@ -2340,6 +2493,135 @@ Examples:
return; // Stop execution here
});
// move-task command
programInstance
.command('move')
.description('Move a task or subtask to a new position')
.option('-f, --file <file>', 'Path to the tasks file', 'tasks/tasks.json')
.option(
'--from <id>',
'ID of the task/subtask to move (e.g., "5" or "5.2"). Can be comma-separated to move multiple tasks (e.g., "5,6,7")'
)
.option(
'--to <id>',
'ID of the destination (e.g., "7" or "7.3"). Must match the number of source IDs if comma-separated'
)
.action(async (options) => {
const tasksPath = options.file;
const sourceId = options.from;
const destinationId = options.to;
if (!sourceId || !destinationId) {
console.error(
chalk.red('Error: Both --from and --to parameters are required')
);
console.log(
chalk.yellow(
'Usage: task-master move --from=<sourceId> --to=<destinationId>'
)
);
process.exit(1);
}
// Check if we're moving multiple tasks (comma-separated IDs)
const sourceIds = sourceId.split(',').map((id) => id.trim());
const destinationIds = destinationId.split(',').map((id) => id.trim());
// Validate that the number of source and destination IDs match
if (sourceIds.length !== destinationIds.length) {
console.error(
chalk.red(
'Error: The number of source and destination IDs must match'
)
);
console.log(
chalk.yellow('Example: task-master move --from=5,6,7 --to=10,11,12')
);
process.exit(1);
}
// If moving multiple tasks
if (sourceIds.length > 1) {
console.log(
chalk.blue(
`Moving multiple tasks: ${sourceIds.join(', ')} to ${destinationIds.join(', ')}...`
)
);
try {
// Read tasks data once to validate destination IDs
const tasksData = readJSON(tasksPath);
if (!tasksData || !tasksData.tasks) {
console.error(
chalk.red(`Error: Invalid or missing tasks file at ${tasksPath}`)
);
process.exit(1);
}
// Move tasks one by one
for (let i = 0; i < sourceIds.length; i++) {
const fromId = sourceIds[i];
const toId = destinationIds[i];
// Skip if source and destination are the same
if (fromId === toId) {
console.log(
chalk.yellow(`Skipping ${fromId} -> ${toId} (same ID)`)
);
continue;
}
console.log(
chalk.blue(`Moving task/subtask ${fromId} to ${toId}...`)
);
try {
await moveTask(
tasksPath,
fromId,
toId,
i === sourceIds.length - 1
);
console.log(
chalk.green(
`✓ Successfully moved task/subtask ${fromId} to ${toId}`
)
);
} catch (error) {
console.error(
chalk.red(`Error moving ${fromId} to ${toId}: ${error.message}`)
);
// Continue with the next task rather than exiting
}
}
} catch (error) {
console.error(chalk.red(`Error: ${error.message}`));
process.exit(1);
}
} else {
// Moving a single task (existing logic)
console.log(
chalk.blue(`Moving task/subtask ${sourceId} to ${destinationId}...`)
);
try {
const result = await moveTask(
tasksPath,
sourceId,
destinationId,
true
);
console.log(
chalk.green(
`✓ Successfully moved task/subtask ${sourceId} to ${destinationId}`
)
);
} catch (error) {
console.error(chalk.red(`Error: ${error.message}`));
process.exit(1);
}
}
});
return programInstance;
}

View File

@@ -2,7 +2,7 @@ import fs from 'fs';
import path from 'path';
import chalk from 'chalk';
import { fileURLToPath } from 'url';
import { log, resolveEnvVariable, findProjectRoot } from './utils.js';
import { log, findProjectRoot, resolveEnvVariable } from './utils.js';
// Calculate __dirname in ESM
const __filename = fileURLToPath(import.meta.url);
@@ -669,6 +669,34 @@ function isConfigFilePresent(explicitRoot = null) {
return fs.existsSync(configPath);
}
/**
* Gets the user ID from the configuration.
* @param {string|null} explicitRoot - Optional explicit path to the project root.
* @returns {string|null} The user ID or null if not found.
*/
function getUserId(explicitRoot = null) {
const config = getConfig(explicitRoot);
if (!config.global) {
config.global = {}; // Ensure global object exists
}
if (!config.global.userId) {
config.global.userId = '1234567890';
// Attempt to write the updated config.
// It's important that writeConfig correctly resolves the path
// using explicitRoot, similar to how getConfig does.
const success = writeConfig(config, explicitRoot);
if (!success) {
// Log an error or handle the failure to write,
// though for now, we'll proceed with the in-memory default.
log(
'warning',
'Failed to write updated configuration with new userId. Please let the developers know.'
);
}
}
return config.global.userId;
}
/**
* Gets a list of all provider names defined in the MODEL_MAP.
* @returns {string[]} An array of provider names.
@@ -688,8 +716,8 @@ export {
// Core config access
getConfig,
writeConfig,
ConfigurationError, // Export custom error type
isConfigFilePresent, // Add the new function export
ConfigurationError,
isConfigFilePresent,
// Validation
validateProvider,
@@ -722,7 +750,7 @@ export {
getProjectName,
getOllamaBaseUrl,
getParametersForRole,
getUserId,
// API Key Checkers (still relevant)
isApiKeySet,
getMcpApiKeyStatus,

View File

@@ -1,5 +1,19 @@
{
"anthropic": [
{
"id": "claude-sonnet-4-20250514",
"swe_score": 0.727,
"cost_per_1m_tokens": { "input": 3.0, "output": 15.0 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 120000
},
{
"id": "claude-opus-4-20250514",
"swe_score": 0.725,
"cost_per_1m_tokens": { "input": 15.0, "output": 75.0 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 120000
},
{
"id": "claude-3-7-sonnet-20250219",
"swe_score": 0.623,
@@ -99,34 +113,39 @@
],
"google": [
{
"id": "gemini-2.5-pro-exp-03-25",
"id": "gemini-2.5-pro-preview-05-06",
"swe_score": 0.638,
"cost_per_1m_tokens": null,
"allowed_roles": ["main", "fallback"]
"allowed_roles": ["main", "fallback"],
"max_tokens": 1048000
},
{
"id": "gemini-2.5-pro-preview-03-25",
"swe_score": 0.638,
"cost_per_1m_tokens": null,
"allowed_roles": ["main", "fallback"],
"max_tokens": 1048000
},
{
"id": "gemini-2.5-flash-preview-04-17",
"swe_score": 0,
"cost_per_1m_tokens": null,
"allowed_roles": ["main", "fallback"]
"allowed_roles": ["main", "fallback"],
"max_tokens": 1048000
},
{
"id": "gemini-2.0-flash",
"swe_score": 0.754,
"cost_per_1m_tokens": { "input": 0.15, "output": 0.6 },
"allowed_roles": ["main", "fallback"]
"allowed_roles": ["main", "fallback"],
"max_tokens": 1048000
},
{
"id": "gemini-2.0-flash-thinking-experimental",
"swe_score": 0.754,
"cost_per_1m_tokens": { "input": 0.15, "output": 0.6 },
"allowed_roles": ["main", "fallback"]
},
{
"id": "gemini-2.0-pro",
"id": "gemini-2.0-flash-lite",
"swe_score": 0,
"cost_per_1m_tokens": null,
"allowed_roles": ["main", "fallback"]
"allowed_roles": ["main", "fallback"],
"max_tokens": 1048000
}
],
"perplexity": [
@@ -186,43 +205,43 @@
],
"ollama": [
{
"id": "gemma3:27b",
"id": "devstral:latest",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"allowed_roles": ["main", "fallback"]
},
{
"id": "gemma3:12b",
"id": "qwen3:latest",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"allowed_roles": ["main", "fallback"]
},
{
"id": "qwq",
"id": "qwen3:14b",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"allowed_roles": ["main", "fallback"]
},
{
"id": "deepseek-r1",
"id": "qwen3:32b",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"allowed_roles": ["main", "fallback"]
},
{
"id": "mistral-small3.1",
"id": "mistral-small3.1:latest",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"allowed_roles": ["main", "fallback"]
},
{
"id": "llama3.3",
"id": "llama3.3:latest",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"allowed_roles": ["main", "fallback"]
},
{
"id": "phi4",
"id": "phi4:latest",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"allowed_roles": ["main", "fallback"]
@@ -230,9 +249,16 @@
],
"openrouter": [
{
"id": "google/gemini-2.0-flash-001",
"id": "google/gemini-2.5-flash-preview-05-20",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0.1, "output": 0.4 },
"cost_per_1m_tokens": { "input": 0.15, "output": 0.6 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 1048576
},
{
"id": "google/gemini-2.5-flash-preview-05-20:thinking",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0.15, "output": 3.5 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 1048576
},
@@ -258,40 +284,25 @@
"max_tokens": 64000
},
{
"id": "deepseek/deepseek-r1:free",
"id": "openai/gpt-4.1",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"cost_per_1m_tokens": { "input": 2, "output": 8 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 163840
"max_tokens": 1000000
},
{
"id": "microsoft/mai-ds-r1:free",
"id": "openai/gpt-4.1-mini",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"cost_per_1m_tokens": { "input": 0.4, "output": 1.6 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 163840
"max_tokens": 1000000
},
{
"id": "google/gemini-2.5-pro-preview-03-25",
"id": "openai/gpt-4.1-nano",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 1.25, "output": 10 },
"cost_per_1m_tokens": { "input": 0.1, "output": 0.4 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 65535
},
{
"id": "google/gemini-2.5-flash-preview",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0.15, "output": 0.6 },
"allowed_roles": ["main"],
"max_tokens": 65535
},
{
"id": "google/gemini-2.5-flash-preview:thinking",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0.15, "output": 3.5 },
"allowed_roles": ["main"],
"max_tokens": 65535
"max_tokens": 1000000
},
{
"id": "openai/o3",
@@ -300,6 +311,20 @@
"allowed_roles": ["main", "fallback"],
"max_tokens": 200000
},
{
"id": "openai/codex-mini",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 1.5, "output": 6 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 100000
},
{
"id": "openai/gpt-4o-mini",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0.15, "output": 0.6 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 100000
},
{
"id": "openai/o4-mini",
"swe_score": 0.45,
@@ -329,46 +354,18 @@
"max_tokens": 1048576
},
{
"id": "google/gemma-3-12b-it:free",
"id": "meta-llama/llama-4-maverick",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"cost_per_1m_tokens": { "input": 0.18, "output": 0.6 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 131072
"max_tokens": 1000000
},
{
"id": "google/gemma-3-12b-it",
"id": "meta-llama/llama-4-scout",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 50, "output": 100 },
"cost_per_1m_tokens": { "input": 0.08, "output": 0.3 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 131072
},
{
"id": "google/gemma-3-27b-it:free",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 96000
},
{
"id": "google/gemma-3-27b-it",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 100, "output": 200 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 131072
},
{
"id": "qwen/qwq-32b:free",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0, "output": 0 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 40000
},
{
"id": "qwen/qwq-32b",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 150, "output": 200 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 131072
"max_tokens": 1000000
},
{
"id": "qwen/qwen-max",
@@ -384,6 +381,13 @@
"allowed_roles": ["main", "fallback"],
"max_tokens": 1000000
},
{
"id": "qwen/qwen3-235b-a22b",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0.14, "output": 2 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 24000
},
{
"id": "mistralai/mistral-small-3.1-24b-instruct:free",
"swe_score": 0,
@@ -398,6 +402,20 @@
"allowed_roles": ["main", "fallback"],
"max_tokens": 128000
},
{
"id": "mistralai/devstral-small",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0.1, "output": 0.3 },
"allowed_roles": ["main"],
"max_tokens": 110000
},
{
"id": "mistralai/mistral-nemo",
"swe_score": 0,
"cost_per_1m_tokens": { "input": 0.03, "output": 0.07 },
"allowed_roles": ["main", "fallback"],
"max_tokens": 100000
},
{
"id": "thudm/glm-4-32b:free",
"swe_score": 0,

View File

@@ -23,7 +23,8 @@ import updateSubtaskById from './task-manager/update-subtask-by-id.js';
import removeTask from './task-manager/remove-task.js';
import taskExists from './task-manager/task-exists.js';
import isTaskDependentOn from './task-manager/is-task-dependent.js';
import moveTask from './task-manager/move-task.js';
import { readComplexityReport } from './utils.js';
// Export task manager functions
export {
parsePRD,
@@ -45,5 +46,7 @@ export {
removeTask,
findTaskById,
taskExists,
isTaskDependentOn
isTaskDependentOn,
moveTask,
readComplexityReport
};

File diff suppressed because it is too large Load Diff

View File

@@ -1,10 +1,15 @@
import chalk from 'chalk';
import boxen from 'boxen';
import readline from 'readline';
import fs from 'fs';
import { log, readJSON, writeJSON, isSilentMode } from '../utils.js';
import { startLoadingIndicator, stopLoadingIndicator } from '../ui.js';
import {
startLoadingIndicator,
stopLoadingIndicator,
displayAiUsageSummary
} from '../ui.js';
import { generateTextService } from '../ai-services-unified.js';
@@ -47,6 +52,9 @@ Do not include any explanatory text, markdown formatting, or code block markers
* @param {string|number} [options.threshold] - Complexity threshold
* @param {boolean} [options.research] - Use research role
* @param {string} [options.projectRoot] - Project root path (for MCP/env fallback).
* @param {string} [options.id] - Comma-separated list of task IDs to analyze specifically
* @param {number} [options.from] - Starting task ID in a range to analyze
* @param {number} [options.to] - Ending task ID in a range to analyze
* @param {Object} [options._filteredTasksData] - Pre-filtered task data (internal use)
* @param {number} [options._originalTaskCount] - Original task count (internal use)
* @param {Object} context - Context object, potentially containing session and mcpLog
@@ -61,6 +69,15 @@ async function analyzeTaskComplexity(options, context = {}) {
const thresholdScore = parseFloat(options.threshold || '5');
const useResearch = options.research || false;
const projectRoot = options.projectRoot;
// New parameters for task ID filtering
const specificIds = options.id
? options.id
.split(',')
.map((id) => parseInt(id.trim(), 10))
.filter((id) => !isNaN(id))
: null;
const fromId = options.from !== undefined ? parseInt(options.from, 10) : null;
const toId = options.to !== undefined ? parseInt(options.to, 10) : null;
const outputFormat = mcpLog ? 'json' : 'text';
@@ -84,13 +101,14 @@ async function analyzeTaskComplexity(options, context = {}) {
reportLog(`Reading tasks from ${tasksPath}...`, 'info');
let tasksData;
let originalTaskCount = 0;
let originalData = null;
if (options._filteredTasksData) {
tasksData = options._filteredTasksData;
originalTaskCount = options._originalTaskCount || tasksData.tasks.length;
if (!options._originalTaskCount) {
try {
const originalData = readJSON(tasksPath);
originalData = readJSON(tasksPath);
if (originalData && originalData.tasks) {
originalTaskCount = originalData.tasks.length;
}
@@ -99,22 +117,80 @@ async function analyzeTaskComplexity(options, context = {}) {
}
}
} else {
tasksData = readJSON(tasksPath);
originalData = readJSON(tasksPath);
if (
!tasksData ||
!tasksData.tasks ||
!Array.isArray(tasksData.tasks) ||
tasksData.tasks.length === 0
!originalData ||
!originalData.tasks ||
!Array.isArray(originalData.tasks) ||
originalData.tasks.length === 0
) {
throw new Error('No tasks found in the tasks file');
}
originalTaskCount = tasksData.tasks.length;
originalTaskCount = originalData.tasks.length;
// Filter tasks based on active status
const activeStatuses = ['pending', 'blocked', 'in-progress'];
const filteredTasks = tasksData.tasks.filter((task) =>
let filteredTasks = originalData.tasks.filter((task) =>
activeStatuses.includes(task.status?.toLowerCase() || 'pending')
);
// Apply ID filtering if specified
if (specificIds && specificIds.length > 0) {
reportLog(
`Filtering tasks by specific IDs: ${specificIds.join(', ')}`,
'info'
);
filteredTasks = filteredTasks.filter((task) =>
specificIds.includes(task.id)
);
if (outputFormat === 'text') {
if (filteredTasks.length === 0 && specificIds.length > 0) {
console.log(
chalk.yellow(
`Warning: No active tasks found with IDs: ${specificIds.join(', ')}`
)
);
} else if (filteredTasks.length < specificIds.length) {
const foundIds = filteredTasks.map((t) => t.id);
const missingIds = specificIds.filter(
(id) => !foundIds.includes(id)
);
console.log(
chalk.yellow(
`Warning: Some requested task IDs were not found or are not active: ${missingIds.join(', ')}`
)
);
}
}
}
// Apply range filtering if specified
else if (fromId !== null || toId !== null) {
const effectiveFromId = fromId !== null ? fromId : 1;
const effectiveToId =
toId !== null
? toId
: Math.max(...originalData.tasks.map((t) => t.id));
reportLog(
`Filtering tasks by ID range: ${effectiveFromId} to ${effectiveToId}`,
'info'
);
filteredTasks = filteredTasks.filter(
(task) => task.id >= effectiveFromId && task.id <= effectiveToId
);
if (outputFormat === 'text' && filteredTasks.length === 0) {
console.log(
chalk.yellow(
`Warning: No active tasks found in range: ${effectiveFromId}-${effectiveToId}`
)
);
}
}
tasksData = {
...tasksData,
...originalData,
tasks: filteredTasks,
_originalTaskCount: originalTaskCount
};
@@ -125,7 +201,18 @@ async function analyzeTaskComplexity(options, context = {}) {
`Found ${originalTaskCount} total tasks in the task file.`,
'info'
);
if (skippedCount > 0) {
// Updated messaging to reflect filtering logic
if (specificIds || fromId !== null || toId !== null) {
const filterMsg = specificIds
? `Analyzing ${tasksData.tasks.length} tasks with specific IDs: ${specificIds.join(', ')}`
: `Analyzing ${tasksData.tasks.length} tasks in range: ${fromId || 1} to ${toId || 'end'}`;
reportLog(filterMsg, 'info');
if (outputFormat === 'text') {
console.log(chalk.blue(filterMsg));
}
} else if (skippedCount > 0) {
const skipMessage = `Skipping ${skippedCount} tasks marked as done/cancelled/deferred. Analyzing ${tasksData.tasks.length} active tasks.`;
reportLog(skipMessage, 'info');
if (outputFormat === 'text') {
@@ -133,7 +220,59 @@ async function analyzeTaskComplexity(options, context = {}) {
}
}
// Check for existing report before doing analysis
let existingReport = null;
let existingAnalysisMap = new Map(); // For quick lookups by task ID
try {
if (fs.existsSync(outputPath)) {
existingReport = readJSON(outputPath);
reportLog(`Found existing complexity report at ${outputPath}`, 'info');
if (
existingReport &&
existingReport.complexityAnalysis &&
Array.isArray(existingReport.complexityAnalysis)
) {
// Create lookup map of existing analysis entries
existingReport.complexityAnalysis.forEach((item) => {
existingAnalysisMap.set(item.taskId, item);
});
reportLog(
`Existing report contains ${existingReport.complexityAnalysis.length} task analyses`,
'info'
);
}
}
} catch (readError) {
reportLog(
`Warning: Could not read existing report: ${readError.message}`,
'warn'
);
existingReport = null;
existingAnalysisMap.clear();
}
if (tasksData.tasks.length === 0) {
// If using ID filtering but no matching tasks, return existing report or empty
if (existingReport && (specificIds || fromId !== null || toId !== null)) {
reportLog(
`No matching tasks found for analysis. Keeping existing report.`,
'info'
);
if (outputFormat === 'text') {
console.log(
chalk.yellow(
`No matching tasks found for analysis. Keeping existing report.`
)
);
}
return {
report: existingReport,
telemetryData: null
};
}
// Otherwise create empty report
const emptyReport = {
meta: {
generatedAt: new Date().toISOString(),
@@ -142,9 +281,9 @@ async function analyzeTaskComplexity(options, context = {}) {
projectName: getProjectName(session),
usedResearch: useResearch
},
complexityAnalysis: []
complexityAnalysis: existingReport?.complexityAnalysis || []
};
reportLog(`Writing empty complexity report to ${outputPath}...`, 'info');
reportLog(`Writing complexity report to ${outputPath}...`, 'info');
writeJSON(outputPath, emptyReport);
reportLog(
`Task complexity analysis complete. Report written to ${outputPath}`,
@@ -192,39 +331,40 @@ async function analyzeTaskComplexity(options, context = {}) {
)
);
}
return emptyReport;
return {
report: emptyReport,
telemetryData: null
};
}
// Continue with regular analysis path
const prompt = generateInternalComplexityAnalysisPrompt(tasksData);
// System prompt remains simple for text generation
const systemPrompt =
'You are an expert software architect and project manager analyzing task complexity. Respond only with the requested valid JSON array.';
let loadingIndicator = null;
if (outputFormat === 'text') {
loadingIndicator = startLoadingIndicator('Calling AI service...');
loadingIndicator = startLoadingIndicator(
`${useResearch ? 'Researching' : 'Analyzing'} the complexity of your tasks with AI...\n`
);
}
let fullResponse = ''; // To store the raw text response
let aiServiceResponse = null;
let complexityAnalysis = null;
try {
const role = useResearch ? 'research' : 'main';
reportLog(`Using AI service with role: ${role}`, 'info');
fullResponse = await generateTextService({
aiServiceResponse = await generateTextService({
prompt,
systemPrompt,
role,
session,
projectRoot
projectRoot,
commandName: 'analyze-complexity',
outputType: mcpLog ? 'mcp' : 'cli'
});
reportLog(
'Successfully received text response via AI service',
'success'
);
// --- Stop Loading Indicator (Unchanged) ---
if (loadingIndicator) {
stopLoadingIndicator(loadingIndicator);
loadingIndicator = null;
@@ -236,26 +376,18 @@ async function analyzeTaskComplexity(options, context = {}) {
chalk.green('AI service call complete. Parsing response...')
);
}
// --- End Stop Loading Indicator ---
// --- Re-introduce Manual JSON Parsing & Cleanup ---
reportLog(`Parsing complexity analysis from text response...`, 'info');
let complexityAnalysis;
try {
let cleanedResponse = fullResponse;
// Basic trim first
let cleanedResponse = aiServiceResponse.mainResult;
cleanedResponse = cleanedResponse.trim();
// Remove potential markdown code block fences
const codeBlockMatch = cleanedResponse.match(
/```(?:json)?\s*([\s\S]*?)\s*```/
);
if (codeBlockMatch) {
cleanedResponse = codeBlockMatch[1].trim(); // Trim content inside block
reportLog('Extracted JSON from code block', 'info');
cleanedResponse = codeBlockMatch[1].trim();
} else {
// If no code block, ensure it starts with '[' and ends with ']'
// This is less robust but a common fallback
const firstBracket = cleanedResponse.indexOf('[');
const lastBracket = cleanedResponse.lastIndexOf(']');
if (firstBracket !== -1 && lastBracket > firstBracket) {
@@ -263,13 +395,11 @@ async function analyzeTaskComplexity(options, context = {}) {
firstBracket,
lastBracket + 1
);
reportLog('Extracted content between first [ and last ]', 'info');
} else {
reportLog(
'Warning: Response does not appear to be a JSON array.',
'warn'
);
// Keep going, maybe JSON.parse can handle it or will fail informatively
}
}
@@ -283,48 +413,23 @@ async function analyzeTaskComplexity(options, context = {}) {
);
}
try {
complexityAnalysis = JSON.parse(cleanedResponse);
} catch (jsonError) {
reportLog(
'Initial JSON parsing failed. Raw response might be malformed.',
'error'
);
reportLog(`Original JSON Error: ${jsonError.message}`, 'error');
if (outputFormat === 'text' && getDebugFlag(session)) {
console.log(chalk.red('--- Start Raw Malformed Response ---'));
console.log(chalk.gray(fullResponse));
console.log(chalk.red('--- End Raw Malformed Response ---'));
}
// Re-throw the specific JSON parsing error
throw new Error(
`Failed to parse JSON response: ${jsonError.message}`
);
}
// Ensure it's an array after parsing
if (!Array.isArray(complexityAnalysis)) {
throw new Error('Parsed response is not a valid JSON array.');
}
} catch (error) {
// Catch errors specifically from the parsing/cleanup block
if (loadingIndicator) stopLoadingIndicator(loadingIndicator); // Ensure indicator stops
complexityAnalysis = JSON.parse(cleanedResponse);
} catch (parseError) {
if (loadingIndicator) stopLoadingIndicator(loadingIndicator);
reportLog(
`Error parsing complexity analysis JSON: ${error.message}`,
`Error parsing complexity analysis JSON: ${parseError.message}`,
'error'
);
if (outputFormat === 'text') {
console.error(
chalk.red(
`Error parsing complexity analysis JSON: ${error.message}`
`Error parsing complexity analysis JSON: ${parseError.message}`
)
);
}
throw error; // Re-throw parsing error
throw parseError;
}
// --- End Manual JSON Parsing & Cleanup ---
// --- Post-processing (Missing Task Check) - (Unchanged) ---
const taskIds = tasksData.tasks.map((t) => t.id);
const analysisTaskIds = complexityAnalysis.map((a) => a.taskId);
const missingTaskIds = taskIds.filter(
@@ -359,35 +464,64 @@ async function analyzeTaskComplexity(options, context = {}) {
}
}
}
// --- End Post-processing ---
// --- Report Creation & Writing (Unchanged) ---
const finalReport = {
// Merge with existing report
let finalComplexityAnalysis = [];
if (existingReport && Array.isArray(existingReport.complexityAnalysis)) {
// Create a map of task IDs that we just analyzed
const analyzedTaskIds = new Set(
complexityAnalysis.map((item) => item.taskId)
);
// Keep existing entries that weren't in this analysis run
const existingEntriesNotAnalyzed =
existingReport.complexityAnalysis.filter(
(item) => !analyzedTaskIds.has(item.taskId)
);
// Combine with new analysis
finalComplexityAnalysis = [
...existingEntriesNotAnalyzed,
...complexityAnalysis
];
reportLog(
`Merged ${complexityAnalysis.length} new analyses with ${existingEntriesNotAnalyzed.length} existing entries`,
'info'
);
} else {
// No existing report or invalid format, just use the new analysis
finalComplexityAnalysis = complexityAnalysis;
}
const report = {
meta: {
generatedAt: new Date().toISOString(),
tasksAnalyzed: tasksData.tasks.length,
totalTasks: originalTaskCount,
analysisCount: finalComplexityAnalysis.length,
thresholdScore: thresholdScore,
projectName: getProjectName(session),
usedResearch: useResearch
},
complexityAnalysis: complexityAnalysis
complexityAnalysis: finalComplexityAnalysis
};
reportLog(`Writing complexity report to ${outputPath}...`, 'info');
writeJSON(outputPath, finalReport);
writeJSON(outputPath, report);
reportLog(
`Task complexity analysis complete. Report written to ${outputPath}`,
'success'
);
// --- End Report Creation & Writing ---
// --- Display CLI Summary (Unchanged) ---
if (outputFormat === 'text') {
console.log(
chalk.green(
`Task complexity analysis complete. Report written to ${outputPath}`
)
);
// Calculate statistics specifically for this analysis run
const highComplexity = complexityAnalysis.filter(
(t) => t.complexityScore >= 8
).length;
@@ -399,18 +533,25 @@ async function analyzeTaskComplexity(options, context = {}) {
).length;
const totalAnalyzed = complexityAnalysis.length;
console.log('\nComplexity Analysis Summary:');
console.log('\nCurrent Analysis Summary:');
console.log('----------------------------');
console.log(
`Active tasks sent for analysis: ${tasksData.tasks.length}`
);
console.log(`Tasks successfully analyzed: ${totalAnalyzed}`);
console.log(`Tasks analyzed in this run: ${totalAnalyzed}`);
console.log(`High complexity tasks: ${highComplexity}`);
console.log(`Medium complexity tasks: ${mediumComplexity}`);
console.log(`Low complexity tasks: ${lowComplexity}`);
console.log(
`Sum verification: ${highComplexity + mediumComplexity + lowComplexity} (should equal ${totalAnalyzed})`
);
if (existingReport) {
console.log('\nUpdated Report Summary:');
console.log('----------------------------');
console.log(
`Total analyses in report: ${finalComplexityAnalysis.length}`
);
console.log(
`Analyses from previous runs: ${finalComplexityAnalysis.length - totalAnalyzed}`
);
console.log(`New/updated analyses: ${totalAnalyzed}`);
}
console.log(`Research-backed analysis: ${useResearch ? 'Yes' : 'No'}`);
console.log(
`\nSee ${outputPath} for the full report and expansion commands.`
@@ -435,23 +576,28 @@ async function analyzeTaskComplexity(options, context = {}) {
if (getDebugFlag(session)) {
console.debug(
chalk.gray(
`Final analysis object: ${JSON.stringify(finalReport, null, 2)}`
`Final analysis object: ${JSON.stringify(report, null, 2)}`
)
);
}
}
// --- End Display CLI Summary ---
return finalReport;
} catch (error) {
// Catches errors from generateTextService call
if (aiServiceResponse.telemetryData) {
displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli');
}
}
return {
report: report,
telemetryData: aiServiceResponse?.telemetryData
};
} catch (aiError) {
if (loadingIndicator) stopLoadingIndicator(loadingIndicator);
reportLog(`Error during AI service call: ${error.message}`, 'error');
reportLog(`Error during AI service call: ${aiError.message}`, 'error');
if (outputFormat === 'text') {
console.error(
chalk.red(`Error during AI service call: ${error.message}`)
chalk.red(`Error during AI service call: ${aiError.message}`)
);
if (error.message.includes('API key')) {
if (aiError.message.includes('API key')) {
console.log(
chalk.yellow(
'\nPlease ensure your API keys are correctly configured in .env or ~/.taskmaster/.env'
@@ -462,10 +608,9 @@ async function analyzeTaskComplexity(options, context = {}) {
);
}
}
throw error; // Re-throw AI service error
throw aiError;
}
} catch (error) {
// Catches general errors (file read, etc.)
reportLog(`Error analyzing task complexity: ${error.message}`, 'error');
if (outputFormat === 'text') {
console.error(

View File

@@ -1,7 +1,14 @@
import { log, readJSON, isSilentMode } from '../utils.js';
import { startLoadingIndicator, stopLoadingIndicator } from '../ui.js';
import {
startLoadingIndicator,
stopLoadingIndicator,
displayAiUsageSummary
} from '../ui.js';
import expandTask from './expand-task.js';
import { getDebugFlag } from '../config-manager.js';
import { aggregateTelemetry } from '../utils.js';
import chalk from 'chalk';
import boxen from 'boxen';
/**
* Expand all eligible pending or in-progress tasks using the expandTask function.
@@ -14,7 +21,7 @@ import { getDebugFlag } from '../config-manager.js';
* @param {Object} [context.session] - Session object from MCP.
* @param {Object} [context.mcpLog] - MCP logger object.
* @param {string} [outputFormat='text'] - Output format ('text' or 'json'). MCP calls should use 'json'.
* @returns {Promise<{success: boolean, expandedCount: number, failedCount: number, skippedCount: number, tasksToExpand: number, message?: string}>} - Result summary.
* @returns {Promise<{success: boolean, expandedCount: number, failedCount: number, skippedCount: number, tasksToExpand: number, telemetryData: Array<Object>}>} - Result summary.
*/
async function expandAllTasks(
tasksPath,
@@ -51,8 +58,8 @@ async function expandAllTasks(
let loadingIndicator = null;
let expandedCount = 0;
let failedCount = 0;
// No skipped count needed now as the filter handles it upfront
let tasksToExpandCount = 0; // Renamed for clarity
let tasksToExpandCount = 0;
const allTelemetryData = []; // Still collect individual data first
if (!isMCPCall && outputFormat === 'text') {
loadingIndicator = startLoadingIndicator(
@@ -90,6 +97,7 @@ async function expandAllTasks(
failedCount: 0,
skippedCount: 0,
tasksToExpand: 0,
telemetryData: allTelemetryData,
message: 'No tasks eligible for expansion.'
};
// --- End Fix ---
@@ -97,19 +105,6 @@ async function expandAllTasks(
// Iterate over the already filtered tasks
for (const task of tasksToExpand) {
// --- Remove Redundant Check ---
// The check below is no longer needed as the initial filter handles it
/*
if (task.subtasks && task.subtasks.length > 0 && !force) {
logger.info(
`Skipping task ${task.id}: Already has subtasks. Use --force to overwrite.`
);
skippedCount++;
continue;
}
*/
// --- End Removed Redundant Check ---
// Start indicator for individual task expansion in CLI mode
let taskIndicator = null;
if (!isMCPCall && outputFormat === 'text') {
@@ -117,17 +112,23 @@ async function expandAllTasks(
}
try {
// Call the refactored expandTask function
await expandTask(
// Call the refactored expandTask function AND capture result
const result = await expandTask(
tasksPath,
task.id,
numSubtasks, // Pass numSubtasks, expandTask handles defaults/complexity
numSubtasks,
useResearch,
additionalContext,
context, // Pass the whole context object { session, mcpLog }
force // Pass the force flag down
force
);
expandedCount++;
// Collect individual telemetry data
if (result && result.telemetryData) {
allTelemetryData.push(result.telemetryData);
}
if (taskIndicator) {
stopLoadingIndicator(taskIndicator, `Task ${task.id} expanded.`);
}
@@ -146,18 +147,48 @@ async function expandAllTasks(
}
}
// Log final summary (removed skipped count from message)
// --- AGGREGATION AND DISPLAY ---
logger.info(
`Expansion complete: ${expandedCount} expanded, ${failedCount} failed.`
);
// Return summary (skippedCount is now 0) - Add success: true here as well for consistency
// Aggregate the collected telemetry data
const aggregatedTelemetryData = aggregateTelemetry(
allTelemetryData,
'expand-all-tasks'
);
if (outputFormat === 'text') {
const summaryContent =
`${chalk.white.bold('Expansion Summary:')}\n\n` +
`${chalk.cyan('-')} Attempted: ${chalk.bold(tasksToExpandCount)}\n` +
`${chalk.green('-')} Expanded: ${chalk.bold(expandedCount)}\n` +
// Skipped count is always 0 now due to pre-filtering
`${chalk.gray('-')} Skipped: ${chalk.bold(0)}\n` +
`${chalk.red('-')} Failed: ${chalk.bold(failedCount)}`;
console.log(
boxen(summaryContent, {
padding: 1,
margin: { top: 1 },
borderColor: failedCount > 0 ? 'red' : 'green', // Red if failures, green otherwise
borderStyle: 'round'
})
);
}
if (outputFormat === 'text' && aggregatedTelemetryData) {
displayAiUsageSummary(aggregatedTelemetryData, 'cli');
}
// Return summary including the AGGREGATED telemetry data
return {
success: true, // Indicate overall success
success: true,
expandedCount,
failedCount,
skippedCount: 0,
tasksToExpand: tasksToExpandCount
tasksToExpand: tasksToExpandCount,
telemetryData: aggregatedTelemetryData
};
} catch (error) {
if (loadingIndicator)

View File

@@ -4,7 +4,11 @@ import { z } from 'zod';
import { log, readJSON, writeJSON, isSilentMode } from '../utils.js';
import { startLoadingIndicator, stopLoadingIndicator } from '../ui.js';
import {
startLoadingIndicator,
stopLoadingIndicator,
displayAiUsageSummary
} from '../ui.js';
import { generateTextService } from '../ai-services-unified.js';
@@ -142,7 +146,7 @@ function generateResearchUserPrompt(
"id": <number>, // Sequential ID starting from ${nextSubtaskId}
"title": "<string>",
"description": "<string>",
"dependencies": [<number>], // e.g., [${nextSubtaskId + 1}]
"dependencies": [<number>], // e.g., [${nextSubtaskId + 1}]. If no dependencies, use an empty array [].
"details": "<string>",
"testStrategy": "<string>" // Optional
},
@@ -162,6 +166,8 @@ ${contextPrompt}
CRITICAL: Respond ONLY with a valid JSON object containing a single key "subtasks". The value must be an array of the generated subtasks, strictly matching this structure:
${schemaDescription}
Important: For the 'dependencies' field, if a subtask has no dependencies, you MUST use an empty array, for example: "dependencies": []. Do not use null or omit the field.
Do not include ANY explanatory text, markdown, or code block markers. Just the JSON object.`;
}
@@ -182,77 +188,153 @@ function parseSubtasksFromText(
parentTaskId,
logger
) {
logger.info('Attempting to parse subtasks object from text response...');
if (!text || text.trim() === '') {
throw new Error('AI response text is empty.');
if (typeof text !== 'string') {
logger.error(
`AI response text is not a string. Received type: ${typeof text}, Value: ${text}`
);
throw new Error('AI response text is not a string.');
}
let cleanedResponse = text.trim();
const originalResponseForDebug = cleanedResponse;
if (!text || text.trim() === '') {
throw new Error('AI response text is empty after trimming.');
}
// 1. Extract from Markdown code block first
const codeBlockMatch = cleanedResponse.match(
/```(?:json)?\s*([\s\S]*?)\s*```/
const originalTrimmedResponse = text.trim(); // Store the original trimmed response
let jsonToParse = originalTrimmedResponse; // Initialize jsonToParse with it
logger.debug(
`Original AI Response for parsing (full length: ${jsonToParse.length}): ${jsonToParse.substring(0, 1000)}...`
);
if (codeBlockMatch) {
cleanedResponse = codeBlockMatch[1].trim();
logger.info('Extracted JSON content from Markdown code block.');
} else {
// 2. If no code block, find first '{' and last '}' for the object
const firstBrace = cleanedResponse.indexOf('{');
const lastBrace = cleanedResponse.lastIndexOf('}');
if (firstBrace !== -1 && lastBrace > firstBrace) {
cleanedResponse = cleanedResponse.substring(firstBrace, lastBrace + 1);
logger.info('Extracted content between first { and last }.');
// --- Pre-emptive cleanup for known AI JSON issues ---
// Fix for "dependencies": , or "dependencies":,
if (jsonToParse.includes('"dependencies":')) {
const malformedPattern = /"dependencies":\s*,/g;
if (malformedPattern.test(jsonToParse)) {
logger.warn('Attempting to fix malformed "dependencies": , issue.');
jsonToParse = jsonToParse.replace(
malformedPattern,
'"dependencies": [],'
);
logger.debug(
`JSON after fixing "dependencies": ${jsonToParse.substring(0, 500)}...`
);
}
}
// --- End pre-emptive cleanup ---
let parsedObject;
let primaryParseAttemptFailed = false;
// --- Attempt 1: Simple Parse (with optional Markdown cleanup) ---
logger.debug('Attempting simple parse...');
try {
// Check for markdown code block
const codeBlockMatch = jsonToParse.match(/```(?:json)?\s*([\s\S]*?)\s*```/);
let contentToParseDirectly = jsonToParse;
if (codeBlockMatch && codeBlockMatch[1]) {
contentToParseDirectly = codeBlockMatch[1].trim();
logger.debug('Simple parse: Extracted content from markdown code block.');
} else {
logger.debug(
'Simple parse: No markdown code block found, using trimmed original.'
);
}
parsedObject = JSON.parse(contentToParseDirectly);
logger.debug('Simple parse successful!');
// Quick check if it looks like our target object
if (
!parsedObject ||
typeof parsedObject !== 'object' ||
!Array.isArray(parsedObject.subtasks)
) {
logger.warn(
'Response does not appear to contain a JSON object structure. Parsing raw response.'
'Simple parse succeeded, but result is not the expected {"subtasks": []} structure. Will proceed to advanced extraction.'
);
primaryParseAttemptFailed = true;
parsedObject = null; // Reset parsedObject so we enter the advanced logic
}
// If it IS the correct structure, we'll skip advanced extraction.
} catch (e) {
logger.warn(
`Simple parse failed: ${e.message}. Proceeding to advanced extraction logic.`
);
primaryParseAttemptFailed = true;
// jsonToParse is already originalTrimmedResponse if simple parse failed before modifying it for markdown
}
// --- Attempt 2: Advanced Extraction (if simple parse failed or produced wrong structure) ---
if (primaryParseAttemptFailed || !parsedObject) {
// Ensure we try advanced if simple parse gave wrong structure
logger.debug('Attempting advanced extraction logic...');
// Reset jsonToParse to the original full trimmed response for advanced logic
jsonToParse = originalTrimmedResponse;
// (Insert the more complex extraction logic here - the one we worked on with:
// - targetPattern = '{"subtasks":';
// - careful brace counting for that targetPattern
// - fallbacks to last '{' and '}' if targetPattern logic fails)
// This was the logic from my previous message. Let's assume it's here.
// This block should ultimately set `jsonToParse` to the best candidate string.
// Example snippet of that advanced logic's start:
const targetPattern = '{"subtasks":';
const patternStartIndex = jsonToParse.indexOf(targetPattern);
if (patternStartIndex !== -1) {
let openBraces = 0;
let firstBraceFound = false;
let extractedJsonBlock = '';
// ... (loop for brace counting as before) ...
// ... (if successful, jsonToParse = extractedJsonBlock) ...
// ... (if that fails, fallbacks as before) ...
} else {
// ... (fallback to last '{' and '}' if targetPattern not found) ...
}
// End of advanced logic excerpt
logger.debug(
`Advanced extraction: JSON string that will be parsed: ${jsonToParse.substring(0, 500)}...`
);
try {
parsedObject = JSON.parse(jsonToParse);
logger.debug('Advanced extraction parse successful!');
} catch (parseError) {
logger.error(
`Advanced extraction: Failed to parse JSON object: ${parseError.message}`
);
logger.error(
`Advanced extraction: Problematic JSON string for parse (first 500 chars): ${jsonToParse.substring(0, 500)}`
);
throw new Error( // Re-throw a more specific error if advanced also fails
`Failed to parse JSON response object after both simple and advanced attempts: ${parseError.message}`
);
}
}
// 3. Attempt to parse the object
let parsedObject;
try {
parsedObject = JSON.parse(cleanedResponse);
} catch (parseError) {
logger.error(`Failed to parse JSON object: ${parseError.message}`);
logger.error(
`Problematic JSON string (first 500 chars): ${cleanedResponse.substring(0, 500)}`
);
logger.error(
`Original Raw Response (first 500 chars): ${originalResponseForDebug.substring(0, 500)}`
);
throw new Error(
`Failed to parse JSON response object: ${parseError.message}`
);
}
// 4. Validate the object structure and extract the subtasks array
// --- Validation (applies to successfully parsedObject from either attempt) ---
if (
!parsedObject ||
typeof parsedObject !== 'object' ||
!Array.isArray(parsedObject.subtasks)
) {
logger.error(
`Parsed content is not an object or missing 'subtasks' array. Content: ${JSON.stringify(parsedObject).substring(0, 200)}`
`Final parsed content is not an object or missing 'subtasks' array. Content: ${JSON.stringify(parsedObject).substring(0, 200)}`
);
throw new Error(
'Parsed AI response is not a valid object containing a "subtasks" array.'
'Parsed AI response is not a valid object containing a "subtasks" array after all attempts.'
);
}
const parsedSubtasks = parsedObject.subtasks; // Extract the array
const parsedSubtasks = parsedObject.subtasks;
logger.info(
`Successfully parsed ${parsedSubtasks.length} potential subtasks from the object.`
);
if (expectedCount && parsedSubtasks.length !== expectedCount) {
logger.warn(
`Expected ${expectedCount} subtasks, but parsed ${parsedSubtasks.length}.`
);
}
// 5. Validate and Normalize each subtask using Zod schema
let currentId = startId;
const validatedSubtasks = [];
const validationErrors = [];
@@ -260,22 +342,21 @@ function parseSubtasksFromText(
for (const rawSubtask of parsedSubtasks) {
const correctedSubtask = {
...rawSubtask,
id: currentId, // Enforce sequential ID
id: currentId,
dependencies: Array.isArray(rawSubtask.dependencies)
? rawSubtask.dependencies
.map((dep) => (typeof dep === 'string' ? parseInt(dep, 10) : dep))
.filter(
(depId) => !isNaN(depId) && depId >= startId && depId < currentId
) // Ensure deps are numbers, valid range
)
: [],
status: 'pending' // Enforce pending status
// parentTaskId can be added if needed: parentTaskId: parentTaskId
status: 'pending'
};
const result = subtaskSchema.safeParse(correctedSubtask);
if (result.success) {
validatedSubtasks.push(result.data); // Add the validated data
validatedSubtasks.push(result.data);
} else {
logger.warn(
`Subtask validation failed for raw data: ${JSON.stringify(rawSubtask).substring(0, 100)}...`
@@ -285,18 +366,14 @@ function parseSubtasksFromText(
logger.warn(errorMessage);
validationErrors.push(`Subtask ${currentId}: ${errorMessage}`);
});
// Optionally, decide whether to include partially valid tasks or skip them
// For now, we'll skip invalid ones
}
currentId++; // Increment ID for the next *potential* subtask
currentId++;
}
if (validationErrors.length > 0) {
logger.error(
`Found ${validationErrors.length} validation errors in the generated subtasks.`
);
// Optionally throw an error here if strict validation is required
// throw new Error(`Subtask validation failed:\n${validationErrors.join('\n')}`);
logger.warn('Proceeding with only the successfully validated subtasks.');
}
@@ -305,8 +382,6 @@ function parseSubtasksFromText(
'AI response contained potential subtasks, but none passed validation.'
);
}
// Ensure we don't return more than expected, preferring validated ones
return validatedSubtasks.slice(0, expectedCount || validatedSubtasks.length);
}
@@ -336,9 +411,13 @@ async function expandTask(
context = {},
force = false
) {
const { session, mcpLog } = context;
const { session, mcpLog, projectRoot: contextProjectRoot } = context;
const outputFormat = mcpLog ? 'json' : 'text';
// Determine projectRoot: Use from context if available, otherwise derive from tasksPath
const projectRoot =
contextProjectRoot || path.dirname(path.dirname(tasksPath));
// Use mcpLog if available, otherwise use the default console log wrapper
const logger = mcpLog || {
info: (msg) => !isSilentMode() && log('info', msg),
@@ -363,7 +442,9 @@ async function expandTask(
);
if (taskIndex === -1) throw new Error(`Task ${taskId} not found`);
const task = data.tasks[taskIndex];
logger.info(`Expanding task ${taskId}: ${task.title}`);
logger.info(
`Expanding task ${taskId}: ${task.title}${useResearch ? ' with research' : ''}`
);
// --- End Task Loading/Filtering ---
// --- Handle Force Flag: Clear existing subtasks if force=true ---
@@ -381,7 +462,6 @@ async function expandTask(
let complexityReasoningContext = '';
let systemPrompt; // Declare systemPrompt here
const projectRoot = path.dirname(path.dirname(tasksPath));
const complexityReportPath = path.join(
projectRoot,
'scripts/task-complexity-report.json'
@@ -488,28 +568,27 @@ async function expandTask(
let loadingIndicator = null;
if (outputFormat === 'text') {
loadingIndicator = startLoadingIndicator(
`Generating ${finalSubtaskCount} subtasks...`
`Generating ${finalSubtaskCount} subtasks...\n`
);
}
let responseText = '';
let aiServiceResponse = null;
try {
const role = useResearch ? 'research' : 'main';
logger.info(`Using AI service with role: ${role}`);
// Call generateTextService with the determined prompts
responseText = await generateTextService({
// Call generateTextService with the determined prompts and telemetry params
aiServiceResponse = await generateTextService({
prompt: promptContent,
systemPrompt: systemPrompt, // Use the determined system prompt
systemPrompt: systemPrompt,
role,
session,
projectRoot
projectRoot,
commandName: 'expand-task',
outputType: outputFormat
});
logger.info(
'Successfully received text response from AI service',
'success'
);
responseText = aiServiceResponse.mainResult;
// Parse Subtasks
generatedSubtasks = parseSubtasksFromText(
@@ -550,14 +629,23 @@ async function expandTask(
// --- End Change: Append instead of replace ---
data.tasks[taskIndex] = task; // Assign the modified task back
logger.info(`Writing updated tasks to ${tasksPath}`);
writeJSON(tasksPath, data);
logger.info(`Generating individual task files...`);
await generateTaskFiles(tasksPath, path.dirname(tasksPath));
logger.info(`Task files generated.`);
// --- End Task Update & File Writing ---
return task; // Return the updated task object
// Display AI Usage Summary for CLI
if (
outputFormat === 'text' &&
aiServiceResponse &&
aiServiceResponse.telemetryData
) {
displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli');
}
// Return the updated task object AND telemetry data
return {
task,
telemetryData: aiServiceResponse?.telemetryData
};
} catch (error) {
// Catches errors from file reading, parsing, AI call etc.
logger.error(`Error expanding task ${taskId}: ${error.message}`, 'error');

View File

@@ -1,3 +1,6 @@
import { log } from '../utils.js';
import { addComplexityToTask } from '../utils.js';
/**
* Return the next work item:
* • Prefer an eligible SUBTASK that belongs to any parent task
@@ -15,9 +18,10 @@
* ─ parentId → number (present only when it's a subtask)
*
* @param {Object[]} tasks full array of top-level tasks, each may contain .subtasks[]
* @param {Object} [complexityReport=null] - Optional complexity report object
* @returns {Object|null} next work item or null if nothing is eligible
*/
function findNextTask(tasks) {
function findNextTask(tasks, complexityReport = null) {
// ---------- helpers ----------------------------------------------------
const priorityValues = { high: 3, medium: 2, low: 1 };
@@ -91,7 +95,14 @@ function findNextTask(tasks) {
if (aPar !== bPar) return aPar - bPar;
return aSub - bSub;
});
return candidateSubtasks[0];
const nextTask = candidateSubtasks[0];
// Add complexity to the task before returning
if (nextTask && complexityReport) {
addComplexityToTask(nextTask, complexityReport);
}
return nextTask;
}
// ---------- 2) fall back to top-level tasks (original logic) ------------
@@ -116,6 +127,11 @@ function findNextTask(tasks) {
return a.id - b.id;
})[0];
// Add complexity to the task before returning
if (nextTask && complexityReport) {
addComplexityToTask(nextTask, complexityReport);
}
return nextTask;
}

View File

@@ -19,8 +19,6 @@ function generateTaskFiles(tasksPath, outputDir, options = {}) {
// Determine if we're in MCP mode by checking for mcpLog
const isMcpMode = !!options?.mcpLog;
log('info', `Preparing to regenerate task files in ${tasksPath}`);
const data = readJSON(tasksPath);
if (!data || !data.tasks) {
throw new Error(`No valid tasks found in ${tasksPath}`);
@@ -31,12 +29,59 @@ function generateTaskFiles(tasksPath, outputDir, options = {}) {
fs.mkdirSync(outputDir, { recursive: true });
}
log('info', `Found ${data.tasks.length} tasks to regenerate`);
log('info', `Preparing to regenerate ${data.tasks.length} task files`);
// Validate and fix dependencies before generating files
log('info', `Validating and fixing dependencies`);
validateAndFixDependencies(data, tasksPath);
// Get valid task IDs from tasks.json
const validTaskIds = data.tasks.map((task) => task.id);
// Cleanup orphaned task files
log('info', 'Checking for orphaned task files to clean up...');
try {
// Get all task files in the output directory
const files = fs.readdirSync(outputDir);
const taskFilePattern = /^task_(\d+)\.txt$/;
// Filter for task files and check if they match a valid task ID
const orphanedFiles = files.filter((file) => {
const match = file.match(taskFilePattern);
if (match) {
const fileTaskId = parseInt(match[1], 10);
return !validTaskIds.includes(fileTaskId);
}
return false;
});
// Delete orphaned files
if (orphanedFiles.length > 0) {
log(
'info',
`Found ${orphanedFiles.length} orphaned task files to remove`
);
orphanedFiles.forEach((file) => {
const filePath = path.join(outputDir, file);
try {
fs.unlinkSync(filePath);
log('info', `Removed orphaned task file: ${file}`);
} catch (err) {
log(
'warn',
`Failed to remove orphaned task file ${file}: ${err.message}`
);
}
});
} else {
log('info', 'No orphaned task files found');
}
} catch (err) {
log('warn', `Error cleaning up orphaned task files: ${err.message}`);
// Continue with file generation even if cleanup fails
}
// Generate task files
log('info', 'Generating individual task files...');
data.tasks.forEach((task) => {

View File

@@ -2,13 +2,20 @@ import chalk from 'chalk';
import boxen from 'boxen';
import Table from 'cli-table3';
import { log, readJSON, truncate } from '../utils.js';
import {
log,
readJSON,
truncate,
readComplexityReport,
addComplexityToTask
} from '../utils.js';
import findNextTask from './find-next-task.js';
import {
displayBanner,
getStatusWithColor,
formatDependenciesWithStatus,
getComplexityWithColor,
createProgressBar
} from '../ui.js';
@@ -16,6 +23,7 @@ import {
* List all tasks
* @param {string} tasksPath - Path to the tasks.json file
* @param {string} statusFilter - Filter by status
* @param {string} reportPath - Path to the complexity report
* @param {boolean} withSubtasks - Whether to show subtasks
* @param {string} outputFormat - Output format (text or json)
* @returns {Object} - Task list result for json format
@@ -23,6 +31,7 @@ import {
function listTasks(
tasksPath,
statusFilter,
reportPath = null,
withSubtasks = false,
outputFormat = 'text'
) {
@@ -37,6 +46,13 @@ function listTasks(
throw new Error(`No valid tasks found in ${tasksPath}`);
}
// Add complexity scores to tasks if report exists
const complexityReport = readComplexityReport(reportPath);
// Apply complexity scores to tasks
if (complexityReport && complexityReport.complexityAnalysis) {
data.tasks.forEach((task) => addComplexityToTask(task, complexityReport));
}
// Filter tasks by status if specified
const filteredTasks =
statusFilter && statusFilter.toLowerCase() !== 'all' // <-- Added check for 'all'
@@ -257,8 +273,8 @@ function listTasks(
);
const avgDependenciesPerTask = totalDependencies / data.tasks.length;
// Find next task to work on
const nextItem = findNextTask(data.tasks);
// Find next task to work on, passing the complexity report
const nextItem = findNextTask(data.tasks, complexityReport);
// Get terminal width - more reliable method
let terminalWidth;
@@ -301,8 +317,11 @@ function listTasks(
`${chalk.blue('•')} ${chalk.white('Avg dependencies per task:')} ${avgDependenciesPerTask.toFixed(1)}\n\n` +
chalk.cyan.bold('Next Task to Work On:') +
'\n' +
`ID: ${chalk.cyan(nextItem ? nextItem.id : 'N/A')} - ${nextItem ? chalk.white.bold(truncate(nextItem.title, 40)) : chalk.yellow('No task available')}\n` +
`Priority: ${nextItem ? chalk.white(nextItem.priority || 'medium') : ''} Dependencies: ${nextItem ? formatDependenciesWithStatus(nextItem.dependencies, data.tasks, true) : ''}`;
`ID: ${chalk.cyan(nextItem ? nextItem.id : 'N/A')} - ${nextItem ? chalk.white.bold(truncate(nextItem.title, 40)) : chalk.yellow('No task available')}
` +
`Priority: ${nextItem ? chalk.white(nextItem.priority || 'medium') : ''} Dependencies: ${nextItem ? formatDependenciesWithStatus(nextItem.dependencies, data.tasks, true, complexityReport) : ''}
` +
`Complexity: ${nextItem && nextItem.complexityScore ? getComplexityWithColor(nextItem.complexityScore) : chalk.gray('N/A')}`;
// Calculate width for side-by-side display
// Box borders, padding take approximately 4 chars on each side
@@ -412,9 +431,16 @@ function listTasks(
// Make dependencies column smaller as requested (-20%)
const depsWidthPct = 20;
const complexityWidthPct = 10;
// Calculate title/description width as remaining space (+20% from dependencies reduction)
const titleWidthPct =
100 - idWidthPct - statusWidthPct - priorityWidthPct - depsWidthPct;
100 -
idWidthPct -
statusWidthPct -
priorityWidthPct -
depsWidthPct -
complexityWidthPct;
// Allow 10 characters for borders and padding
const availableWidth = terminalWidth - 10;
@@ -424,6 +450,9 @@ function listTasks(
const statusWidth = Math.floor(availableWidth * (statusWidthPct / 100));
const priorityWidth = Math.floor(availableWidth * (priorityWidthPct / 100));
const depsWidth = Math.floor(availableWidth * (depsWidthPct / 100));
const complexityWidth = Math.floor(
availableWidth * (complexityWidthPct / 100)
);
const titleWidth = Math.floor(availableWidth * (titleWidthPct / 100));
// Create a table with correct borders and spacing
@@ -433,9 +462,17 @@ function listTasks(
chalk.cyan.bold('Title'),
chalk.cyan.bold('Status'),
chalk.cyan.bold('Priority'),
chalk.cyan.bold('Dependencies')
chalk.cyan.bold('Dependencies'),
chalk.cyan.bold('Complexity')
],
colWidths: [
idWidth,
titleWidth,
statusWidth,
priorityWidth,
depsWidth,
complexityWidth // Added complexity column width
],
colWidths: [idWidth, titleWidth, statusWidth, priorityWidth, depsWidth],
style: {
head: [], // No special styling for header
border: [], // No special styling for border
@@ -454,7 +491,8 @@ function listTasks(
depText = formatDependenciesWithStatus(
task.dependencies,
data.tasks,
true
true,
complexityReport
);
} else {
depText = chalk.gray('None');
@@ -480,7 +518,10 @@ function listTasks(
truncate(cleanTitle, titleWidth - 3),
status,
priorityColor(truncate(task.priority || 'medium', priorityWidth - 2)),
depText // No truncation for dependencies
depText,
task.complexityScore
? getComplexityWithColor(task.complexityScore)
: chalk.gray('N/A')
]);
// Add subtasks if requested
@@ -516,6 +557,8 @@ function listTasks(
// Default to regular task dependency
const depTask = data.tasks.find((t) => t.id === depId);
if (depTask) {
// Add complexity to depTask before checking status
addComplexityToTask(depTask, complexityReport);
const isDone =
depTask.status === 'done' || depTask.status === 'completed';
const isInProgress = depTask.status === 'in-progress';
@@ -541,7 +584,10 @@ function listTasks(
chalk.dim(`└─ ${truncate(subtask.title, titleWidth - 5)}`),
getStatusWithColor(subtask.status, true),
chalk.dim('-'),
subtaskDepText // No truncation for dependencies
subtaskDepText,
subtask.complexityScore
? chalk.gray(`${subtask.complexityScore}`)
: chalk.gray('N/A')
]);
});
}
@@ -597,6 +643,8 @@ function listTasks(
subtasksSection = `\n\n${chalk.white.bold('Subtasks:')}\n`;
subtasksSection += parentTaskForSubtasks.subtasks
.map((subtask) => {
// Add complexity to subtask before display
addComplexityToTask(subtask, complexityReport);
// Using a more simplified format for subtask status display
const status = subtask.status || 'pending';
const statusColors = {
@@ -625,8 +673,8 @@ function listTasks(
'\n\n' +
// Use nextItem.priority, nextItem.status, nextItem.dependencies
`${chalk.white('Priority:')} ${priorityColors[nextItem.priority || 'medium'](nextItem.priority || 'medium')} ${chalk.white('Status:')} ${getStatusWithColor(nextItem.status, true)}\n` +
`${chalk.white('Dependencies:')} ${nextItem.dependencies && nextItem.dependencies.length > 0 ? formatDependenciesWithStatus(nextItem.dependencies, data.tasks, true) : chalk.gray('None')}\n\n` +
// Use nextItem.description (Note: findNextTask doesn't return description, need to fetch original task/subtask for this)
`${chalk.white('Dependencies:')} ${nextItem.dependencies && nextItem.dependencies.length > 0 ? formatDependenciesWithStatus(nextItem.dependencies, data.tasks, true, complexityReport) : chalk.gray('None')}\n\n` +
// Use nextTask.description (Note: findNextTask doesn't return description, need to fetch original task/subtask for this)
// *** Fetching original item for description and details ***
`${chalk.white('Description:')} ${getWorkItemDescription(nextItem, data.tasks)}` +
subtasksSection + // <-- Subtasks are handled above now

View File

@@ -6,6 +6,7 @@
import path from 'path';
import fs from 'fs';
import https from 'https';
import http from 'http';
import {
getMainModelId,
getResearchModelId,
@@ -19,7 +20,8 @@ import {
getConfig,
writeConfig,
isConfigFilePresent,
getAllProviders
getAllProviders,
getBaseUrlForRole
} from '../config-manager.js';
/**
@@ -68,6 +70,68 @@ function fetchOpenRouterModels() {
});
}
/**
* Fetches the list of models from Ollama instance.
* @param {string} baseUrl - The base URL for the Ollama API (e.g., "http://localhost:11434/api")
* @returns {Promise<Array|null>} A promise that resolves with the list of model objects or null if fetch fails.
*/
function fetchOllamaModels(baseUrl = 'http://localhost:11434/api') {
return new Promise((resolve) => {
try {
// Parse the base URL to extract hostname, port, and base path
const url = new URL(baseUrl);
const isHttps = url.protocol === 'https:';
const port = url.port || (isHttps ? 443 : 80);
const basePath = url.pathname.endsWith('/')
? url.pathname.slice(0, -1)
: url.pathname;
const options = {
hostname: url.hostname,
port: parseInt(port, 10),
path: `${basePath}/tags`,
method: 'GET',
headers: {
Accept: 'application/json'
}
};
const requestLib = isHttps ? https : http;
const req = requestLib.request(options, (res) => {
let data = '';
res.on('data', (chunk) => {
data += chunk;
});
res.on('end', () => {
if (res.statusCode === 200) {
try {
const parsedData = JSON.parse(data);
resolve(parsedData.models || []); // Return the array of models
} catch (e) {
console.error('Error parsing Ollama response:', e);
resolve(null); // Indicate failure
}
} else {
console.error(
`Ollama API request failed with status code: ${res.statusCode}`
);
resolve(null); // Indicate failure
}
});
});
req.on('error', (e) => {
console.error('Error fetching Ollama models:', e);
resolve(null); // Indicate failure
});
req.end();
} catch (e) {
console.error('Error parsing Ollama base URL:', e);
resolve(null); // Indicate failure
}
});
}
/**
* Get the current model configuration
* @param {Object} [options] - Options for the operation
@@ -416,10 +480,29 @@ async function setModel(role, modelId, options = {}) {
);
}
} else if (providerHint === 'ollama') {
// Hinted as Ollama - set provider directly WITHOUT checking OpenRouter
determinedProvider = 'ollama';
warningMessage = `Warning: Custom Ollama model '${modelId}' set. Ensure your Ollama server is running and has pulled this model. Taskmaster cannot guarantee compatibility.`;
report('warn', warningMessage);
// Check Ollama ONLY because hint was ollama
report('info', `Checking Ollama for ${modelId} (as hinted)...`);
// Get the Ollama base URL from config
const ollamaBaseUrl = getBaseUrlForRole(role, projectRoot);
const ollamaModels = await fetchOllamaModels(ollamaBaseUrl);
if (ollamaModels === null) {
// Connection failed - server probably not running
throw new Error(
`Unable to connect to Ollama server at ${ollamaBaseUrl}. Please ensure Ollama is running and try again.`
);
} else if (ollamaModels.some((m) => m.model === modelId)) {
determinedProvider = 'ollama';
warningMessage = `Warning: Custom Ollama model '${modelId}' set. Ensure your Ollama server is running and has pulled this model. Taskmaster cannot guarantee compatibility.`;
report('warn', warningMessage);
} else {
// Server is running but model not found
const tagsUrl = `${ollamaBaseUrl}/tags`;
throw new Error(
`Model ID "${modelId}" not found in the Ollama instance. Please verify the model is pulled and available. You can check available models with: curl ${tagsUrl}`
);
}
} else {
// Invalid provider hint - should not happen
throw new Error(`Invalid provider hint received: ${providerHint}`);

View File

@@ -0,0 +1,571 @@
import path from 'path';
import { log, readJSON, writeJSON } from '../utils.js';
import { isTaskDependentOn } from '../task-manager.js';
import generateTaskFiles from './generate-task-files.js';
/**
* Move a task or subtask to a new position
* @param {string} tasksPath - Path to tasks.json file
* @param {string} sourceId - ID of the task/subtask to move (e.g., '5' or '5.2')
* @param {string} destinationId - ID of the destination (e.g., '7' or '7.3')
* @param {boolean} generateFiles - Whether to regenerate task files after moving
* @returns {Object} Result object with moved task details
*/
async function moveTask(
tasksPath,
sourceId,
destinationId,
generateFiles = true
) {
try {
log('info', `Moving task/subtask ${sourceId} to ${destinationId}...`);
// Read the existing tasks
const data = readJSON(tasksPath);
if (!data || !data.tasks) {
throw new Error(`Invalid or missing tasks file at ${tasksPath}`);
}
// Parse source ID to determine if it's a task or subtask
const isSourceSubtask = sourceId.includes('.');
let sourceTask,
sourceParentTask,
sourceSubtask,
sourceTaskIndex,
sourceSubtaskIndex;
// Parse destination ID to determine the target
const isDestinationSubtask = destinationId.includes('.');
let destTask, destParentTask, destSubtask, destTaskIndex, destSubtaskIndex;
// Validate source exists
if (isSourceSubtask) {
// Source is a subtask
const [parentIdStr, subtaskIdStr] = sourceId.split('.');
const parentIdNum = parseInt(parentIdStr, 10);
const subtaskIdNum = parseInt(subtaskIdStr, 10);
sourceParentTask = data.tasks.find((t) => t.id === parentIdNum);
if (!sourceParentTask) {
throw new Error(`Source parent task with ID ${parentIdNum} not found`);
}
if (
!sourceParentTask.subtasks ||
sourceParentTask.subtasks.length === 0
) {
throw new Error(`Source parent task ${parentIdNum} has no subtasks`);
}
sourceSubtaskIndex = sourceParentTask.subtasks.findIndex(
(st) => st.id === subtaskIdNum
);
if (sourceSubtaskIndex === -1) {
throw new Error(`Source subtask ${sourceId} not found`);
}
sourceSubtask = { ...sourceParentTask.subtasks[sourceSubtaskIndex] };
} else {
// Source is a task
const sourceIdNum = parseInt(sourceId, 10);
sourceTaskIndex = data.tasks.findIndex((t) => t.id === sourceIdNum);
if (sourceTaskIndex === -1) {
throw new Error(`Source task with ID ${sourceIdNum} not found`);
}
sourceTask = { ...data.tasks[sourceTaskIndex] };
}
// Validate destination exists
if (isDestinationSubtask) {
// Destination is a subtask (target will be the parent of this subtask)
const [parentIdStr, subtaskIdStr] = destinationId.split('.');
const parentIdNum = parseInt(parentIdStr, 10);
const subtaskIdNum = parseInt(subtaskIdStr, 10);
destParentTask = data.tasks.find((t) => t.id === parentIdNum);
if (!destParentTask) {
throw new Error(
`Destination parent task with ID ${parentIdNum} not found`
);
}
if (!destParentTask.subtasks || destParentTask.subtasks.length === 0) {
throw new Error(
`Destination parent task ${parentIdNum} has no subtasks`
);
}
destSubtaskIndex = destParentTask.subtasks.findIndex(
(st) => st.id === subtaskIdNum
);
if (destSubtaskIndex === -1) {
throw new Error(`Destination subtask ${destinationId} not found`);
}
destSubtask = destParentTask.subtasks[destSubtaskIndex];
} else {
// Destination is a task
const destIdNum = parseInt(destinationId, 10);
destTaskIndex = data.tasks.findIndex((t) => t.id === destIdNum);
if (destTaskIndex === -1) {
// Create placeholder for destination if it doesn't exist
log('info', `Creating placeholder for destination task ${destIdNum}`);
const newTask = {
id: destIdNum,
title: `Task ${destIdNum}`,
description: '',
status: 'pending',
priority: 'medium',
details: '',
testStrategy: ''
};
// Find correct position to insert the new task
let insertIndex = 0;
while (
insertIndex < data.tasks.length &&
data.tasks[insertIndex].id < destIdNum
) {
insertIndex++;
}
// Insert the new task at the appropriate position
data.tasks.splice(insertIndex, 0, newTask);
destTaskIndex = insertIndex;
destTask = data.tasks[destTaskIndex];
} else {
destTask = data.tasks[destTaskIndex];
// Check if destination task is already a "real" task with content
// Only allow moving to destination IDs that don't have meaningful content
if (
destTask.title !== `Task ${destTask.id}` ||
destTask.description !== '' ||
destTask.details !== ''
) {
throw new Error(
`Cannot move to task ID ${destIdNum} as it already contains content. Choose a different destination ID.`
);
}
}
}
// Validate that we aren't trying to move a task to itself
if (sourceId === destinationId) {
throw new Error('Cannot move a task/subtask to itself');
}
// Prevent moving a parent to its own subtask
if (!isSourceSubtask && isDestinationSubtask) {
const destParentId = parseInt(destinationId.split('.')[0], 10);
if (parseInt(sourceId, 10) === destParentId) {
throw new Error('Cannot move a parent task to one of its own subtasks');
}
}
// Check for circular dependency when moving tasks
if (!isSourceSubtask && !isDestinationSubtask) {
const sourceIdNum = parseInt(sourceId, 10);
const destIdNum = parseInt(destinationId, 10);
// Check if destination is dependent on source
if (isTaskDependentOn(data.tasks, destTask, sourceIdNum)) {
throw new Error(
`Cannot move task ${sourceId} to task ${destinationId} as it would create a circular dependency`
);
}
}
let movedTask;
// Handle different move scenarios
if (!isSourceSubtask && !isDestinationSubtask) {
// Check if destination is a placeholder we just created
if (
destTask.title === `Task ${destTask.id}` &&
destTask.description === '' &&
destTask.details === ''
) {
// Case 0: Move task to a new position/ID (destination is a placeholder)
movedTask = moveTaskToNewId(
data,
sourceTask,
sourceTaskIndex,
destTask,
destTaskIndex
);
} else {
// Case 1: Move standalone task to become a subtask of another task
movedTask = moveTaskToTask(data, sourceTask, sourceTaskIndex, destTask);
}
} else if (!isSourceSubtask && isDestinationSubtask) {
// Case 2: Move standalone task to become a subtask at a specific position
movedTask = moveTaskToSubtaskPosition(
data,
sourceTask,
sourceTaskIndex,
destParentTask,
destSubtaskIndex
);
} else if (isSourceSubtask && !isDestinationSubtask) {
// Case 3: Move subtask to become a standalone task
movedTask = moveSubtaskToTask(
data,
sourceSubtask,
sourceParentTask,
sourceSubtaskIndex,
destTask
);
} else if (isSourceSubtask && isDestinationSubtask) {
// Case 4: Move subtask to another parent or position
// First check if it's the same parent
const sourceParentId = parseInt(sourceId.split('.')[0], 10);
const destParentId = parseInt(destinationId.split('.')[0], 10);
if (sourceParentId === destParentId) {
// Case 4a: Move subtask within the same parent (reordering)
movedTask = reorderSubtask(
sourceParentTask,
sourceSubtaskIndex,
destSubtaskIndex
);
} else {
// Case 4b: Move subtask to a different parent
movedTask = moveSubtaskToAnotherParent(
sourceSubtask,
sourceParentTask,
sourceSubtaskIndex,
destParentTask,
destSubtaskIndex
);
}
}
// Write the updated tasks back to the file
writeJSON(tasksPath, data);
// Generate task files if requested
if (generateFiles) {
log('info', 'Regenerating task files...');
await generateTaskFiles(tasksPath, path.dirname(tasksPath));
}
return movedTask;
} catch (error) {
log('error', `Error moving task/subtask: ${error.message}`);
throw error;
}
}
/**
* Move a standalone task to become a subtask of another task
* @param {Object} data - Tasks data object
* @param {Object} sourceTask - Source task to move
* @param {number} sourceTaskIndex - Index of source task in data.tasks
* @param {Object} destTask - Destination task
* @returns {Object} Moved task object
*/
function moveTaskToTask(data, sourceTask, sourceTaskIndex, destTask) {
// Initialize subtasks array if it doesn't exist
if (!destTask.subtasks) {
destTask.subtasks = [];
}
// Find the highest subtask ID to determine the next ID
const highestSubtaskId =
destTask.subtasks.length > 0
? Math.max(...destTask.subtasks.map((st) => st.id))
: 0;
const newSubtaskId = highestSubtaskId + 1;
// Create the new subtask from the source task
const newSubtask = {
...sourceTask,
id: newSubtaskId,
parentTaskId: destTask.id
};
// Add to destination's subtasks
destTask.subtasks.push(newSubtask);
// Remove the original task from the tasks array
data.tasks.splice(sourceTaskIndex, 1);
log(
'info',
`Moved task ${sourceTask.id} to become subtask ${destTask.id}.${newSubtaskId}`
);
return newSubtask;
}
/**
* Move a standalone task to become a subtask at a specific position
* @param {Object} data - Tasks data object
* @param {Object} sourceTask - Source task to move
* @param {number} sourceTaskIndex - Index of source task in data.tasks
* @param {Object} destParentTask - Destination parent task
* @param {number} destSubtaskIndex - Index of the subtask before which to insert
* @returns {Object} Moved task object
*/
function moveTaskToSubtaskPosition(
data,
sourceTask,
sourceTaskIndex,
destParentTask,
destSubtaskIndex
) {
// Initialize subtasks array if it doesn't exist
if (!destParentTask.subtasks) {
destParentTask.subtasks = [];
}
// Find the highest subtask ID to determine the next ID
const highestSubtaskId =
destParentTask.subtasks.length > 0
? Math.max(...destParentTask.subtasks.map((st) => st.id))
: 0;
const newSubtaskId = highestSubtaskId + 1;
// Create the new subtask from the source task
const newSubtask = {
...sourceTask,
id: newSubtaskId,
parentTaskId: destParentTask.id
};
// Insert at specific position
destParentTask.subtasks.splice(destSubtaskIndex + 1, 0, newSubtask);
// Remove the original task from the tasks array
data.tasks.splice(sourceTaskIndex, 1);
log(
'info',
`Moved task ${sourceTask.id} to become subtask ${destParentTask.id}.${newSubtaskId}`
);
return newSubtask;
}
/**
* Move a subtask to become a standalone task
* @param {Object} data - Tasks data object
* @param {Object} sourceSubtask - Source subtask to move
* @param {Object} sourceParentTask - Parent task of the source subtask
* @param {number} sourceSubtaskIndex - Index of source subtask in parent's subtasks
* @param {Object} destTask - Destination task (for position reference)
* @returns {Object} Moved task object
*/
function moveSubtaskToTask(
data,
sourceSubtask,
sourceParentTask,
sourceSubtaskIndex,
destTask
) {
// Find the highest task ID to determine the next ID
const highestId = Math.max(...data.tasks.map((t) => t.id));
const newTaskId = highestId + 1;
// Create the new task from the subtask
const newTask = {
...sourceSubtask,
id: newTaskId,
priority: sourceParentTask.priority || 'medium' // Inherit priority from parent
};
delete newTask.parentTaskId;
// Add the parent task as a dependency if not already present
if (!newTask.dependencies) {
newTask.dependencies = [];
}
if (!newTask.dependencies.includes(sourceParentTask.id)) {
newTask.dependencies.push(sourceParentTask.id);
}
// Find the destination index to insert the new task
const destTaskIndex = data.tasks.findIndex((t) => t.id === destTask.id);
// Insert the new task after the destination task
data.tasks.splice(destTaskIndex + 1, 0, newTask);
// Remove the subtask from the parent
sourceParentTask.subtasks.splice(sourceSubtaskIndex, 1);
// If parent has no more subtasks, remove the subtasks array
if (sourceParentTask.subtasks.length === 0) {
delete sourceParentTask.subtasks;
}
log(
'info',
`Moved subtask ${sourceParentTask.id}.${sourceSubtask.id} to become task ${newTaskId}`
);
return newTask;
}
/**
* Reorder a subtask within the same parent
* @param {Object} parentTask - Parent task containing the subtask
* @param {number} sourceIndex - Current index of the subtask
* @param {number} destIndex - Destination index for the subtask
* @returns {Object} Moved subtask object
*/
function reorderSubtask(parentTask, sourceIndex, destIndex) {
// Get the subtask to move
const subtask = parentTask.subtasks[sourceIndex];
// Remove the subtask from its current position
parentTask.subtasks.splice(sourceIndex, 1);
// Insert the subtask at the new position
// If destIndex was after sourceIndex, it's now one less because we removed an item
const adjustedDestIndex = sourceIndex < destIndex ? destIndex - 1 : destIndex;
parentTask.subtasks.splice(adjustedDestIndex, 0, subtask);
log(
'info',
`Reordered subtask ${parentTask.id}.${subtask.id} within parent task ${parentTask.id}`
);
return subtask;
}
/**
* Move a subtask to a different parent
* @param {Object} sourceSubtask - Source subtask to move
* @param {Object} sourceParentTask - Parent task of the source subtask
* @param {number} sourceSubtaskIndex - Index of source subtask in parent's subtasks
* @param {Object} destParentTask - Destination parent task
* @param {number} destSubtaskIndex - Index of the subtask before which to insert
* @returns {Object} Moved subtask object
*/
function moveSubtaskToAnotherParent(
sourceSubtask,
sourceParentTask,
sourceSubtaskIndex,
destParentTask,
destSubtaskIndex
) {
// Find the highest subtask ID in the destination parent
const highestSubtaskId =
destParentTask.subtasks.length > 0
? Math.max(...destParentTask.subtasks.map((st) => st.id))
: 0;
const newSubtaskId = highestSubtaskId + 1;
// Create the new subtask with updated parent reference
const newSubtask = {
...sourceSubtask,
id: newSubtaskId,
parentTaskId: destParentTask.id
};
// If the subtask depends on its original parent, keep that dependency
if (!newSubtask.dependencies) {
newSubtask.dependencies = [];
}
if (!newSubtask.dependencies.includes(sourceParentTask.id)) {
newSubtask.dependencies.push(sourceParentTask.id);
}
// Insert at the destination position
destParentTask.subtasks.splice(destSubtaskIndex + 1, 0, newSubtask);
// Remove the subtask from the original parent
sourceParentTask.subtasks.splice(sourceSubtaskIndex, 1);
// If original parent has no more subtasks, remove the subtasks array
if (sourceParentTask.subtasks.length === 0) {
delete sourceParentTask.subtasks;
}
log(
'info',
`Moved subtask ${sourceParentTask.id}.${sourceSubtask.id} to become subtask ${destParentTask.id}.${newSubtaskId}`
);
return newSubtask;
}
/**
* Move a standalone task to a new ID position
* @param {Object} data - Tasks data object
* @param {Object} sourceTask - Source task to move
* @param {number} sourceTaskIndex - Index of source task in data.tasks
* @param {Object} destTask - Destination placeholder task
* @param {number} destTaskIndex - Index of destination task in data.tasks
* @returns {Object} Moved task object
*/
function moveTaskToNewId(
data,
sourceTask,
sourceTaskIndex,
destTask,
destTaskIndex
) {
// Create a copy of the source task with the new ID
const movedTask = {
...sourceTask,
id: destTask.id
};
// Get numeric IDs for comparison
const sourceIdNum = parseInt(sourceTask.id, 10);
const destIdNum = parseInt(destTask.id, 10);
// Handle subtasks if present
if (sourceTask.subtasks && sourceTask.subtasks.length > 0) {
// Update subtasks to reference the new parent ID if needed
movedTask.subtasks = sourceTask.subtasks.map((subtask) => ({
...subtask,
parentTaskId: destIdNum
}));
}
// Update any dependencies in other tasks that referenced the old ID
data.tasks.forEach((task) => {
if (task.dependencies && task.dependencies.includes(sourceIdNum)) {
// Replace the old ID with the new ID
const depIndex = task.dependencies.indexOf(sourceIdNum);
task.dependencies[depIndex] = destIdNum;
}
// Also check for subtask dependencies that might reference this task
if (task.subtasks && task.subtasks.length > 0) {
task.subtasks.forEach((subtask) => {
if (
subtask.dependencies &&
subtask.dependencies.includes(sourceIdNum)
) {
const depIndex = subtask.dependencies.indexOf(sourceIdNum);
subtask.dependencies[depIndex] = destIdNum;
}
});
}
});
// Remove the original task from its position
data.tasks.splice(sourceTaskIndex, 1);
// If we're moving to a position after the original, adjust the destination index
// since removing the original shifts everything down by 1
const adjustedDestIndex =
sourceTaskIndex < destTaskIndex ? destTaskIndex - 1 : destTaskIndex;
// Remove the placeholder destination task
data.tasks.splice(adjustedDestIndex, 1);
// Insert the moved task at the destination position
data.tasks.splice(adjustedDestIndex, 0, movedTask);
log('info', `Moved task ${sourceIdNum} to new ID ${destIdNum}`);
return movedTask;
}
export default moveTask;

View File

@@ -17,6 +17,7 @@ import {
import { generateObjectService } from '../ai-services-unified.js';
import { getDebugFlag } from '../config-manager.js';
import generateTaskFiles from './generate-task-files.js';
import { displayAiUsageSummary } from '../ui.js';
// Define the Zod schema for a SINGLE task object
const prdSingleTaskSchema = z.object({
@@ -47,8 +48,9 @@ const prdResponseSchema = z.object({
* @param {string} tasksPath - Path to the tasks.json file
* @param {number} numTasks - Number of tasks to generate
* @param {Object} options - Additional options
* @param {boolean} [options.useForce=false] - Whether to overwrite existing tasks.json.
* @param {boolean} [options.useAppend=false] - Append to existing tasks file.
* @param {boolean} [options.force=false] - Whether to overwrite existing tasks.json.
* @param {boolean} [options.append=false] - Append to existing tasks file.
* @param {boolean} [options.research=false] - Use research model for enhanced PRD analysis.
* @param {Object} [options.reportProgress] - Function to report progress (optional, likely unused).
* @param {Object} [options.mcpLog] - MCP logger object (optional).
* @param {Object} [options.session] - Session object from MCP server (optional).
@@ -61,8 +63,9 @@ async function parsePRD(prdPath, tasksPath, numTasks, options = {}) {
mcpLog,
session,
projectRoot,
useForce = false,
useAppend = false
force = false,
append = false,
research = false
} = options;
const isMCP = !!mcpLog;
const outputFormat = isMCP ? 'json' : 'text';
@@ -90,16 +93,17 @@ async function parsePRD(prdPath, tasksPath, numTasks, options = {}) {
};
report(
`Parsing PRD file: ${prdPath}, Force: ${useForce}, Append: ${useAppend}`
`Parsing PRD file: ${prdPath}, Force: ${force}, Append: ${append}, Research: ${research}`
);
let existingTasks = [];
let nextId = 1;
let aiServiceResponse = null;
try {
// Handle file existence and overwrite/append logic
if (fs.existsSync(tasksPath)) {
if (useAppend) {
if (append) {
report(
`Append mode enabled. Reading existing tasks from ${tasksPath}`,
'info'
@@ -121,7 +125,7 @@ async function parsePRD(prdPath, tasksPath, numTasks, options = {}) {
);
existingTasks = []; // Reset if read fails
}
} else if (!useForce) {
} else if (!force) {
// Not appending and not forcing overwrite
const overwriteError = new Error(
`Output file ${tasksPath} already exists. Use --force to overwrite or --append.`
@@ -148,8 +152,22 @@ async function parsePRD(prdPath, tasksPath, numTasks, options = {}) {
throw new Error(`Input file ${prdPath} is empty or could not be read.`);
}
// Build system prompt for PRD parsing
const systemPrompt = `You are an AI assistant specialized in analyzing Product Requirements Documents (PRDs) and generating a structured, logically ordered, dependency-aware and sequenced list of development tasks in JSON format.
// Research-specific enhancements to the system prompt
const researchPromptAddition = research
? `\nBefore breaking down the PRD into tasks, you will:
1. Research and analyze the latest technologies, libraries, frameworks, and best practices that would be appropriate for this project
2. Identify any potential technical challenges, security concerns, or scalability issues not explicitly mentioned in the PRD without discarding any explicit requirements or going overboard with complexity -- always aim to provide the most direct path to implementation, avoiding over-engineering or roundabout approaches
3. Consider current industry standards and evolving trends relevant to this project (this step aims to solve LLM hallucinations and out of date information due to training data cutoff dates)
4. Evaluate alternative implementation approaches and recommend the most efficient path
5. Include specific library versions, helpful APIs, and concrete implementation guidance based on your research
6. Always aim to provide the most direct path to implementation, avoiding over-engineering or roundabout approaches
Your task breakdown should incorporate this research, resulting in more detailed implementation guidance, more accurate dependency mapping, and more precise technology recommendations than would be possible from the PRD text alone, while maintaining all explicit requirements and best practices and all details and nuances of the PRD.`
: '';
// Base system prompt for PRD parsing
const systemPrompt = `You are an AI assistant specialized in analyzing Product Requirements Documents (PRDs) and generating a structured, logically ordered, dependency-aware and sequenced list of development tasks in JSON format.${researchPromptAddition}
Analyze the provided PRD content and generate approximately ${numTasks} top-level development tasks. If the complexity or the level of detail of the PRD is high, generate more tasks relative to the complexity of the PRD
Each task should represent a logical unit of work needed to implement the requirements and focus on the most direct and effective way to implement the requirements without unnecessary complexity or overengineering. Include pseudo-code, implementation details, and test strategy for each task. Find the most up to date information to implement each task.
Assign sequential IDs starting from ${nextId}. Infer title, description, details, and test strategy for each task based *only* on the PRD content.
@@ -176,13 +194,13 @@ Guidelines:
5. Include clear validation/testing approach for each task
6. Set appropriate dependency IDs (a task can only depend on tasks with lower IDs, potentially including existing tasks with IDs less than ${nextId} if applicable)
7. Assign priority (high/medium/low) based on criticality and dependency order
8. Include detailed implementation guidance in the "details" field
8. Include detailed implementation guidance in the "details" field${research ? ', with specific libraries and version recommendations based on your research' : ''}
9. If the PRD contains specific requirements for libraries, database schemas, frameworks, tech stacks, or any other implementation details, STRICTLY ADHERE to these requirements in your task breakdown and do not discard them under any circumstance
10. Focus on filling in any gaps left by the PRD or areas that aren't fully specified, while preserving all explicit requirements
11. Always aim to provide the most direct path to implementation, avoiding over-engineering or roundabout approaches`;
11. Always aim to provide the most direct path to implementation, avoiding over-engineering or roundabout approaches${research ? '\n12. For each task, include specific, actionable guidance based on current industry standards and best practices discovered through research' : ''}`;
// Build user prompt with PRD content
const userPrompt = `Here's the Product Requirements Document (PRD) to break down into approximately ${numTasks} tasks, starting IDs from ${nextId}:\n\n${prdContent}\n\n
const userPrompt = `Here's the Product Requirements Document (PRD) to break down into approximately ${numTasks} tasks, starting IDs from ${nextId}:${research ? '\n\nRemember to thoroughly research current best practices and technologies before task breakdown to provide specific, actionable implementation details.' : ''}\n\n${prdContent}\n\n
Return your response in this format:
{
@@ -204,18 +222,22 @@ Guidelines:
}`;
// Call the unified AI service
report('Calling AI service to generate tasks from PRD...', 'info');
report(
`Calling AI service to generate tasks from PRD${research ? ' with research-backed analysis' : ''}...`,
'info'
);
// Call generateObjectService with the CORRECT schema
const generatedData = await generateObjectService({
role: 'main',
// Call generateObjectService with the CORRECT schema and additional telemetry params
aiServiceResponse = await generateObjectService({
role: research ? 'research' : 'main', // Use research role if flag is set
session: session,
projectRoot: projectRoot,
schema: prdResponseSchema,
objectName: 'tasks_data',
systemPrompt: systemPrompt,
prompt: userPrompt,
reportProgress
commandName: 'parse-prd',
outputType: isMCP ? 'mcp' : 'cli'
});
// Create the directory if it doesn't exist
@@ -223,12 +245,34 @@ Guidelines:
if (!fs.existsSync(tasksDir)) {
fs.mkdirSync(tasksDir, { recursive: true });
}
logFn.success('Successfully parsed PRD via AI service.'); // Assumes generateObjectService validated
logFn.success(
`Successfully parsed PRD via AI service${research ? ' with research-backed analysis' : ''}.`
);
// Validate and Process Tasks
// const generatedData = aiServiceResponse?.mainResult?.object;
// Robustly get the actual AI-generated object
let generatedData = null;
if (aiServiceResponse?.mainResult) {
if (
typeof aiServiceResponse.mainResult === 'object' &&
aiServiceResponse.mainResult !== null &&
'tasks' in aiServiceResponse.mainResult
) {
// If mainResult itself is the object with a 'tasks' property
generatedData = aiServiceResponse.mainResult;
} else if (
typeof aiServiceResponse.mainResult.object === 'object' &&
aiServiceResponse.mainResult.object !== null &&
'tasks' in aiServiceResponse.mainResult.object
) {
// If mainResult.object is the object with a 'tasks' property
generatedData = aiServiceResponse.mainResult.object;
}
}
if (!generatedData || !Array.isArray(generatedData.tasks)) {
// This error *shouldn't* happen if generateObjectService enforced prdResponseSchema
// But keep it as a safeguard
logFn.error(
`Internal Error: generateObjectService returned unexpected data structure: ${JSON.stringify(generatedData)}`
);
@@ -265,36 +309,27 @@ Guidelines:
);
});
const allTasks = useAppend
const finalTasks = append
? [...existingTasks, ...processedNewTasks]
: processedNewTasks;
const outputData = { tasks: finalTasks };
const finalTaskData = { tasks: allTasks }; // Use the combined list
// Write the tasks to the file
writeJSON(tasksPath, finalTaskData);
// Write the final tasks to the file
writeJSON(tasksPath, outputData);
report(
`Successfully wrote ${allTasks.length} total tasks to ${tasksPath} (${processedNewTasks.length} new).`,
`Successfully ${append ? 'appended' : 'generated'} ${processedNewTasks.length} tasks in ${tasksPath}${research ? ' with research-backed analysis' : ''}`,
'success'
);
report(`Tasks saved to: ${tasksPath}`, 'info');
// Generate individual task files
if (reportProgress && mcpLog) {
// Enable silent mode when being called from MCP server
enableSilentMode();
await generateTaskFiles(tasksPath, path.dirname(tasksPath));
disableSilentMode();
} else {
await generateTaskFiles(tasksPath, path.dirname(tasksPath));
}
// Generate markdown task files after writing tasks.json
await generateTaskFiles(tasksPath, path.dirname(tasksPath), { mcpLog });
// Only show success boxes for text output (CLI)
// Handle CLI output (e.g., success message)
if (outputFormat === 'text') {
console.log(
boxen(
chalk.green(
`Successfully generated ${processedNewTasks.length} new tasks. Total tasks in ${tasksPath}: ${allTasks.length}`
`Successfully generated ${processedNewTasks.length} new tasks${research ? ' with research-backed analysis' : ''}. Total tasks in ${tasksPath}: ${finalTasks.length}`
),
{ padding: 1, borderColor: 'green', borderStyle: 'round' }
)
@@ -314,9 +349,18 @@ Guidelines:
}
)
);
if (aiServiceResponse && aiServiceResponse.telemetryData) {
displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli');
}
}
return { success: true, tasks: processedNewTasks };
// Return telemetry data
return {
success: true,
tasksPath,
telemetryData: aiServiceResponse?.telemetryData
};
} catch (error) {
report(`Error parsing PRD: ${error.message}`, 'error');

View File

@@ -3,12 +3,12 @@ import path from 'path';
import chalk from 'chalk';
import boxen from 'boxen';
import Table from 'cli-table3';
import { z } from 'zod';
import {
getStatusWithColor,
startLoadingIndicator,
stopLoadingIndicator
stopLoadingIndicator,
displayAiUsageSummary
} from '../ui.js';
import {
log as consoleLog,
@@ -17,10 +17,7 @@ import {
truncate,
isSilentMode
} from '../utils.js';
import {
generateObjectService,
generateTextService
} from '../ai-services-unified.js';
import { generateTextService } from '../ai-services-unified.js';
import { getDebugFlag } from '../config-manager.js';
import generateTaskFiles from './generate-task-files.js';
@@ -64,7 +61,6 @@ async function updateSubtaskById(
try {
report('info', `Updating subtask ${subtaskId} with prompt: "${prompt}"`);
// Validate subtask ID format
if (
!subtaskId ||
typeof subtaskId !== 'string' ||
@@ -75,19 +71,16 @@ async function updateSubtaskById(
);
}
// Validate prompt
if (!prompt || typeof prompt !== 'string' || prompt.trim() === '') {
throw new Error(
'Prompt cannot be empty. Please provide context for the subtask update.'
);
}
// Validate tasks file exists
if (!fs.existsSync(tasksPath)) {
throw new Error(`Tasks file not found at path: ${tasksPath}`);
}
// Read the tasks file
const data = readJSON(tasksPath);
if (!data || !data.tasks) {
throw new Error(
@@ -95,7 +88,6 @@ async function updateSubtaskById(
);
}
// Parse parent and subtask IDs
const [parentIdStr, subtaskIdStr] = subtaskId.split('.');
const parentId = parseInt(parentIdStr, 10);
const subtaskIdNum = parseInt(subtaskIdStr, 10);
@@ -111,7 +103,6 @@ async function updateSubtaskById(
);
}
// Find the parent task
const parentTask = data.tasks.find((task) => task.id === parentId);
if (!parentTask) {
throw new Error(
@@ -119,7 +110,6 @@ async function updateSubtaskById(
);
}
// Find the subtask
if (!parentTask.subtasks || !Array.isArray(parentTask.subtasks)) {
throw new Error(`Parent task ${parentId} has no subtasks.`);
}
@@ -135,20 +125,7 @@ async function updateSubtaskById(
const subtask = parentTask.subtasks[subtaskIndex];
const subtaskSchema = z.object({
id: z.number().int().positive(),
title: z.string(),
description: z.string().optional(),
status: z.string(),
dependencies: z.array(z.union([z.string(), z.number()])).optional(),
priority: z.string().optional(),
details: z.string().optional(),
testStrategy: z.string().optional()
});
// Only show UI elements for text output (CLI)
if (outputFormat === 'text') {
// Show the subtask that will be updated
const table = new Table({
head: [
chalk.cyan.bold('ID'),
@@ -157,13 +134,11 @@ async function updateSubtaskById(
],
colWidths: [10, 55, 10]
});
table.push([
subtaskId,
truncate(subtask.title, 52),
getStatusWithColor(subtask.status)
]);
console.log(
boxen(chalk.white.bold(`Updating Subtask #${subtaskId}`), {
padding: 1,
@@ -172,10 +147,7 @@ async function updateSubtaskById(
margin: { top: 1, bottom: 0 }
})
);
console.log(table.toString());
// Start the loading indicator - only for text output
loadingIndicator = startLoadingIndicator(
useResearch
? 'Updating subtask with research...'
@@ -183,15 +155,15 @@ async function updateSubtaskById(
);
}
let parsedAIResponse;
let generatedContentString = '';
let newlyAddedSnippet = '';
let aiServiceResponse = null;
try {
// --- GET PARENT & SIBLING CONTEXT ---
const parentContext = {
id: parentTask.id,
title: parentTask.title
// Avoid sending full parent description/details unless necessary
};
const prevSubtask =
subtaskIndex > 0
? {
@@ -200,7 +172,6 @@ async function updateSubtaskById(
status: parentTask.subtasks[subtaskIndex - 1].status
}
: null;
const nextSubtask =
subtaskIndex < parentTask.subtasks.length - 1
? {
@@ -214,154 +185,123 @@ async function updateSubtaskById(
Parent Task: ${JSON.stringify(parentContext)}
${prevSubtask ? `Previous Subtask: ${JSON.stringify(prevSubtask)}` : ''}
${nextSubtask ? `Next Subtask: ${JSON.stringify(nextSubtask)}` : ''}
Current Subtask Details (for context only):\n${subtask.details || '(No existing details)'}
`;
const systemPrompt = `You are an AI assistant updating a parent task's subtask. This subtask will be part of a larger parent task and will be used to direct AI agents to complete the subtask. Your goal is to GENERATE new, relevant information based on the user's request (which may be high-level, mid-level or low-level) and APPEND it to the existing subtask 'details' field, wrapped in specific XML-like tags with an ISO 8601 timestamp. Intelligently determine the level of detail to include based on the user's request. Some requests are meant simply to update the subtask with some mid-implementation details, while others are meant to update the subtask with a detailed plan or strategy.
const systemPrompt = `You are an AI assistant helping to update a subtask. You will be provided with the subtask's existing details, context about its parent and sibling tasks, and a user request string.
Context Provided:
- The current subtask object.
- Basic info about the parent task (ID, title).
- Basic info about the immediately preceding subtask (ID, title, status), if it exists.
- Basic info about the immediately succeeding subtask (ID, title, status), if it exists.
- A user request string.
Your Goal: Based *only* on the user's request and all the provided context (including existing details if relevant to the request), GENERATE the new text content that should be added to the subtask's details.
Focus *only* on generating the substance of the update.
Guidelines:
1. Analyze the user request considering the provided subtask details AND the context of the parent and sibling tasks.
2. GENERATE new, relevant text content that should be added to the 'details' field. Focus *only* on the substance of the update based on the user request and context. Do NOT add timestamps or any special formatting yourself. Avoid over-engineering the details, provide .
3. Update the 'details' field in the subtask object with the GENERATED text content. It's okay if this overwrites previous details in the object you return, as the calling code will handle the final appending.
4. Return the *entire* updated subtask object (with your generated content in the 'details' field) as a valid JSON object conforming to the provided schema. Do NOT return explanations or markdown formatting.`;
Output Requirements:
1. Return *only* the newly generated text content as a plain string. Do NOT return a JSON object or any other structured data.
2. Your string response should NOT include any of the subtask's original details, unless the user's request explicitly asks to rephrase, summarize, or directly modify existing text.
3. Do NOT include any timestamps, XML-like tags, markdown, or any other special formatting in your string response.
4. Ensure the generated text is concise yet complete for the update based on the user request. Avoid conversational fillers or explanations about what you are doing (e.g., do not start with "Okay, here's the update...").`;
const subtaskDataString = JSON.stringify(subtask, null, 2);
// Updated user prompt including context
const userPrompt = `Task Context:\n${contextString}\nCurrent Subtask:\n${subtaskDataString}\n\nUser Request: "${prompt}"\n\nPlease GENERATE new, relevant text content for the 'details' field based on the user request and the provided context. Return the entire updated subtask object as a valid JSON object matching the schema, with the newly generated text placed in the 'details' field.`;
// --- END UPDATED PROMPTS ---
// Pass the existing subtask.details in the user prompt for the AI's context.
const userPrompt = `Task Context:\n${contextString}\n\nUser Request: "${prompt}"\n\nBased on the User Request and all the Task Context (including current subtask details provided above), what is the new information or text that should be appended to this subtask's details? Return ONLY this new text as a plain string.`;
// Call Unified AI Service using generateObjectService
const role = useResearch ? 'research' : 'main';
report('info', `Using AI object service with role: ${role}`);
report('info', `Using AI text service with role: ${role}`);
parsedAIResponse = await generateObjectService({
aiServiceResponse = await generateTextService({
prompt: userPrompt,
systemPrompt: systemPrompt,
schema: subtaskSchema,
objectName: 'updatedSubtask',
role,
session,
projectRoot,
maxRetries: 2
maxRetries: 2,
commandName: 'update-subtask',
outputType: isMCP ? 'mcp' : 'cli'
});
report(
'success',
'Successfully received object response from AI service'
);
if (
aiServiceResponse &&
aiServiceResponse.mainResult &&
typeof aiServiceResponse.mainResult === 'string'
) {
generatedContentString = aiServiceResponse.mainResult;
} else {
generatedContentString = '';
report(
'warn',
'AI service response did not contain expected text string.'
);
}
if (outputFormat === 'text' && loadingIndicator) {
stopLoadingIndicator(loadingIndicator);
loadingIndicator = null;
}
if (!parsedAIResponse || typeof parsedAIResponse !== 'object') {
throw new Error('AI did not return a valid object.');
}
report(
'success',
`Successfully generated object using AI role: ${role}.`
);
} catch (aiError) {
report('error', `AI service call failed: ${aiError.message}`);
if (outputFormat === 'text' && loadingIndicator) {
stopLoadingIndicator(loadingIndicator); // Ensure stop on error
stopLoadingIndicator(loadingIndicator);
loadingIndicator = null;
}
throw aiError;
}
// --- TIMESTAMP & FORMATTING LOGIC (Handled Locally) ---
// Extract only the generated content from the AI's response details field.
const generatedContent = parsedAIResponse.details || ''; // Default to empty string
if (generatedContentString && generatedContentString.trim()) {
// Check if the string is not empty
const timestamp = new Date().toISOString();
const formattedBlock = `<info added on ${timestamp}>\n${generatedContentString.trim()}\n</info added on ${timestamp}>`;
newlyAddedSnippet = formattedBlock; // <--- ADD THIS LINE: Store for display
if (generatedContent.trim()) {
// Generate timestamp locally
const timestamp = new Date().toISOString(); // <<< Local Timestamp
// Format the content with XML-like tags and timestamp LOCALLY
const formattedBlock = `<info added on ${timestamp}>\n${generatedContent.trim()}\n</info added on ${timestamp}>`; // <<< Local Formatting
// Append the formatted block to the *original* subtask details
subtask.details =
(subtask.details ? subtask.details + '\n' : '') + formattedBlock; // <<< Local Appending
report(
'info',
'Appended timestamped, formatted block with AI-generated content to subtask.details.'
);
(subtask.details ? subtask.details + '\n' : '') + formattedBlock;
} else {
report(
'warn',
'AI response object did not contain generated content in the "details" field. Original details remain unchanged.'
'AI response was empty or whitespace after trimming. Original details remain unchanged.'
);
newlyAddedSnippet = 'No new details were added by the AI.';
}
// --- END TIMESTAMP & FORMATTING LOGIC ---
// Get a reference to the subtask *after* its details have been updated
const updatedSubtask = parentTask.subtasks[subtaskIndex]; // subtask === updatedSubtask now
const updatedSubtask = parentTask.subtasks[subtaskIndex];
report('info', 'Updated subtask details locally after AI generation.');
// --- END UPDATE SUBTASK ---
// Only show debug info for text output (CLI)
if (outputFormat === 'text' && getDebugFlag(session)) {
console.log(
'>>> DEBUG: Subtask details AFTER AI update:',
updatedSubtask.details // Use updatedSubtask
updatedSubtask.details
);
}
// Description update logic (keeping as is for now)
if (updatedSubtask.description) {
// Use updatedSubtask
if (prompt.length < 100) {
if (outputFormat === 'text' && getDebugFlag(session)) {
console.log(
'>>> DEBUG: Subtask description BEFORE append:',
updatedSubtask.description // Use updatedSubtask
updatedSubtask.description
);
}
updatedSubtask.description += ` [Updated: ${new Date().toLocaleDateString()}]`; // Use updatedSubtask
updatedSubtask.description += ` [Updated: ${new Date().toLocaleDateString()}]`;
if (outputFormat === 'text' && getDebugFlag(session)) {
console.log(
'>>> DEBUG: Subtask description AFTER append:',
updatedSubtask.description // Use updatedSubtask
updatedSubtask.description
);
}
}
}
// Only show debug info for text output (CLI)
if (outputFormat === 'text' && getDebugFlag(session)) {
console.log('>>> DEBUG: About to call writeJSON with updated data...');
}
// Write the updated tasks to the file (parentTask already contains the updated subtask)
writeJSON(tasksPath, data);
// Only show debug info for text output (CLI)
if (outputFormat === 'text' && getDebugFlag(session)) {
console.log('>>> DEBUG: writeJSON call completed.');
}
report('success', `Successfully updated subtask ${subtaskId}`);
// Generate individual task files
await generateTaskFiles(tasksPath, path.dirname(tasksPath));
// Stop indicator before final console output - only for text output (CLI)
if (outputFormat === 'text') {
if (loadingIndicator) {
stopLoadingIndicator(loadingIndicator);
loadingIndicator = null;
}
console.log(
boxen(
chalk.green(`Successfully updated subtask #${subtaskId}`) +
@@ -370,31 +310,30 @@ Guidelines:
' ' +
updatedSubtask.title +
'\n\n' +
// Update the display to show the new details field
chalk.white.bold('Updated Details:') +
chalk.white.bold('Newly Added Snippet:') +
'\n' +
chalk.white(truncate(updatedSubtask.details || '', 500, true)), // Use updatedSubtask
chalk.white(newlyAddedSnippet),
{ padding: 1, borderColor: 'green', borderStyle: 'round' }
)
);
}
return updatedSubtask; // Return the modified subtask object
if (outputFormat === 'text' && aiServiceResponse.telemetryData) {
displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli');
}
return {
updatedSubtask: updatedSubtask,
telemetryData: aiServiceResponse.telemetryData
};
} catch (error) {
// Outer catch block handles final errors after loop/attempts
// Stop indicator on error - only for text output (CLI)
if (outputFormat === 'text' && loadingIndicator) {
stopLoadingIndicator(loadingIndicator);
loadingIndicator = null;
}
report('error', `Error updating subtask: ${error.message}`);
// Only show error UI for text output (CLI)
if (outputFormat === 'text') {
console.error(chalk.red(`Error: ${error.message}`));
// Provide helpful error messages based on error type
if (error.message?.includes('ANTHROPIC_API_KEY')) {
console.log(
chalk.yellow('\nTo fix this issue, set your Anthropic API key:')
@@ -409,7 +348,6 @@ Guidelines:
' 2. Or run without the research flag: task-master update-subtask --id=<id> --prompt="..."'
);
} else if (error.message?.includes('overloaded')) {
// Catch final overload error
console.log(
chalk.yellow(
'\nAI model overloaded, and fallback failed or was unavailable:'
@@ -417,7 +355,6 @@ Guidelines:
);
console.log(' 1. Try again in a few minutes.');
console.log(' 2. Ensure PERPLEXITY_API_KEY is set for fallback.');
console.log(' 3. Consider breaking your prompt into smaller updates.');
} else if (error.message?.includes('not found')) {
console.log(chalk.yellow('\nTo fix this issue:'));
console.log(
@@ -426,22 +363,22 @@ Guidelines:
console.log(
' 2. Use a valid subtask ID with the --id parameter in format "parentId.subtaskId"'
);
} else if (error.message?.includes('empty stream response')) {
} else if (
error.message?.includes('empty stream response') ||
error.message?.includes('AI did not return a valid text string')
) {
console.log(
chalk.yellow(
'\nThe AI model returned an empty response. This might be due to the prompt or API issues. Try rephrasing or trying again later.'
'\nThe AI model returned an empty or invalid response. This might be due to the prompt or API issues. Try rephrasing or trying again later.'
)
);
}
if (getDebugFlag(session)) {
// Use getter
console.error(error);
}
} else {
throw error; // Re-throw for JSON output
throw error;
}
return null;
}
}

View File

@@ -16,7 +16,8 @@ import {
import {
getStatusWithColor,
startLoadingIndicator,
stopLoadingIndicator
stopLoadingIndicator,
displayAiUsageSummary
} from '../ui.js';
import { generateTextService } from '../ai-services-unified.js';
@@ -94,10 +95,6 @@ function parseUpdatedTaskFromText(text, expectedTaskId, logFn, isMCP) {
// It worked! Use this as the primary cleaned response.
cleanedResponse = potentialJsonFromBraces;
parseMethodUsed = 'braces';
report(
'info',
'Successfully parsed JSON content extracted between first { and last }.'
);
} catch (e) {
report(
'info',
@@ -376,29 +373,125 @@ The changes described in the prompt should be thoughtfully applied to make the t
const userPrompt = `Here is the task to update:\n${taskDataString}\n\nPlease update this task based on the following new context:\n${prompt}\n\nIMPORTANT: In the task JSON above, any subtasks with "status": "done" or "status": "completed" should be preserved exactly as is. Build your changes around these completed items.\n\nReturn only the updated task as a valid JSON object.`;
// --- End Build Prompts ---
let updatedTask;
let loadingIndicator = null;
if (outputFormat === 'text') {
let aiServiceResponse = null;
if (!isMCP && outputFormat === 'text') {
loadingIndicator = startLoadingIndicator(
useResearch ? 'Updating task with research...\n' : 'Updating task...\n'
);
}
let responseText = '';
try {
// --- Call Unified AI Service (generateTextService) ---
const role = useResearch ? 'research' : 'main';
report('info', `Using AI service with role: ${role}`);
responseText = await generateTextService({
prompt: userPrompt,
const serviceRole = useResearch ? 'research' : 'main';
aiServiceResponse = await generateTextService({
role: serviceRole,
session: session,
projectRoot: projectRoot,
systemPrompt: systemPrompt,
role,
session,
projectRoot
prompt: userPrompt,
commandName: 'update-task',
outputType: isMCP ? 'mcp' : 'cli'
});
report('success', 'Successfully received text response from AI service');
// --- End AI Service Call ---
if (loadingIndicator)
stopLoadingIndicator(loadingIndicator, 'AI update complete.');
// Use mainResult (text) for parsing
const updatedTask = parseUpdatedTaskFromText(
aiServiceResponse.mainResult,
taskId,
logFn,
isMCP
);
// --- Task Validation/Correction (Keep existing logic) ---
if (!updatedTask || typeof updatedTask !== 'object')
throw new Error('Received invalid task object from AI.');
if (!updatedTask.title || !updatedTask.description)
throw new Error('Updated task missing required fields.');
// Preserve ID if AI changed it
if (updatedTask.id !== taskId) {
report('warn', `AI changed task ID. Restoring original ID ${taskId}.`);
updatedTask.id = taskId;
}
// Preserve status if AI changed it
if (
updatedTask.status !== taskToUpdate.status &&
!prompt.toLowerCase().includes('status')
) {
report(
'warn',
`AI changed task status. Restoring original status '${taskToUpdate.status}'.`
);
updatedTask.status = taskToUpdate.status;
}
// Preserve completed subtasks (Keep existing logic)
if (taskToUpdate.subtasks?.length > 0) {
if (!updatedTask.subtasks) {
report(
'warn',
'Subtasks removed by AI. Restoring original subtasks.'
);
updatedTask.subtasks = taskToUpdate.subtasks;
} else {
const completedOriginal = taskToUpdate.subtasks.filter(
(st) => st.status === 'done' || st.status === 'completed'
);
completedOriginal.forEach((compSub) => {
const updatedSub = updatedTask.subtasks.find(
(st) => st.id === compSub.id
);
if (
!updatedSub ||
JSON.stringify(updatedSub) !== JSON.stringify(compSub)
) {
report(
'warn',
`Completed subtask ${compSub.id} was modified or removed. Restoring.`
);
// Remove potentially modified version
updatedTask.subtasks = updatedTask.subtasks.filter(
(st) => st.id !== compSub.id
);
// Add back original
updatedTask.subtasks.push(compSub);
}
});
// Deduplicate just in case
const subtaskIds = new Set();
updatedTask.subtasks = updatedTask.subtasks.filter((st) => {
if (!subtaskIds.has(st.id)) {
subtaskIds.add(st.id);
return true;
}
report('warn', `Duplicate subtask ID ${st.id} removed.`);
return false;
});
}
}
// --- End Task Validation/Correction ---
// --- Update Task Data (Keep existing) ---
data.tasks[taskIndex] = updatedTask;
// --- End Update Task Data ---
// --- Write File and Generate (Unchanged) ---
writeJSON(tasksPath, data);
report('success', `Successfully updated task ${taskId}`);
await generateTaskFiles(tasksPath, path.dirname(tasksPath));
// --- End Write File ---
// --- Display CLI Telemetry ---
if (outputFormat === 'text' && aiServiceResponse.telemetryData) {
displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli'); // <<< ADD display
}
// --- Return Success with Telemetry ---
return {
updatedTask: updatedTask, // Return the updated task object
telemetryData: aiServiceResponse.telemetryData // <<< ADD telemetryData
};
} catch (error) {
// Catch errors from generateTextService
if (loadingIndicator) stopLoadingIndicator(loadingIndicator);
@@ -407,114 +500,7 @@ The changes described in the prompt should be thoughtfully applied to make the t
report('error', 'Please ensure API keys are configured correctly.');
}
throw error; // Re-throw error
} finally {
if (loadingIndicator) stopLoadingIndicator(loadingIndicator);
}
// --- Parse and Validate Response ---
try {
// Pass logFn and isMCP flag to the parser
updatedTask = parseUpdatedTaskFromText(
responseText,
taskId,
logFn,
isMCP
);
} catch (parseError) {
report(
'error',
`Failed to parse updated task from AI response: ${parseError.message}`
);
if (getDebugFlag(session)) {
report('error', `Raw AI Response:\n${responseText}`);
}
throw new Error(
`Failed to parse valid updated task from AI response: ${parseError.message}`
);
}
// --- End Parse/Validate ---
// --- Task Validation/Correction (Keep existing logic) ---
if (!updatedTask || typeof updatedTask !== 'object')
throw new Error('Received invalid task object from AI.');
if (!updatedTask.title || !updatedTask.description)
throw new Error('Updated task missing required fields.');
// Preserve ID if AI changed it
if (updatedTask.id !== taskId) {
report('warn', `AI changed task ID. Restoring original ID ${taskId}.`);
updatedTask.id = taskId;
}
// Preserve status if AI changed it
if (
updatedTask.status !== taskToUpdate.status &&
!prompt.toLowerCase().includes('status')
) {
report(
'warn',
`AI changed task status. Restoring original status '${taskToUpdate.status}'.`
);
updatedTask.status = taskToUpdate.status;
}
// Preserve completed subtasks (Keep existing logic)
if (taskToUpdate.subtasks?.length > 0) {
if (!updatedTask.subtasks) {
report('warn', 'Subtasks removed by AI. Restoring original subtasks.');
updatedTask.subtasks = taskToUpdate.subtasks;
} else {
const completedOriginal = taskToUpdate.subtasks.filter(
(st) => st.status === 'done' || st.status === 'completed'
);
completedOriginal.forEach((compSub) => {
const updatedSub = updatedTask.subtasks.find(
(st) => st.id === compSub.id
);
if (
!updatedSub ||
JSON.stringify(updatedSub) !== JSON.stringify(compSub)
) {
report(
'warn',
`Completed subtask ${compSub.id} was modified or removed. Restoring.`
);
// Remove potentially modified version
updatedTask.subtasks = updatedTask.subtasks.filter(
(st) => st.id !== compSub.id
);
// Add back original
updatedTask.subtasks.push(compSub);
}
});
// Deduplicate just in case
const subtaskIds = new Set();
updatedTask.subtasks = updatedTask.subtasks.filter((st) => {
if (!subtaskIds.has(st.id)) {
subtaskIds.add(st.id);
return true;
}
report('warn', `Duplicate subtask ID ${st.id} removed.`);
return false;
});
}
}
// --- End Task Validation/Correction ---
// --- Update Task Data (Keep existing) ---
data.tasks[taskIndex] = updatedTask;
// --- End Update Task Data ---
// --- Write File and Generate (Keep existing) ---
writeJSON(tasksPath, data);
report('success', `Successfully updated task ${taskId}`);
await generateTaskFiles(tasksPath, path.dirname(tasksPath));
// --- End Write File ---
// --- Final CLI Output (Keep existing) ---
if (outputFormat === 'text') {
/* ... success boxen ... */
}
// --- End Final CLI Output ---
return updatedTask; // Return the updated task
} catch (error) {
// General error catch
// --- General Error Handling (Keep existing) ---

View File

@@ -15,7 +15,8 @@ import {
import {
getStatusWithColor,
startLoadingIndicator,
stopLoadingIndicator
stopLoadingIndicator,
displayAiUsageSummary
} from '../ui.js';
import { getDebugFlag } from '../config-manager.js';
@@ -93,10 +94,6 @@ function parseUpdatedTasksFromText(text, expectedCount, logFn, isMCP) {
// It worked! Use this as the primary cleaned response.
cleanedResponse = potentialJsonFromArray;
parseMethodUsed = 'brackets';
report(
'info',
'Successfully parsed JSON content extracted between first [ and last ].'
);
} catch (e) {
report(
'info',
@@ -350,31 +347,100 @@ The changes described in the prompt should be applied to ALL tasks in the list.`
const userPrompt = `Here are the tasks to update:\n${taskDataString}\n\nPlease update these tasks based on the following new context:\n${prompt}\n\nIMPORTANT: In the tasks JSON above, any subtasks with "status": "done" or "status": "completed" should be preserved exactly as is. Build your changes around these completed items.\n\nReturn only the updated tasks as a valid JSON array.`;
// --- End Build Prompts ---
// --- AI Call ---
let loadingIndicator = null;
if (outputFormat === 'text') {
loadingIndicator = startLoadingIndicator('Updating tasks...\n');
let aiServiceResponse = null;
if (!isMCP && outputFormat === 'text') {
loadingIndicator = startLoadingIndicator('Updating tasks with AI...\n');
}
let responseText = '';
let updatedTasks;
try {
// --- Call Unified AI Service ---
const role = useResearch ? 'research' : 'main';
if (isMCP) logFn.info(`Using AI service with role: ${role}`);
else logFn('info', `Using AI service with role: ${role}`);
// Determine role based on research flag
const serviceRole = useResearch ? 'research' : 'main';
responseText = await generateTextService({
prompt: userPrompt,
// Call the unified AI service
aiServiceResponse = await generateTextService({
role: serviceRole,
session: session,
projectRoot: projectRoot,
systemPrompt: systemPrompt,
role,
session,
projectRoot
prompt: userPrompt,
commandName: 'update-tasks',
outputType: isMCP ? 'mcp' : 'cli'
});
if (isMCP) logFn.info('Successfully received text response');
if (loadingIndicator)
stopLoadingIndicator(loadingIndicator, 'AI update complete.');
// Use the mainResult (text) for parsing
const parsedUpdatedTasks = parseUpdatedTasksFromText(
aiServiceResponse.mainResult,
tasksToUpdate.length,
logFn,
isMCP
);
// --- Update Tasks Data (Unchanged) ---
if (!Array.isArray(parsedUpdatedTasks)) {
// Should be caught by parser, but extra check
throw new Error(
'Parsed AI response for updated tasks was not an array.'
);
}
if (isMCP)
logFn.info(
`Received ${parsedUpdatedTasks.length} updated tasks from AI.`
);
else
logFn('success', 'Successfully received text response via AI service');
// --- End AI Service Call ---
logFn(
'info',
`Received ${parsedUpdatedTasks.length} updated tasks from AI.`
);
// Create a map for efficient lookup
const updatedTasksMap = new Map(
parsedUpdatedTasks.map((task) => [task.id, task])
);
let actualUpdateCount = 0;
data.tasks.forEach((task, index) => {
if (updatedTasksMap.has(task.id)) {
// Only update if the task was part of the set sent to AI
data.tasks[index] = updatedTasksMap.get(task.id);
actualUpdateCount++;
}
});
if (isMCP)
logFn.info(
`Applied updates to ${actualUpdateCount} tasks in the dataset.`
);
else
logFn(
'info',
`Applied updates to ${actualUpdateCount} tasks in the dataset.`
);
writeJSON(tasksPath, data);
if (isMCP)
logFn.info(
`Successfully updated ${actualUpdateCount} tasks in ${tasksPath}`
);
else
logFn(
'success',
`Successfully updated ${actualUpdateCount} tasks in ${tasksPath}`
);
await generateTaskFiles(tasksPath, path.dirname(tasksPath));
if (outputFormat === 'text' && aiServiceResponse.telemetryData) {
displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli');
}
return {
success: true,
updatedTasks: parsedUpdatedTasks,
telemetryData: aiServiceResponse.telemetryData
};
} catch (error) {
if (loadingIndicator) stopLoadingIndicator(loadingIndicator);
if (isMCP) logFn.error(`Error during AI service call: ${error.message}`);
@@ -390,98 +456,10 @@ The changes described in the prompt should be applied to ALL tasks in the list.`
'Please ensure API keys are configured correctly in .env or mcp.json.'
);
}
throw error; // Re-throw error
throw error;
} finally {
if (loadingIndicator) stopLoadingIndicator(loadingIndicator);
}
// --- Parse and Validate Response ---
try {
updatedTasks = parseUpdatedTasksFromText(
responseText,
tasksToUpdate.length,
logFn,
isMCP
);
} catch (parseError) {
if (isMCP)
logFn.error(
`Failed to parse updated tasks from AI response: ${parseError.message}`
);
else
logFn(
'error',
`Failed to parse updated tasks from AI response: ${parseError.message}`
);
if (getDebugFlag(session)) {
if (isMCP) logFn.error(`Raw AI Response:\n${responseText}`);
else logFn('error', `Raw AI Response:\n${responseText}`);
}
throw new Error(
`Failed to parse valid updated tasks from AI response: ${parseError.message}`
);
}
// --- End Parse/Validate ---
// --- Update Tasks Data (Unchanged) ---
if (!Array.isArray(updatedTasks)) {
// Should be caught by parser, but extra check
throw new Error('Parsed AI response for updated tasks was not an array.');
}
if (isMCP)
logFn.info(`Received ${updatedTasks.length} updated tasks from AI.`);
else
logFn('info', `Received ${updatedTasks.length} updated tasks from AI.`);
// Create a map for efficient lookup
const updatedTasksMap = new Map(
updatedTasks.map((task) => [task.id, task])
);
// Iterate through the original data and update based on the map
let actualUpdateCount = 0;
data.tasks.forEach((task, index) => {
if (updatedTasksMap.has(task.id)) {
// Only update if the task was part of the set sent to AI
data.tasks[index] = updatedTasksMap.get(task.id);
actualUpdateCount++;
}
});
if (isMCP)
logFn.info(
`Applied updates to ${actualUpdateCount} tasks in the dataset.`
);
else
logFn(
'info',
`Applied updates to ${actualUpdateCount} tasks in the dataset.`
);
// --- End Update Tasks Data ---
// --- Write File and Generate (Unchanged) ---
writeJSON(tasksPath, data);
if (isMCP)
logFn.info(
`Successfully updated ${actualUpdateCount} tasks in ${tasksPath}`
);
else
logFn(
'success',
`Successfully updated ${actualUpdateCount} tasks in ${tasksPath}`
);
await generateTaskFiles(tasksPath, path.dirname(tasksPath));
// --- End Write File ---
// --- Final CLI Output (Unchanged) ---
if (outputFormat === 'text') {
console.log(
boxen(chalk.green(`Successfully updated ${actualUpdateCount} tasks`), {
padding: 1,
borderColor: 'green',
borderStyle: 'round'
})
);
}
// --- End Final CLI Output ---
} catch (error) {
// --- General Error Handling (Unchanged) ---
if (isMCP) logFn.error(`Error updating tasks: ${error.message}`);

View File

@@ -17,7 +17,11 @@ import {
isSilentMode
} from './utils.js';
import fs from 'fs';
import { findNextTask, analyzeTaskComplexity } from './task-manager.js';
import {
findNextTask,
analyzeTaskComplexity,
readComplexityReport
} from './task-manager.js';
import { getProjectName, getDefaultSubtasks } from './config-manager.js';
import { TASK_STATUS_OPTIONS } from '../../src/constants/task-status.js';
import { getTaskMasterVersion } from '../../src/utils/getVersion.js';
@@ -264,12 +268,14 @@ function getStatusWithColor(status, forTable = false) {
* @param {Array} dependencies - Array of dependency IDs
* @param {Array} allTasks - Array of all tasks
* @param {boolean} forConsole - Whether the output is for console display
* @param {Object|null} complexityReport - Optional pre-loaded complexity report
* @returns {string} Formatted dependencies string
*/
function formatDependenciesWithStatus(
dependencies,
allTasks,
forConsole = false
forConsole = false,
complexityReport = null // Add complexityReport parameter
) {
if (
!dependencies ||
@@ -333,7 +339,11 @@ function formatDependenciesWithStatus(
typeof depId === 'string' ? parseInt(depId, 10) : depId;
// Look up the task using the numeric ID
const depTaskResult = findTaskById(allTasks, numericDepId);
const depTaskResult = findTaskById(
allTasks,
numericDepId,
complexityReport
);
const depTask = depTaskResult.task; // Access the task object from the result
if (!depTask) {
@@ -752,7 +762,7 @@ function truncateString(str, maxLength) {
* Display the next task to work on
* @param {string} tasksPath - Path to the tasks.json file
*/
async function displayNextTask(tasksPath) {
async function displayNextTask(tasksPath, complexityReportPath = null) {
displayBanner();
// Read the tasks file
@@ -762,8 +772,11 @@ async function displayNextTask(tasksPath) {
process.exit(1);
}
// Read complexity report once
const complexityReport = readComplexityReport(complexityReportPath);
// Find the next task
const nextTask = findNextTask(data.tasks);
const nextTask = findNextTask(data.tasks, complexityReport);
if (!nextTask) {
console.log(
@@ -824,7 +837,18 @@ async function displayNextTask(tasksPath) {
],
[
chalk.cyan.bold('Dependencies:'),
formatDependenciesWithStatus(nextTask.dependencies, data.tasks, true)
formatDependenciesWithStatus(
nextTask.dependencies,
data.tasks,
true,
complexityReport
)
],
[
chalk.cyan.bold('Complexity:'),
nextTask.complexityScore
? getComplexityWithColor(nextTask.complexityScore)
: chalk.gray('N/A')
],
[chalk.cyan.bold('Description:'), nextTask.description]
);
@@ -846,8 +870,11 @@ async function displayNextTask(tasksPath) {
);
}
// Show subtasks if they exist
if (nextTask.subtasks && nextTask.subtasks.length > 0) {
// Determine if the nextTask is a subtask
const isSubtask = !!nextTask.parentId;
// Show subtasks if they exist (only for parent tasks)
if (!isSubtask && nextTask.subtasks && nextTask.subtasks.length > 0) {
console.log(
boxen(chalk.white.bold('Subtasks'), {
padding: { top: 0, bottom: 0, left: 1, right: 1 },
@@ -947,8 +974,10 @@ async function displayNextTask(tasksPath) {
});
console.log(subtaskTable.toString());
} else {
// Suggest expanding if no subtasks
}
// Suggest expanding if no subtasks (only for parent tasks without subtasks)
if (!isSubtask && (!nextTask.subtasks || nextTask.subtasks.length === 0)) {
console.log(
boxen(
chalk.yellow('No subtasks found. Consider breaking down this task:') +
@@ -967,22 +996,30 @@ async function displayNextTask(tasksPath) {
}
// Show action suggestions
let suggestedActionsContent = chalk.white.bold('Suggested Actions:') + '\n';
if (isSubtask) {
// Suggested actions for a subtask
suggestedActionsContent +=
`${chalk.cyan('1.')} Mark as in-progress: ${chalk.yellow(`task-master set-status --id=${nextTask.id} --status=in-progress`)}\n` +
`${chalk.cyan('2.')} Mark as done when completed: ${chalk.yellow(`task-master set-status --id=${nextTask.id} --status=done`)}\n` +
`${chalk.cyan('3.')} View parent task: ${chalk.yellow(`task-master show --id=${nextTask.parentId}`)}`;
} else {
// Suggested actions for a parent task
suggestedActionsContent +=
`${chalk.cyan('1.')} Mark as in-progress: ${chalk.yellow(`task-master set-status --id=${nextTask.id} --status=in-progress`)}\n` +
`${chalk.cyan('2.')} Mark as done when completed: ${chalk.yellow(`task-master set-status --id=${nextTask.id} --status=done`)}\n` +
(nextTask.subtasks && nextTask.subtasks.length > 0
? `${chalk.cyan('3.')} Update subtask status: ${chalk.yellow(`task-master set-status --id=${nextTask.id}.1 --status=done`)}` // Example: first subtask
: `${chalk.cyan('3.')} Break down into subtasks: ${chalk.yellow(`task-master expand --id=${nextTask.id}`)}`);
}
console.log(
boxen(
chalk.white.bold('Suggested Actions:') +
'\n' +
`${chalk.cyan('1.')} Mark as in-progress: ${chalk.yellow(`task-master set-status --id=${nextTask.id} --status=in-progress`)}\n` +
`${chalk.cyan('2.')} Mark as done when completed: ${chalk.yellow(`task-master set-status --id=${nextTask.id} --status=done`)}\n` +
(nextTask.subtasks && nextTask.subtasks.length > 0
? `${chalk.cyan('3.')} Update subtask status: ${chalk.yellow(`task-master set-status --id=${nextTask.id}.1 --status=done`)}`
: `${chalk.cyan('3.')} Break down into subtasks: ${chalk.yellow(`task-master expand --id=${nextTask.id}`)}`),
{
padding: { top: 0, bottom: 0, left: 1, right: 1 },
borderColor: 'green',
borderStyle: 'round',
margin: { top: 1 }
}
)
boxen(suggestedActionsContent, {
padding: { top: 0, bottom: 0, left: 1, right: 1 },
borderColor: 'green',
borderStyle: 'round',
margin: { top: 1 }
})
);
}
@@ -992,7 +1029,12 @@ async function displayNextTask(tasksPath) {
* @param {string|number} taskId - The ID of the task to display
* @param {string} [statusFilter] - Optional status to filter subtasks by
*/
async function displayTaskById(tasksPath, taskId, statusFilter = null) {
async function displayTaskById(
tasksPath,
taskId,
complexityReportPath = null,
statusFilter = null
) {
displayBanner();
// Read the tasks file
@@ -1002,11 +1044,15 @@ async function displayTaskById(tasksPath, taskId, statusFilter = null) {
process.exit(1);
}
// Read complexity report once
const complexityReport = readComplexityReport(complexityReportPath);
// Find the task by ID, applying the status filter if provided
// Returns { task, originalSubtaskCount, originalSubtasks }
const { task, originalSubtaskCount, originalSubtasks } = findTaskById(
data.tasks,
taskId,
complexityReport,
statusFilter
);
@@ -1061,6 +1107,12 @@ async function displayTaskById(tasksPath, taskId, statusFilter = null) {
chalk.cyan.bold('Status:'),
getStatusWithColor(task.status || 'pending', true)
],
[
chalk.cyan.bold('Complexity:'),
task.complexityScore
? getComplexityWithColor(task.complexityScore)
: chalk.gray('N/A')
],
[
chalk.cyan.bold('Description:'),
task.description || 'No description provided.'
@@ -1139,7 +1191,18 @@ async function displayTaskById(tasksPath, taskId, statusFilter = null) {
[chalk.cyan.bold('Priority:'), priorityColor(task.priority || 'medium')],
[
chalk.cyan.bold('Dependencies:'),
formatDependenciesWithStatus(task.dependencies, data.tasks, true)
formatDependenciesWithStatus(
task.dependencies,
data.tasks,
true,
complexityReport
)
],
[
chalk.cyan.bold('Complexity:'),
task.complexityScore
? getComplexityWithColor(task.complexityScore)
: chalk.gray('N/A')
],
[chalk.cyan.bold('Description:'), task.description]
);
@@ -1955,6 +2018,51 @@ function displayAvailableModels(availableModels) {
);
}
/**
* Displays AI usage telemetry summary in the CLI.
* @param {object} telemetryData - The telemetry data object.
* @param {string} outputType - 'cli' or 'mcp' (though typically only called for 'cli').
*/
function displayAiUsageSummary(telemetryData, outputType = 'cli') {
if (
(outputType !== 'cli' && outputType !== 'text') ||
!telemetryData ||
isSilentMode()
) {
return; // Only display for CLI and if data exists and not in silent mode
}
const {
modelUsed,
providerName,
inputTokens,
outputTokens,
totalTokens,
totalCost,
commandName
} = telemetryData;
let summary = chalk.bold.blue('AI Usage Summary:') + '\n';
summary += chalk.gray(` Command: ${commandName}\n`);
summary += chalk.gray(` Provider: ${providerName}\n`);
summary += chalk.gray(` Model: ${modelUsed}\n`);
summary += chalk.gray(
` Tokens: ${totalTokens} (Input: ${inputTokens}, Output: ${outputTokens})\n`
);
summary += chalk.gray(` Est. Cost: $${totalCost.toFixed(6)}`);
console.log(
boxen(summary, {
padding: 1,
margin: { top: 1 },
borderColor: 'blue',
borderStyle: 'round',
title: '💡 Telemetry',
titleAlignment: 'center'
})
);
}
// Export UI functions
export {
displayBanner,
@@ -1972,5 +2080,6 @@ export {
confirmTaskOverwrite,
displayApiKeyStatus,
displayModelConfiguration,
displayAvailableModels
displayAvailableModels,
displayAiUsageSummary
};

View File

@@ -60,8 +60,7 @@ function resolveEnvVariable(key, session = null, projectRoot = null) {
// --- Project Root Finding Utility ---
/**
* Finds the project root directory by searching upwards from a given starting point
* for a marker file or directory (e.g., 'package.json', '.git').
* Finds the project root directory by searching for marker files/directories.
* @param {string} [startPath=process.cwd()] - The directory to start searching from.
* @param {string[]} [markers=['package.json', '.git', '.taskmasterconfig']] - Marker files/dirs to look for.
* @returns {string|null} The path to the project root directory, or null if not found.
@@ -71,27 +70,35 @@ function findProjectRoot(
markers = ['package.json', '.git', '.taskmasterconfig']
) {
let currentPath = path.resolve(startPath);
while (true) {
for (const marker of markers) {
if (fs.existsSync(path.join(currentPath, marker))) {
return currentPath;
}
const rootPath = path.parse(currentPath).root;
while (currentPath !== rootPath) {
// Check if any marker exists in the current directory
const hasMarker = markers.some((marker) => {
const markerPath = path.join(currentPath, marker);
return fs.existsSync(markerPath);
});
if (hasMarker) {
return currentPath;
}
const parentPath = path.dirname(currentPath);
if (parentPath === currentPath) {
// Reached the filesystem root
return null;
}
currentPath = parentPath;
// Move up one directory
currentPath = path.dirname(currentPath);
}
// Check the root directory as well
const hasMarkerInRoot = markers.some((marker) => {
const markerPath = path.join(rootPath, marker);
return fs.existsSync(markerPath);
});
return hasMarkerInRoot ? rootPath : null;
}
// --- Dynamic Configuration Function --- (REMOVED)
/*
function getConfig(session = null) {
// ... implementation removed ...
}
*/
// --- Logging and Utility Functions ---
// Set up logging based on log level
const LOG_LEVELS = {
@@ -275,6 +282,22 @@ function findTaskInComplexityReport(report, taskId) {
return report.complexityAnalysis.find((task) => task.taskId === taskId);
}
function addComplexityToTask(task, complexityReport) {
let taskId;
if (task.isSubtask) {
taskId = task.parentTask.id;
} else if (task.parentId) {
taskId = task.parentId;
} else {
taskId = task.id;
}
const taskAnalysis = findTaskInComplexityReport(complexityReport, taskId);
if (taskAnalysis) {
task.complexityScore = taskAnalysis.complexityScore;
}
}
/**
* Checks if a task exists in the tasks array
* @param {Array} tasks - The tasks array
@@ -325,10 +348,17 @@ function formatTaskId(id) {
* Finds a task by ID in the tasks array. Optionally filters subtasks by status.
* @param {Array} tasks - The tasks array
* @param {string|number} taskId - The task ID to find
* @param {Object|null} complexityReport - Optional pre-loaded complexity report
* @returns {Object|null} The task object or null if not found
* @param {string} [statusFilter] - Optional status to filter subtasks by
* @returns {{task: Object|null, originalSubtaskCount: number|null}} The task object (potentially with filtered subtasks) and the original subtask count if filtered, or nulls if not found.
*/
function findTaskById(tasks, taskId, statusFilter = null) {
function findTaskById(
tasks,
taskId,
complexityReport = null,
statusFilter = null
) {
if (!taskId || !tasks || !Array.isArray(tasks)) {
return { task: null, originalSubtaskCount: null };
}
@@ -356,10 +386,17 @@ function findTaskById(tasks, taskId, statusFilter = null) {
subtask.isSubtask = true;
}
// Return the found subtask (or null) and null for originalSubtaskCount
// If we found a task, check for complexity data
if (subtask && complexityReport) {
addComplexityToTask(subtask, complexityReport);
}
return { task: subtask || null, originalSubtaskCount: null };
}
let taskResult = null;
let originalSubtaskCount = null;
// Find the main task
const id = parseInt(taskId, 10);
const task = tasks.find((t) => t.id === id) || null;
@@ -369,6 +406,8 @@ function findTaskById(tasks, taskId, statusFilter = null) {
return { task: null, originalSubtaskCount: null };
}
taskResult = task;
// If task found and statusFilter provided, filter its subtasks
if (statusFilter && task.subtasks && Array.isArray(task.subtasks)) {
const originalSubtaskCount = task.subtasks.length;
@@ -379,12 +418,18 @@ function findTaskById(tasks, taskId, statusFilter = null) {
subtask.status &&
subtask.status.toLowerCase() === statusFilter.toLowerCase()
);
// Return the filtered task and the original count
return { task: filteredTask, originalSubtaskCount: originalSubtaskCount };
taskResult = filteredTask;
originalSubtaskCount = originalSubtaskCount;
}
// Return original task and null count if no filter or no subtasks
return { task: task, originalSubtaskCount: null };
// If task found and complexityReport provided, add complexity data
if (taskResult && complexityReport) {
addComplexityToTask(taskResult, complexityReport);
}
// Return the found task and original subtask count
return { task: taskResult, originalSubtaskCount };
}
/**
@@ -508,6 +553,61 @@ function detectCamelCaseFlags(args) {
return camelCaseFlags;
}
/**
* Aggregates an array of telemetry objects into a single summary object.
* @param {Array<Object>} telemetryArray - Array of telemetryData objects.
* @param {string} overallCommandName - The name for the aggregated command.
* @returns {Object|null} Aggregated telemetry object or null if input is empty.
*/
function aggregateTelemetry(telemetryArray, overallCommandName) {
if (!telemetryArray || telemetryArray.length === 0) {
return null;
}
const aggregated = {
timestamp: new Date().toISOString(), // Use current time for aggregation time
userId: telemetryArray[0].userId, // Assume userId is consistent
commandName: overallCommandName,
modelUsed: 'Multiple', // Default if models vary
providerName: 'Multiple', // Default if providers vary
inputTokens: 0,
outputTokens: 0,
totalTokens: 0,
totalCost: 0,
currency: telemetryArray[0].currency || 'USD' // Assume consistent currency or default
};
const uniqueModels = new Set();
const uniqueProviders = new Set();
const uniqueCurrencies = new Set();
telemetryArray.forEach((item) => {
aggregated.inputTokens += item.inputTokens || 0;
aggregated.outputTokens += item.outputTokens || 0;
aggregated.totalCost += item.totalCost || 0;
uniqueModels.add(item.modelUsed);
uniqueProviders.add(item.providerName);
uniqueCurrencies.add(item.currency || 'USD');
});
aggregated.totalTokens = aggregated.inputTokens + aggregated.outputTokens;
aggregated.totalCost = parseFloat(aggregated.totalCost.toFixed(6)); // Fix precision
if (uniqueModels.size === 1) {
aggregated.modelUsed = [...uniqueModels][0];
}
if (uniqueProviders.size === 1) {
aggregated.providerName = [...uniqueProviders][0];
}
if (uniqueCurrencies.size > 1) {
aggregated.currency = 'Multiple'; // Mark if currencies actually differ
} else if (uniqueCurrencies.size === 1) {
aggregated.currency = [...uniqueCurrencies][0];
}
return aggregated;
}
// Export all utility functions and configuration
export {
LOG_LEVELS,
@@ -524,10 +624,12 @@ export {
findCycles,
toKebabCase,
detectCamelCaseFlags,
enableSilentMode,
disableSilentMode,
isSilentMode,
resolveEnvVariable,
enableSilentMode,
getTaskManager,
findProjectRoot
isSilentMode,
addComplexityToTask,
resolveEnvVariable,
findProjectRoot,
aggregateTelemetry
};

View File

@@ -1,299 +1,357 @@
{
"meta": {
"generatedAt": "2025-05-03T04:45:36.864Z",
"tasksAnalyzed": 36,
"generatedAt": "2025-05-22T05:48:33.026Z",
"tasksAnalyzed": 6,
"totalTasks": 88,
"analysisCount": 43,
"thresholdScore": 5,
"projectName": "Taskmaster",
"usedResearch": false
"usedResearch": true
},
"complexityAnalysis": [
{
"taskId": 24,
"taskTitle": "Implement AI-Powered Test Generation Command",
"complexityScore": 8,
"complexityScore": 7,
"recommendedSubtasks": 5,
"expansionPrompt": "Expand the 'Implement AI-Powered Test Generation Command' task by detailing the specific steps required for AI prompt engineering, including data extraction, prompt formatting, and error handling.",
"reasoning": "Requires AI integration, complex logic, and thorough testing. Prompt engineering and API interaction add significant complexity."
"expansionPrompt": "Break down the implementation of the AI-powered test generation command into detailed subtasks covering: command structure setup, AI prompt engineering, test file generation logic, integration with Claude API, and comprehensive error handling.",
"reasoning": "This task involves complex integration with an AI service (Claude), requires sophisticated prompt engineering, and needs to generate structured code files. The existing 3 subtasks are a good start but could be expanded to include more detailed steps for AI integration, error handling, and test file formatting."
},
{
"taskId": 26,
"taskTitle": "Implement Context Foundation for AI Operations",
"complexityScore": 7,
"recommendedSubtasks": 6,
"expansionPrompt": "Expand the 'Implement Context Foundation for AI Operations' task by detailing the specific steps for integrating file reading, cursor rules, and basic context extraction into the Claude API prompts.",
"reasoning": "Involves modifying multiple commands and integrating different context sources. Error handling and backwards compatibility are crucial."
"complexityScore": 6,
"recommendedSubtasks": 4,
"expansionPrompt": "The current 4 subtasks for implementing the context foundation appear comprehensive. Consider if any additional subtasks are needed for testing, documentation, or integration with existing systems.",
"reasoning": "This task involves creating a foundation for context integration with several well-defined components. The existing 4 subtasks cover the main implementation areas (context-file flag, cursor rules integration, context extraction utility, and command handler updates). The complexity is moderate as it requires careful integration with existing systems but has clear requirements."
},
{
"taskId": 27,
"taskTitle": "Implement Context Enhancements for AI Operations",
"complexityScore": 8,
"recommendedSubtasks": 6,
"expansionPrompt": "Expand the 'Implement Context Enhancements for AI Operations' task by detailing the specific steps for code context extraction, task history integration, and PRD context integration, including parsing, summarization, and formatting.",
"reasoning": "Builds upon the previous task with more sophisticated context extraction and integration. Requires intelligent parsing and summarization."
"complexityScore": 7,
"recommendedSubtasks": 4,
"expansionPrompt": "The current 4 subtasks for implementing context enhancements appear well-structured. Consider if any additional subtasks are needed for testing, documentation, or performance optimization.",
"reasoning": "This task builds upon the foundation from Task #26 and adds more sophisticated context handling features. The 4 existing subtasks cover the main implementation areas (code context extraction, task history context, PRD context integration, and context formatting). The complexity is higher than the foundation task due to the need for intelligent context selection and optimization."
},
{
"taskId": 28,
"taskTitle": "Implement Advanced ContextManager System",
"complexityScore": 9,
"recommendedSubtasks": 7,
"expansionPrompt": "Expand the 'Implement Advanced ContextManager System' task by detailing the specific steps for creating the ContextManager class, implementing the optimization pipeline, and adding command interface enhancements, including caching and performance monitoring.",
"reasoning": "A comprehensive system requiring careful design, optimization, and testing. Involves complex algorithms and performance considerations."
},
{
"taskId": 32,
"taskTitle": "Implement \"learn\" Command for Automatic Cursor Rule Generation",
"complexityScore": 9,
"recommendedSubtasks": 10,
"expansionPrompt": "Expand the 'Implement \"learn\" Command for Automatic Cursor Rule Generation' task by detailing the specific steps for Cursor data analysis, rule management, and AI integration, including error handling and performance optimization.",
"reasoning": "Requires deep integration with Cursor's data, complex pattern analysis, and AI interaction. Significant error handling and performance optimization are needed."
"complexityScore": 8,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing the advanced ContextManager system appear comprehensive. Consider if any additional subtasks are needed for testing, documentation, or backward compatibility with previous context implementations.",
"reasoning": "This task represents the most complex phase of the context implementation, requiring a sophisticated class design, optimization algorithms, and integration with multiple systems. The 5 existing subtasks cover the core implementation areas, but the complexity is high due to the need for intelligent context prioritization, token management, and performance monitoring."
},
{
"taskId": 40,
"taskTitle": "Implement 'plan' Command for Task Implementation Planning",
"complexityScore": 6,
"complexityScore": 5,
"recommendedSubtasks": 4,
"expansionPrompt": "Expand the 'Implement 'plan' Command for Task Implementation Planning' task by detailing the steps for retrieving task content, generating implementation plans with AI, and formatting the plan within XML tags.",
"reasoning": "Involves AI integration and requires careful formatting and error handling. Switching between Claude and Perplexity adds complexity."
"expansionPrompt": "The current 4 subtasks for implementing the 'plan' command appear well-structured. Consider if any additional subtasks are needed for testing, documentation, or integration with existing task management workflows.",
"reasoning": "This task involves creating a new command that leverages AI to generate implementation plans. The existing 4 subtasks cover the main implementation areas (retrieving task content, generating plans with AI, formatting in XML, and error handling). The complexity is moderate as it builds on existing patterns for task updates but requires careful AI integration."
},
{
"taskId": 41,
"taskTitle": "Implement Visual Task Dependency Graph in Terminal",
"complexityScore": 8,
"recommendedSubtasks": 8,
"expansionPrompt": "Expand the 'Implement Visual Task Dependency Graph in Terminal' task by detailing the steps for designing the graph rendering system, implementing layout algorithms, and handling circular dependencies and filtering options.",
"reasoning": "Requires complex graph algorithms and terminal rendering. Accessibility and performance are important considerations."
"recommendedSubtasks": 10,
"expansionPrompt": "The current 10 subtasks for implementing the visual task dependency graph appear comprehensive. Consider if any additional subtasks are needed for performance optimization with large graphs or additional visualization options.",
"reasoning": "This task involves creating a sophisticated visualization system for terminal display, which is inherently complex due to layout algorithms, ASCII/Unicode rendering, and handling complex dependency relationships. The 10 existing subtasks cover all major aspects of implementation, from CLI interface to accessibility features."
},
{
"taskId": 42,
"taskTitle": "Implement MCP-to-MCP Communication Protocol",
"complexityScore": 8,
"recommendedSubtasks": 7,
"expansionPrompt": "Expand the 'Implement MCP-to-MCP Communication Protocol' task by detailing the steps for defining the protocol, implementing the adapter pattern, and building the client module, including error handling and security considerations.",
"reasoning": "Requires designing a new protocol and implementing communication with external systems. Security and error handling are critical."
},
{
"taskId": 43,
"taskTitle": "Add Research Flag to Add-Task Command",
"complexityScore": 5,
"recommendedSubtasks": 3,
"expansionPrompt": "Expand the 'Add Research Flag to Add-Task Command' task by detailing the steps for updating the command parser, generating research subtasks, and linking them to the parent task.",
"reasoning": "Relatively straightforward, but requires careful handling of subtask generation and linking."
"complexityScore": 9,
"recommendedSubtasks": 8,
"expansionPrompt": "The current 8 subtasks for implementing the MCP-to-MCP communication protocol appear well-structured. Consider if any additional subtasks are needed for security hardening, performance optimization, or comprehensive documentation.",
"reasoning": "This task involves designing and implementing a complex communication protocol between different MCP tools and servers. It requires sophisticated adapter patterns, client-server architecture, and handling of multiple operational modes. The complexity is very high due to the need for standardization, security, and backward compatibility."
},
{
"taskId": 44,
"taskTitle": "Implement Task Automation with Webhooks and Event Triggers",
"complexityScore": 8,
"recommendedSubtasks": 7,
"expansionPrompt": "Expand the 'Implement Task Automation with Webhooks and Event Triggers' task by detailing the steps for implementing the webhook registration system, event system, and trigger definition interface, including security and error handling.",
"reasoning": "Requires designing a robust event system and integrating with external services. Security and error handling are critical."
"expansionPrompt": "The current 7 subtasks for implementing task automation with webhooks appear comprehensive. Consider if any additional subtasks are needed for security testing, rate limiting implementation, or webhook monitoring tools.",
"reasoning": "This task involves creating a sophisticated event system with webhooks for integration with external services. The complexity is high due to the need for secure authentication, reliable delivery mechanisms, and handling of various webhook formats and protocols. The existing subtasks cover the main implementation areas but security and monitoring could be emphasized more."
},
{
"taskId": 45,
"taskTitle": "Implement GitHub Issue Import Feature",
"complexityScore": 7,
"complexityScore": 6,
"recommendedSubtasks": 5,
"expansionPrompt": "Expand the 'Implement GitHub Issue Import Feature' task by detailing the steps for parsing the URL, fetching issue details from the GitHub API, and generating a well-formatted task.",
"reasoning": "Requires interacting with the GitHub API and handling various error conditions. Authentication adds complexity."
"expansionPrompt": "The current 5 subtasks for implementing the GitHub issue import feature appear well-structured. Consider if any additional subtasks are needed for handling GitHub API rate limiting, caching, or supporting additional issue metadata.",
"reasoning": "This task involves integrating with the GitHub API to import issues as tasks. The complexity is moderate as it requires API authentication, data mapping, and error handling. The existing 5 subtasks cover the main implementation areas from design to end-to-end implementation."
},
{
"taskId": 46,
"taskTitle": "Implement ICE Analysis Command for Task Prioritization",
"complexityScore": 7,
"recommendedSubtasks": 5,
"expansionPrompt": "Expand the 'Implement ICE Analysis Command for Task Prioritization' task by detailing the steps for calculating ICE scores, generating the report file, and implementing the CLI rendering.",
"reasoning": "Requires AI integration for scoring and careful formatting of the report. Integration with existing complexity reports adds complexity."
"expansionPrompt": "The current 5 subtasks for implementing the ICE analysis command appear comprehensive. Consider if any additional subtasks are needed for visualization of ICE scores or integration with other prioritization methods.",
"reasoning": "This task involves creating an AI-powered analysis system for task prioritization using the ICE methodology. The complexity is high due to the need for sophisticated scoring algorithms, AI integration, and report generation. The existing subtasks cover the main implementation areas from algorithm design to integration with existing systems."
},
{
"taskId": 47,
"taskTitle": "Enhance Task Suggestion Actions Card Workflow",
"complexityScore": 7,
"complexityScore": 6,
"recommendedSubtasks": 6,
"expansionPrompt": "Expand the 'Enhance Task Suggestion Actions Card Workflow' task by detailing the steps for implementing the task expansion, context addition, and task management phases, including UI/UX considerations.",
"reasoning": "Requires significant UI/UX work and careful state management. Integration with existing functionality is crucial."
"expansionPrompt": "The current 6 subtasks for enhancing the task suggestion actions card workflow appear well-structured. Consider if any additional subtasks are needed for user testing, accessibility improvements, or performance optimization.",
"reasoning": "This task involves redesigning the UI workflow for task expansion and management. The complexity is moderate as it requires careful UX design and state management but builds on existing components. The 6 existing subtasks cover the main implementation areas from design to testing."
},
{
"taskId": 48,
"taskTitle": "Refactor Prompts into Centralized Structure",
"complexityScore": 5,
"complexityScore": 4,
"recommendedSubtasks": 3,
"expansionPrompt": "Expand the 'Refactor Prompts into Centralized Structure' task by detailing the steps for creating the 'prompts' directory, extracting prompts into individual files, and updating functions to import them.",
"reasoning": "Primarily a refactoring task, but requires careful attention to detail to avoid breaking existing functionality."
"expansionPrompt": "The current 3 subtasks for refactoring prompts into a centralized structure appear appropriate. Consider if any additional subtasks are needed for prompt versioning, documentation, or testing.",
"reasoning": "This task involves a straightforward refactoring to improve code organization. The complexity is relatively low as it primarily involves moving code rather than creating new functionality. The 3 existing subtasks cover the main implementation areas from directory structure to integration."
},
{
"taskId": 49,
"taskTitle": "Implement Code Quality Analysis Command",
"complexityScore": 8,
"recommendedSubtasks": 6,
"expansionPrompt": "Expand the 'Implement Code Quality Analysis Command' task by detailing the steps for pattern recognition, best practice verification, and improvement recommendations, including AI integration and task creation.",
"reasoning": "Requires complex code analysis and AI integration. Generating actionable recommendations adds complexity."
"expansionPrompt": "The current 6 subtasks for implementing the code quality analysis command appear comprehensive. Consider if any additional subtasks are needed for performance optimization with large codebases or integration with existing code quality tools.",
"reasoning": "This task involves creating a sophisticated code analysis system with pattern recognition, best practice verification, and AI-powered recommendations. The complexity is high due to the need for code parsing, complex analysis algorithms, and integration with AI services. The existing subtasks cover the main implementation areas from algorithm design to user interface."
},
{
"taskId": 50,
"taskTitle": "Implement Test Coverage Tracking System by Task",
"complexityScore": 9,
"recommendedSubtasks": 7,
"expansionPrompt": "Expand the 'Implement Test Coverage Tracking System by Task' task by detailing the steps for creating the tests.json file structure, developing the coverage report parser, and implementing the CLI commands and AI-powered test generation system.",
"reasoning": "A comprehensive system requiring deep integration with testing tools and AI. Maintaining bidirectional relationships adds complexity."
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing the test coverage tracking system appear well-structured. Consider if any additional subtasks are needed for integration with CI/CD systems, performance optimization, or visualization tools.",
"reasoning": "This task involves creating a complex system that maps test coverage to specific tasks and subtasks. The complexity is very high due to the need for sophisticated data structures, integration with coverage tools, and AI-powered test generation. The existing subtasks are comprehensive and cover the main implementation areas from data structure design to AI integration."
},
{
"taskId": 51,
"taskTitle": "Implement Perplexity Research Command",
"complexityScore": 7,
"complexityScore": 6,
"recommendedSubtasks": 5,
"expansionPrompt": "Expand the 'Implement Perplexity Research Command' task by detailing the steps for creating the Perplexity API client, implementing task context extraction, and building the CLI interface.",
"reasoning": "Requires API integration and careful formatting of the research results. Caching adds complexity."
"expansionPrompt": "The current 5 subtasks for implementing the Perplexity research command appear comprehensive. Consider if any additional subtasks are needed for caching optimization, result formatting, or integration with other research tools.",
"reasoning": "This task involves creating a new command that integrates with the Perplexity AI API for research. The complexity is moderate as it requires API integration, context extraction, and result formatting. The 5 existing subtasks cover the main implementation areas from API client to caching system."
},
{
"taskId": 52,
"taskTitle": "Implement Task Suggestion Command for CLI",
"complexityScore": 7,
"complexityScore": 6,
"recommendedSubtasks": 5,
"expansionPrompt": "Expand the 'Implement Task Suggestion Command for CLI' task by detailing the steps for collecting existing task data, generating task suggestions with AI, and implementing the interactive CLI interface.",
"reasoning": "Requires AI integration and careful design of the interactive interface. Handling various flag combinations adds complexity."
"expansionPrompt": "The current 5 subtasks for implementing the task suggestion command appear well-structured. Consider if any additional subtasks are needed for suggestion quality evaluation, user feedback collection, or integration with existing task workflows.",
"reasoning": "This task involves creating a new CLI command that generates contextually relevant task suggestions using AI. The complexity is moderate as it requires AI integration, context collection, and interactive CLI interfaces. The existing subtasks cover the main implementation areas from data collection to user interface."
},
{
"taskId": 53,
"taskTitle": "Implement Subtask Suggestion Feature for Parent Tasks",
"complexityScore": 7,
"complexityScore": 6,
"recommendedSubtasks": 6,
"expansionPrompt": "Expand the 'Implement Subtask Suggestion Feature for Parent Tasks' task by detailing the steps for validating parent tasks, gathering context, generating subtask suggestions with AI, and implementing the interactive CLI interface.",
"reasoning": "Requires AI integration and careful design of the interactive interface. Linking subtasks to parent tasks adds complexity."
"expansionPrompt": "The current 6 subtasks for implementing the subtask suggestion feature appear comprehensive. Consider if any additional subtasks are needed for suggestion quality metrics, user feedback collection, or performance optimization.",
"reasoning": "This task involves creating a feature that suggests contextually relevant subtasks for parent tasks. The complexity is moderate as it builds on existing task management systems but requires sophisticated AI integration and context analysis. The 6 existing subtasks cover the main implementation areas from validation to testing."
},
{
"taskId": 55,
"taskTitle": "Implement Positional Arguments Support for CLI Commands",
"complexityScore": 7,
"complexityScore": 5,
"recommendedSubtasks": 5,
"expansionPrompt": "Expand the 'Implement Positional Arguments Support for CLI Commands' task by detailing the steps for updating the argument parsing logic, defining the positional argument order, and handling edge cases.",
"reasoning": "Requires careful modification of the command parsing logic and ensuring backward compatibility. Handling edge cases adds complexity."
"expansionPrompt": "The current 5 subtasks for implementing positional arguments support appear well-structured. Consider if any additional subtasks are needed for backward compatibility testing, documentation updates, or user experience improvements.",
"reasoning": "This task involves modifying the command parsing logic to support positional arguments alongside the existing flag-based syntax. The complexity is moderate as it requires careful handling of different argument styles and edge cases. The 5 existing subtasks cover the main implementation areas from analysis to documentation."
},
{
"taskId": 57,
"taskTitle": "Enhance Task-Master CLI User Experience and Interface",
"complexityScore": 7,
"recommendedSubtasks": 6,
"expansionPrompt": "Expand the 'Enhance Task-Master CLI User Experience and Interface' task by detailing the steps for log management, visual enhancements, interactive elements, and output formatting.",
"reasoning": "Requires significant UI/UX work and careful consideration of different terminal environments. Reducing verbose logging adds complexity."
"expansionPrompt": "The current 6 subtasks for enhancing the CLI user experience appear comprehensive. Consider if any additional subtasks are needed for accessibility testing, internationalization, or performance optimization.",
"reasoning": "This task involves a significant overhaul of the CLI interface to improve user experience. The complexity is high due to the breadth of changes (logging, visual elements, interactive components, etc.) and the need for consistent design across all commands. The 6 existing subtasks cover the main implementation areas from log management to help systems."
},
{
"taskId": 60,
"taskTitle": "Implement Mentor System with Round-Table Discussion Feature",
"complexityScore": 8,
"recommendedSubtasks": 7,
"expansionPrompt": "Expand the 'Implement Mentor System with Round-Table Discussion Feature' task by detailing the steps for mentor management, round-table discussion implementation, and integration with the task system, including LLM integration.",
"reasoning": "Requires complex AI simulation and careful formatting of the discussion output. Integrating with the task system adds complexity."
},
{
"taskId": 61,
"taskTitle": "Implement Flexible AI Model Management",
"complexityScore": 9,
"recommendedSubtasks": 8,
"expansionPrompt": "Expand the 'Implement Flexible AI Model Management' task by detailing the steps for creating the configuration management module, implementing the CLI command parser, and integrating the Vercel AI SDK.",
"reasoning": "Requires deep integration with multiple AI models and careful management of API keys and configuration options. Vercel AI SDK integration adds complexity."
"expansionPrompt": "The current 7 subtasks for implementing the mentor system appear well-structured. Consider if any additional subtasks are needed for mentor personality consistency, discussion quality evaluation, or performance optimization with multiple mentors.",
"reasoning": "This task involves creating a sophisticated mentor simulation system with round-table discussions. The complexity is high due to the need for personality simulation, complex LLM integration, and structured discussion management. The 7 existing subtasks cover the main implementation areas from architecture to testing."
},
{
"taskId": 62,
"taskTitle": "Add --simple Flag to Update Commands for Direct Text Input",
"complexityScore": 5,
"recommendedSubtasks": 4,
"expansionPrompt": "Expand the 'Add --simple Flag to Update Commands for Direct Text Input' task by detailing the steps for updating the command parsers, implementing the conditional logic, and formatting the user input with a timestamp.",
"reasoning": "Relatively straightforward, but requires careful attention to formatting and ensuring consistency with AI-processed updates."
"complexityScore": 4,
"recommendedSubtasks": 8,
"expansionPrompt": "The current 8 subtasks for implementing the --simple flag appear comprehensive. Consider if any additional subtasks are needed for user experience testing or documentation updates.",
"reasoning": "This task involves adding a simple flag option to bypass AI processing for updates. The complexity is relatively low as it primarily involves modifying existing command handlers and adding a flag. The 8 existing subtasks are very detailed and cover all aspects of implementation from command parsing to testing."
},
{
"taskId": 63,
"taskTitle": "Add pnpm Support for the Taskmaster Package",
"complexityScore": 7,
"recommendedSubtasks": 6,
"expansionPrompt": "Expand the 'Add pnpm Support for the Taskmaster Package' task by detailing the steps for updating the documentation, ensuring package scripts compatibility, and testing the installation and operation with pnpm.",
"reasoning": "Requires careful attention to detail to ensure compatibility with pnpm's execution model. Testing and documentation are crucial."
"complexityScore": 5,
"recommendedSubtasks": 8,
"expansionPrompt": "The current 8 subtasks for adding pnpm support appear comprehensive. Consider if any additional subtasks are needed for CI/CD integration, performance comparison, or documentation updates.",
"reasoning": "This task involves ensuring the package works correctly with pnpm as an alternative package manager. The complexity is moderate as it requires careful testing of installation processes and scripts across different environments. The 8 existing subtasks cover all major aspects from documentation to binary verification."
},
{
"taskId": 64,
"taskTitle": "Add Yarn Support for Taskmaster Installation",
"complexityScore": 7,
"recommendedSubtasks": 6,
"expansionPrompt": "Expand the 'Add Yarn Support for Taskmaster Installation' task by detailing the steps for updating package.json, adding Yarn-specific configuration files, and testing the installation and operation with Yarn.",
"reasoning": "Requires careful attention to detail to ensure compatibility with Yarn's execution model. Testing and documentation are crucial."
"complexityScore": 5,
"recommendedSubtasks": 9,
"expansionPrompt": "The current 9 subtasks for adding Yarn support appear comprehensive. Consider if any additional subtasks are needed for performance testing, CI/CD integration, or compatibility with different Yarn versions.",
"reasoning": "This task involves ensuring the package works correctly with Yarn as an alternative package manager. The complexity is moderate as it requires careful testing of installation processes and scripts across different environments. The 9 existing subtasks are very detailed and cover all aspects from configuration to testing."
},
{
"taskId": 65,
"taskTitle": "Add Bun Support for Taskmaster Installation",
"complexityScore": 7,
"complexityScore": 6,
"recommendedSubtasks": 6,
"expansionPrompt": "Expand the 'Add Bun Support for Taskmaster Installation' task by detailing the steps for updating the installation scripts, testing the installation and operation with Bun, and updating the documentation.",
"reasoning": "Requires careful attention to detail to ensure compatibility with Bun's execution model. Testing and documentation are crucial."
},
{
"taskId": 66,
"taskTitle": "Support Status Filtering in Show Command for Subtasks",
"complexityScore": 5,
"recommendedSubtasks": 4,
"expansionPrompt": "Expand the 'Support Status Filtering in Show Command for Subtasks' task by detailing the steps for updating the command parser, modifying the show command handler, and updating the help documentation.",
"reasoning": "Relatively straightforward, but requires careful handling of status validation and filtering."
"expansionPrompt": "The current 6 subtasks for adding Bun support appear well-structured. Consider if any additional subtasks are needed for handling Bun-specific issues, performance testing, or documentation updates.",
"reasoning": "This task involves adding support for the newer Bun package manager. The complexity is slightly higher than the other package manager tasks due to Bun's differences from Node.js and potential compatibility issues. The 6 existing subtasks cover the main implementation areas from research to documentation."
},
{
"taskId": 67,
"taskTitle": "Add CLI JSON output and Cursor keybindings integration",
"complexityScore": 7,
"recommendedSubtasks": 6,
"expansionPrompt": "Expand the 'Add CLI JSON output and Cursor keybindings integration' task by detailing the steps for implementing the JSON output logic, creating the install-keybindings command structure, and handling keybinding file manipulation.",
"reasoning": "Requires careful formatting of the JSON output and handling of file system operations. OS detection adds complexity."
"complexityScore": 5,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing JSON output and Cursor keybindings appear well-structured. Consider if any additional subtasks are needed for testing across different operating systems, documentation updates, or user experience improvements.",
"reasoning": "This task involves two distinct features: adding JSON output to CLI commands and creating a keybindings installation command. The complexity is moderate as it requires careful handling of different output formats and OS-specific file paths. The 5 existing subtasks cover the main implementation areas for both features."
},
{
"taskId": 68,
"taskTitle": "Ability to create tasks without parsing PRD",
"complexityScore": 3,
"recommendedSubtasks": 2,
"expansionPrompt": "Expand the 'Ability to create tasks without parsing PRD' task by detailing the steps for creating tasks without a PRD.",
"reasoning": "Simple task to allow task creation without a PRD."
"expansionPrompt": "The current 2 subtasks for implementing task creation without PRD appear appropriate. Consider if any additional subtasks are needed for validation, error handling, or integration with existing task management workflows.",
"reasoning": "This task involves a relatively simple modification to allow task creation without requiring a PRD document. The complexity is low as it primarily involves creating a form interface and saving functionality. The 2 existing subtasks cover the main implementation areas of UI design and data saving."
},
{
"taskId": 72,
"taskTitle": "Implement PDF Generation for Project Progress and Dependency Overview",
"complexityScore": 7,
"recommendedSubtasks": 6,
"expansionPrompt": "The current 6 subtasks for implementing PDF generation appear comprehensive. Consider if any additional subtasks are needed for handling large projects, additional visualization options, or integration with existing reporting tools.",
"reasoning": "This task involves creating a feature to generate PDF reports of project progress and dependency visualization. The complexity is high due to the need for PDF generation, data collection, and visualization integration. The 6 existing subtasks cover the main implementation areas from library selection to export options."
},
{
"taskId": 75,
"taskTitle": "Integrate Google Search Grounding for Research Role",
"complexityScore": 5,
"recommendedSubtasks": 4,
"expansionPrompt": "The current 4 subtasks for integrating Google Search Grounding appear well-structured. Consider if any additional subtasks are needed for testing with different query types, error handling, or performance optimization.",
"reasoning": "This task involves updating the AI service layer to enable Google Search Grounding for research roles. The complexity is moderate as it requires careful integration with the existing AI service architecture and conditional logic. The 4 existing subtasks cover the main implementation areas from service layer modification to testing."
},
{
"taskId": 76,
"taskTitle": "Develop E2E Test Framework for Taskmaster MCP Server (FastMCP over stdio)",
"complexityScore": 8,
"recommendedSubtasks": 7,
"expansionPrompt": "The current 7 subtasks for developing the E2E test framework appear comprehensive. Consider if any additional subtasks are needed for test result reporting, CI/CD integration, or performance benchmarking.",
"reasoning": "This task involves creating a sophisticated end-to-end testing framework for the MCP server. The complexity is high due to the need for subprocess management, protocol handling, and robust test case definition. The 7 existing subtasks cover the main implementation areas from architecture to documentation."
},
{
"taskId": 77,
"taskTitle": "Implement AI Usage Telemetry for Taskmaster (with external analytics endpoint)",
"complexityScore": 7,
"recommendedSubtasks": 18,
"expansionPrompt": "The current 18 subtasks for implementing AI usage telemetry appear very comprehensive. Consider if any additional subtasks are needed for security hardening, privacy compliance, or user feedback collection.",
"reasoning": "This task involves creating a telemetry system to track AI usage metrics. The complexity is high due to the need for secure data transmission, comprehensive data collection, and integration across multiple commands. The 18 existing subtasks are extremely detailed and cover all aspects of implementation from core utility to provider-specific updates."
},
{
"taskId": 80,
"taskTitle": "Implement Unique User ID Generation and Storage During Installation",
"complexityScore": 4,
"recommendedSubtasks": 5,
"expansionPrompt": "The current 5 subtasks for implementing unique user ID generation appear well-structured. Consider if any additional subtasks are needed for privacy compliance, security auditing, or integration with the telemetry system.",
"reasoning": "This task involves generating and storing a unique user identifier during installation. The complexity is relatively low as it primarily involves UUID generation and configuration file management. The 5 existing subtasks cover the main implementation areas from script structure to documentation."
},
{
"taskId": 81,
"taskTitle": "Task #81: Implement Comprehensive Local Telemetry System with Future Server Integration Capability",
"complexityScore": 8,
"recommendedSubtasks": 6,
"expansionPrompt": "The current 6 subtasks for implementing the comprehensive local telemetry system appear well-structured. Consider if any additional subtasks are needed for data migration, storage optimization, or visualization tools.",
"reasoning": "This task involves expanding the telemetry system to capture additional metrics and implement local storage with future server integration capability. The complexity is high due to the breadth of data collection, storage requirements, and privacy considerations. The 6 existing subtasks cover the main implementation areas from data collection to user-facing benefits."
},
{
"taskId": 82,
"taskTitle": "Update supported-models.json with token limit fields",
"complexityScore": 3,
"recommendedSubtasks": 1,
"expansionPrompt": "This task appears straightforward enough to be implemented without further subtasks. Focus on researching accurate token limit values for each model and ensuring backward compatibility.",
"reasoning": "This task involves a simple update to the supported-models.json file to include new token limit fields. The complexity is low as it primarily involves research and data entry. No subtasks are necessary as the task is well-defined and focused."
},
{
"taskId": 83,
"taskTitle": "Update config-manager.js defaults and getters",
"complexityScore": 4,
"recommendedSubtasks": 1,
"expansionPrompt": "This task appears straightforward enough to be implemented without further subtasks. Focus on updating the DEFAULTS object and related getter functions while maintaining backward compatibility.",
"reasoning": "This task involves updating the config-manager.js module to replace maxTokens with more specific token limit fields. The complexity is relatively low as it primarily involves modifying existing code rather than creating new functionality. No subtasks are necessary as the task is well-defined and focused."
},
{
"taskId": 84,
"taskTitle": "Implement token counting utility",
"complexityScore": 5,
"recommendedSubtasks": 1,
"expansionPrompt": "This task appears well-defined enough to be implemented without further subtasks. Focus on implementing accurate token counting for different models and proper fallback mechanisms.",
"reasoning": "This task involves creating a utility function to count tokens for different AI models. The complexity is moderate as it requires integration with the tiktoken library and handling different tokenization schemes. No subtasks are necessary as the task is well-defined and focused."
},
{
"taskId": 69,
"taskTitle": "Enhance Analyze Complexity for Specific Task IDs",
"complexityScore": 6,
"recommendedSubtasks": 4,
"expansionPrompt": "Expand the 'Enhance Analyze Complexity for Specific Task IDs' task by detailing the steps for modifying the core logic, updating the CLI, and updating the MCP tool.",
"reasoning": "Requires modifying existing functionality and ensuring compatibility with both CLI and MCP."
"complexityScore": 7,
"recommendedSubtasks": 6,
"expansionPrompt": "Break down the task 'Enhance Analyze Complexity for Specific Task IDs' into 6 subtasks focusing on: 1) Core logic modification to accept ID parameters, 2) Report merging functionality, 3) CLI interface updates, 4) MCP tool integration, 5) Documentation updates, and 6) Comprehensive testing across all components.",
"reasoning": "This task involves modifying existing functionality across multiple components (core logic, CLI, MCP) with complex logic for filtering tasks and merging reports. The implementation requires careful handling of different parameter combinations and edge cases. The task has interdependent components that need to work together seamlessly, and the report merging functionality adds significant complexity."
},
{
"taskId": 70,
"taskTitle": "Implement 'diagram' command for Mermaid diagram generation",
"complexityScore": 6,
"recommendedSubtasks": 4,
"expansionPrompt": "Expand the 'Implement 'diagram' command for Mermaid diagram generation' task by detailing the steps for creating the command, generating the Mermaid diagram, and handling different output options.",
"reasoning": "Requires generating Mermaid diagrams and handling different output options."
"recommendedSubtasks": 5,
"expansionPrompt": "Break down the 'diagram' command implementation into 5 subtasks: 1) Command interface and parameter handling, 2) Task data extraction and transformation to Mermaid syntax, 3) Diagram rendering with status color coding, 4) Output formatting and file export functionality, and 5) Error handling and edge case management.",
"reasoning": "This task requires implementing a new feature rather than modifying existing code, which reduces complexity from integration challenges. However, it involves working with visualization logic, dependency mapping, and multiple output formats. The color coding based on status and handling of dependency relationships adds moderate complexity. The task is well-defined but requires careful attention to diagram formatting and error handling."
},
{
"taskId": 72,
"taskTitle": "Implement PDF Generation for Project Progress and Dependency Overview",
"complexityScore": 8,
"recommendedSubtasks": 6,
"expansionPrompt": "Expand the 'Implement PDF Generation for Project Progress and Dependency Overview' task by detailing the steps for summarizing project progress, visualizing the dependency chain, and generating the PDF document.",
"reasoning": "Requires integrating with the diagram command and using a PDF generation library. Handling large dependency chains adds complexity."
},
{
"taskId": 73,
"taskTitle": "Implement Custom Model ID Support for Ollama/OpenRouter",
"taskId": 85,
"taskTitle": "Update ai-services-unified.js for dynamic token limits",
"complexityScore": 7,
"recommendedSubtasks": 5,
"expansionPrompt": "Expand the 'Implement Custom Model ID Support for Ollama/OpenRouter' task by detailing the steps for modifying the CLI, implementing the interactive setup, and handling validation and warnings.",
"reasoning": "Requires integrating with external APIs and handling different model types. Validation and warnings are crucial."
"expansionPrompt": "Break down the update of ai-services-unified.js for dynamic token limits into subtasks such as: (1) Import and integrate the token counting utility, (2) Refactor _unifiedServiceRunner to calculate and enforce dynamic token limits, (3) Update error handling for token limit violations, (4) Add and verify logging for token usage, (5) Write and execute tests for various prompt and model scenarios.",
"reasoning": "This task involves significant code changes to a core function, integration of a new utility, dynamic logic for multiple models, and robust error handling. It also requires comprehensive testing for edge cases and integration, making it moderately complex and best managed by splitting into focused subtasks."
},
{
"taskId": 75,
"taskTitle": "Integrate Google Search Grounding for Research Role",
"taskId": 86,
"taskTitle": "Update .taskmasterconfig schema and user guide",
"complexityScore": 6,
"recommendedSubtasks": 4,
"expansionPrompt": "Expand the 'Integrate Google Search Grounding for Research Role' task by detailing the steps for modifying the AI service layer, implementing the conditional logic, and updating the supported models.",
"reasoning": "Requires conditional logic and integration with the Google Search Grounding API."
"expansionPrompt": "Expand this task into subtasks: (1) Draft a migration guide for users, (2) Update user documentation to explain new config fields, (3) Modify schema validation logic in config-manager.js, (4) Test and validate backward compatibility and error messaging.",
"reasoning": "The task spans documentation, schema changes, migration guidance, and validation logic. While not algorithmically complex, it requires careful coordination and thorough testing to ensure a smooth user transition and robust validation."
},
{
"taskId": 76,
"taskTitle": "Develop E2E Test Framework for Taskmaster MCP Server (FastMCP over stdio)",
"complexityScore": 9,
"recommendedSubtasks": 7,
"expansionPrompt": "Expand the 'Develop E2E Test Framework for Taskmaster MCP Server (FastMCP over stdio)' task by detailing the steps for launching the FastMCP server, implementing the message protocol handler, and developing the request/response correlation mechanism.",
"reasoning": "Requires complex system integration and robust error handling. Designing a comprehensive test framework adds complexity."
"taskId": 87,
"taskTitle": "Implement validation and error handling",
"complexityScore": 5,
"recommendedSubtasks": 4,
"expansionPrompt": "Decompose this task into: (1) Add validation logic for model and config loading, (2) Implement error handling and fallback mechanisms, (3) Enhance logging and reporting for token usage, (4) Develop helper functions for configuration suggestions and improvements.",
"reasoning": "This task is primarily about adding validation, error handling, and logging. While important for robustness, the logic is straightforward and can be modularized into a few clear subtasks."
},
{
"taskId": 89,
"taskTitle": "Introduce Prioritize Command with Enhanced Priority Levels",
"complexityScore": 6,
"recommendedSubtasks": 5,
"expansionPrompt": "Expand this task into: (1) Implement the prioritize command with all required flags and shorthands, (2) Update CLI output and help documentation for new priority levels, (3) Ensure backward compatibility with existing commands, (4) Add error handling for invalid inputs, (5) Write and run tests for all command scenarios.",
"reasoning": "This CLI feature requires command parsing, updating internal logic for new priority levels, documentation, and robust error handling. The complexity is moderate due to the need for backward compatibility and comprehensive testing."
},
{
"taskId": 90,
"taskTitle": "Implement Subtask Progress Analyzer and Reporting System",
"complexityScore": 8,
"recommendedSubtasks": 6,
"expansionPrompt": "Break down the analyzer implementation into: (1) Design and implement progress tracking logic, (2) Develop status validation and issue detection, (3) Build the reporting system with multiple output formats, (4) Integrate analyzer with the existing task management system, (5) Optimize for performance and scalability, (6) Write unit, integration, and performance tests.",
"reasoning": "This is a complex, multi-faceted feature involving data analysis, reporting, integration, and performance optimization. It touches many parts of the system and requires careful design, making it one of the most complex tasks in the list."
},
{
"taskId": 91,
"taskTitle": "Implement Move Command for Tasks and Subtasks",
"complexityScore": 7,
"recommendedSubtasks": 5,
"expansionPrompt": "Expand this task into: (1) Implement move logic for tasks and subtasks, (2) Handle edge cases (invalid ids, non-existent parents, circular dependencies), (3) Update CLI to support move command with flags, (4) Ensure data integrity and update relationships, (5) Write and execute tests for various move scenarios.",
"reasoning": "Moving tasks and subtasks requires careful handling of hierarchical data, edge cases, and data integrity. The command must be robust and user-friendly, necessitating multiple focused subtasks for safe implementation."
}
]
}

View File

@@ -50,7 +50,7 @@ function getClient(apiKey, baseUrl) {
* @param {number} [params.maxTokens] - Maximum tokens for the response.
* @param {number} [params.temperature] - Temperature for generation.
* @param {string} [params.baseUrl] - The base URL for the Anthropic API.
* @returns {Promise<string>} The generated text content.
* @returns {Promise<object>} The generated text content and usage.
* @throws {Error} If the API call fails.
*/
export async function generateAnthropicText({
@@ -76,7 +76,14 @@ export async function generateAnthropicText({
'debug',
`Anthropic generateText result received. Tokens: ${result.usage.completionTokens}/${result.usage.promptTokens}`
);
return result.text;
// Return both text and usage
return {
text: result.text,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log('error', `Anthropic generateText failed: ${error.message}`);
// Consider more specific error handling or re-throwing a standardized error
@@ -156,7 +163,7 @@ export async function streamAnthropicText({
* @param {number} [params.temperature] - Temperature for generation.
* @param {number} [params.maxRetries] - Max retries for validation/generation.
* @param {string} [params.baseUrl] - The base URL for the Anthropic API.
* @returns {Promise<object>} The generated object matching the schema.
* @returns {Promise<object>} The generated object matching the schema and usage.
* @throws {Error} If generation or validation fails.
*/
export async function generateAnthropicObject({
@@ -197,7 +204,14 @@ export async function generateAnthropicObject({
'debug',
`Anthropic generateObject result received. Tokens: ${result.usage.completionTokens}/${result.usage.promptTokens}`
);
return result.object;
// Return both object and usage
return {
object: result.object,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log(
'error',

View File

@@ -9,7 +9,7 @@ import { generateText, streamText, generateObject } from 'ai'; // Import from ma
import { log } from '../../scripts/modules/utils.js'; // Import logging utility
// Consider making model configurable via config-manager.js later
const DEFAULT_MODEL = 'gemini-2.0-pro'; // Or a suitable default
const DEFAULT_MODEL = 'gemini-2.5-pro-exp-03-25'; // Or a suitable default
const DEFAULT_TEMPERATURE = 0.2; // Or a suitable default
function getClient(apiKey, baseUrl) {
@@ -56,7 +56,17 @@ async function generateGoogleText({
temperature,
maxOutputTokens: maxTokens
});
return result.text;
// Assuming result structure provides text directly or within a property
// return result.text; // Adjust based on actual SDK response
// Return both text and usage
return {
text: result.text,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log(
'error',
@@ -142,14 +152,23 @@ async function generateGoogleObject({
try {
const googleProvider = getClient(apiKey, baseUrl);
const model = googleProvider(modelId);
const { object } = await generateObject({
const result = await generateObject({
model,
schema,
messages,
temperature,
maxOutputTokens: maxTokens
});
return object;
// return object; // Return the parsed object
// Return both object and usage
return {
object: result.object,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log(
'error',

163
src/ai-providers/ollama.js Normal file
View File

@@ -0,0 +1,163 @@
/**
* ollama.js
* AI provider implementation for Ollama models using the ollama-ai-provider package.
*/
import { createOllama } from 'ollama-ai-provider';
import { log } from '../../scripts/modules/utils.js'; // Import logging utility
import { generateObject, generateText, streamText } from 'ai';
// Consider making model configurable via config-manager.js later
const DEFAULT_MODEL = 'llama3'; // Or a suitable default for Ollama
const DEFAULT_TEMPERATURE = 0.2;
function getClient(baseUrl) {
// baseUrl is optional, defaults to http://localhost:11434
return createOllama({
baseUrl: baseUrl || undefined
});
}
/**
* Generates text using an Ollama model.
*
* @param {object} params - Parameters for the generation.
* @param {string} params.modelId - Specific model ID to use (overrides default).
* @param {number} params.temperature - Generation temperature.
* @param {Array<object>} params.messages - The conversation history (system/user prompts).
* @param {number} [params.maxTokens] - Optional max tokens.
* @param {string} [params.baseUrl] - Optional Ollama base URL.
* @returns {Promise<string>} The generated text content.
* @throws {Error} If API call fails.
*/
async function generateOllamaText({
modelId = DEFAULT_MODEL,
messages,
maxTokens,
temperature = DEFAULT_TEMPERATURE,
baseUrl
}) {
log('info', `Generating text with Ollama model: ${modelId}`);
try {
const client = getClient(baseUrl);
const result = await generateText({
model: client(modelId),
messages,
maxTokens,
temperature
});
log('debug', `Ollama generated text: ${result.text}`);
return {
text: result.text,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log(
'error',
`Error generating text with Ollama (${modelId}): ${error.message}`
);
throw error;
}
}
/**
* Streams text using an Ollama model.
*
* @param {object} params - Parameters for the streaming.
* @param {string} params.modelId - Specific model ID to use (overrides default).
* @param {number} params.temperature - Generation temperature.
* @param {Array<object>} params.messages - The conversation history.
* @param {number} [params.maxTokens] - Optional max tokens.
* @param {string} [params.baseUrl] - Optional Ollama base URL.
* @returns {Promise<ReadableStream>} A readable stream of text deltas.
* @throws {Error} If API call fails.
*/
async function streamOllamaText({
modelId = DEFAULT_MODEL,
temperature = DEFAULT_TEMPERATURE,
messages,
maxTokens,
baseUrl
}) {
log('info', `Streaming text with Ollama model: ${modelId}`);
try {
const ollama = getClient(baseUrl);
const stream = await streamText({
model: modelId,
messages,
temperature,
maxTokens
});
return stream;
} catch (error) {
log(
'error',
`Error streaming text with Ollama (${modelId}): ${error.message}`
);
throw error;
}
}
/**
* Generates a structured object using an Ollama model using the Vercel AI SDK's generateObject.
*
* @param {object} params - Parameters for the object generation.
* @param {string} params.modelId - Specific model ID to use (overrides default).
* @param {number} params.temperature - Generation temperature.
* @param {Array<object>} params.messages - The conversation history.
* @param {import('zod').ZodSchema} params.schema - Zod schema for the expected object.
* @param {string} params.objectName - Name for the object generation context.
* @param {number} [params.maxTokens] - Optional max tokens.
* @param {number} [params.maxRetries] - Max retries for validation/generation.
* @param {string} [params.baseUrl] - Optional Ollama base URL.
* @returns {Promise<object>} The generated object matching the schema.
* @throws {Error} If generation or validation fails.
*/
async function generateOllamaObject({
modelId = DEFAULT_MODEL,
temperature = DEFAULT_TEMPERATURE,
messages,
schema,
objectName = 'generated_object',
maxTokens,
maxRetries = 3,
baseUrl
}) {
log('info', `Generating object with Ollama model: ${modelId}`);
try {
const ollama = getClient(baseUrl);
const result = await generateObject({
model: ollama(modelId),
mode: 'tool',
schema: schema,
messages: messages,
tool: {
name: objectName,
description: `Generate a ${objectName} based on the prompt.`
},
maxOutputTokens: maxTokens,
temperature: temperature,
maxRetries: maxRetries
});
return {
object: result.object,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log(
'error',
`Ollama generateObject ('${objectName}') failed: ${error.message}`
);
throw error;
}
}
export { generateOllamaText, streamOllamaText, generateOllamaObject };

View File

@@ -1,5 +1,5 @@
import { createOpenAI } from '@ai-sdk/openai'; // Using openai provider from Vercel AI SDK
import { generateObject } from 'ai'; // Import necessary functions from 'ai'
import { generateObject, generateText } from 'ai'; // Import necessary functions from 'ai'
import { log } from '../../scripts/modules/utils.js';
function getClient(apiKey, baseUrl) {
@@ -16,7 +16,7 @@ function getClient(apiKey, baseUrl) {
* Generates text using OpenAI models via Vercel AI SDK.
*
* @param {object} params - Parameters including apiKey, modelId, messages, maxTokens, temperature, baseUrl.
* @returns {Promise<string>} The generated text content.
* @returns {Promise<object>} The generated text content and usage.
* @throws {Error} If API call fails.
*/
export async function generateOpenAIText(params) {
@@ -36,15 +36,14 @@ export async function generateOpenAIText(params) {
const openaiClient = getClient(apiKey, baseUrl);
try {
const result = await openaiClient.chat(messages, {
model: modelId,
max_tokens: maxTokens,
const result = await generateText({
model: openaiClient(modelId),
messages,
maxTokens,
temperature
});
const textContent = result?.choices?.[0]?.message?.content?.trim();
if (!textContent) {
if (!result || !result.text) {
log(
'warn',
'OpenAI generateText response did not contain expected content.',
@@ -56,7 +55,13 @@ export async function generateOpenAIText(params) {
'debug',
`OpenAI generateText completed successfully for model: ${modelId}`
);
return textContent;
return {
text: result.text.trim(),
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log(
'error',
@@ -122,7 +127,7 @@ export async function streamOpenAIText(params) {
* Generates structured objects using OpenAI models via Vercel AI SDK.
*
* @param {object} params - Parameters including apiKey, modelId, messages, schema, objectName, maxTokens, temperature, baseUrl.
* @returns {Promise<object>} The generated object matching the schema.
* @returns {Promise<object>} The generated object matching the schema and usage.
* @throws {Error} If API call fails or object generation fails.
*/
export async function generateOpenAIObject(params) {
@@ -166,7 +171,21 @@ export async function generateOpenAIObject(params) {
'debug',
`OpenAI generateObject completed successfully for model: ${modelId}`
);
return result.object;
if (!result || typeof result.object === 'undefined') {
log(
'warn',
'OpenAI generateObject response did not contain expected object.',
{ result }
);
throw new Error('Failed to extract object from OpenAI response.');
}
return {
object: result.object,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log(
'error',

View File

@@ -41,20 +41,53 @@ async function generateOpenRouterText({
const openrouter = getClient(apiKey, baseUrl);
const model = openrouter.chat(modelId); // Assuming chat model
const { text } = await generateText({
// Capture the full result from generateText
const result = await generateText({
model,
messages,
maxTokens,
temperature,
...rest // Pass any additional parameters
});
return text;
// Check if text and usage are present
if (!result || typeof result.text !== 'string') {
log(
'warn',
`OpenRouter generateText for model ${modelId} did not return expected text.`,
{ result }
);
throw new Error('Failed to extract text from OpenRouter response.');
}
if (!result.usage) {
log(
'warn',
`OpenRouter generateText for model ${modelId} did not return usage data.`,
{ result }
);
// Decide if this is critical. For now, let it pass but telemetry will be incomplete.
}
log('debug', `OpenRouter generateText completed for model ${modelId}`);
// Return text and usage
return {
text: result.text,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log(
'error',
`OpenRouter generateText failed for model ${modelId}: ${error.message}`
);
// Re-throw the error for the unified layer to handle retries/fallbacks
let detailedMessage = `OpenRouter generateText failed for model ${modelId}: ${error.message}`;
if (error.cause) {
detailedMessage += `\n\nCause:\n\n ${typeof error.cause === 'string' ? error.cause : JSON.stringify(error.cause)}`;
}
// Vercel AI SDK sometimes wraps the actual API error response in error.data
if (error.data) {
detailedMessage += `\n\nData:\n\n ${JSON.stringify(error.data)}`;
}
// Log the original error object for full context if needed for deeper debugging
log('error', detailedMessage, { originalErrorObject: error });
throw error;
}
}
@@ -100,10 +133,14 @@ async function streamOpenRouterText({
});
return stream;
} catch (error) {
log(
'error',
`OpenRouter streamText failed for model ${modelId}: ${error.message}`
);
let detailedMessage = `OpenRouter streamText failed for model ${modelId}: ${error.message}`;
if (error.cause) {
detailedMessage += `\n\nCause:\n\n ${typeof error.cause === 'string' ? error.cause : JSON.stringify(error.cause)}`;
}
if (error.data) {
detailedMessage += `\n\nData:\n\n ${JSON.stringify(error.data)}`;
}
log('error', detailedMessage, { originalErrorObject: error });
throw error;
}
}
@@ -146,12 +183,12 @@ async function generateOpenRouterObject({
const openrouter = getClient(apiKey, baseUrl);
const model = openrouter.chat(modelId);
const { object } = await generateObject({
// Capture the full result from generateObject
const result = await generateObject({
model,
schema,
mode: 'tool', // Standard mode for most object generation
mode: 'tool',
tool: {
// Define the tool based on the schema
name: objectName,
description: `Generate an object conforming to the ${objectName} schema.`,
parameters: schema
@@ -159,15 +196,45 @@ async function generateOpenRouterObject({
messages,
maxTokens,
temperature,
maxRetries, // Pass maxRetries if supported by generateObject
maxRetries,
...rest
});
return object;
// Check if object and usage are present
if (!result || typeof result.object === 'undefined') {
log(
'warn',
`OpenRouter generateObject for model ${modelId} did not return expected object.`,
{ result }
);
throw new Error('Failed to extract object from OpenRouter response.');
}
if (!result.usage) {
log(
'warn',
`OpenRouter generateObject for model ${modelId} did not return usage data.`,
{ result }
);
}
log('debug', `OpenRouter generateObject completed for model ${modelId}`);
// Return object and usage
return {
object: result.object,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log(
'error',
`OpenRouter generateObject failed for model ${modelId}: ${error.message}`
);
let detailedMessage = `OpenRouter generateObject failed for model ${modelId}: ${error.message}`;
if (error.cause) {
detailedMessage += `\n\nCause:\n\n ${typeof error.cause === 'string' ? error.cause : JSON.stringify(error.cause)}`;
}
if (error.data) {
detailedMessage += `\n\nData:\n\n ${JSON.stringify(error.data)}`;
}
log('error', detailedMessage, { originalErrorObject: error });
throw error;
}
}

View File

@@ -56,7 +56,14 @@ export async function generatePerplexityText({
'debug',
`Perplexity generateText result received. Tokens: ${result.usage.completionTokens}/${result.usage.promptTokens}`
);
return result.text;
return {
text: result.text,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log('error', `Perplexity generateText failed: ${error.message}`);
throw error;
@@ -153,7 +160,13 @@ export async function generatePerplexityObject({
'debug',
`Perplexity generateObject result received. Tokens: ${result.usage.completionTokens}/${result.usage.promptTokens}`
);
return result.object;
return {
object: result.object,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log(
'error',

View File

@@ -31,7 +31,7 @@ function getClient(apiKey, baseUrl) {
* @param {number} [params.maxTokens] - Maximum tokens for the response.
* @param {number} [params.temperature] - Temperature for generation.
* @param {string} [params.baseUrl] - The base URL for the xAI API.
* @returns {Promise<string>} The generated text content.
* @returns {Promise<object>} The generated text content and usage.
* @throws {Error} If the API call fails.
*/
export async function generateXaiText({
@@ -55,7 +55,14 @@ export async function generateXaiText({
'debug',
`xAI generateText result received. Tokens: ${result.usage.completionTokens}/${result.usage.promptTokens}`
);
return result.text;
// Return text and usage
return {
text: result.text,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log('error', `xAI generateText failed: ${error.message}`);
throw error;
@@ -114,7 +121,7 @@ export async function streamXaiText({
* @param {number} [params.temperature] - Temperature for generation.
* @param {number} [params.maxRetries] - Max retries for validation/generation.
* @param {string} [params.baseUrl] - The base URL for the xAI API.
* @returns {Promise<object>} The generated object matching the schema.
* @returns {Promise<object>} The generated object matching the schema and its usage.
* @throws {Error} If generation or validation fails.
*/
export async function generateXaiObject({
@@ -142,7 +149,8 @@ export async function generateXaiObject({
messages: messages,
tool: {
name: objectName,
description: `Generate a ${objectName} based on the prompt.`
description: `Generate a ${objectName} based on the prompt.`,
parameters: schema
},
maxTokens: maxTokens,
temperature: temperature,
@@ -152,7 +160,14 @@ export async function generateXaiObject({
'debug',
`xAI generateObject result received. Tokens: ${result.usage.completionTokens}/${result.usage.promptTokens}`
);
return result.object;
// Return object and usage
return {
object: result.object,
usage: {
inputTokens: result.usage.promptTokens,
outputTokens: result.usage.completionTokens
}
};
} catch (error) {
log(
'error',

View File

@@ -58,6 +58,50 @@ Testing approach:
- Test parameter validation (missing ID, invalid ID format)
- Test error handling for non-existent task IDs
- Test basic command flow with a mock task store
<info added on 2025-05-23T21:02:03.909Z>
## Updated Implementation Approach
Based on code review findings, the implementation approach needs to be revised:
1. Implement the command in `scripts/modules/commands.js` instead of creating a new file
2. Add command registration in the `registerCommands()` function (around line 482)
3. Follow existing command structure pattern:
```javascript
programInstance
.command('generate-test')
.description('Generate test cases for a task using AI')
.option('-f, --file <file>', 'Path to the tasks file', 'tasks/tasks.json')
.option('-i, --id <id>', 'Task ID parameter')
.option('-p, --prompt <text>', 'Additional prompt context')
.option('-r, --research', 'Use research model')
.action(async (options) => {
// Implementation
});
```
4. Use the following utilities:
- `findProjectRoot()` for resolving project paths
- `findTaskById()` for retrieving task data
- `chalk` for formatted console output
5. Implement error handling following the pattern:
```javascript
try {
// Implementation
} catch (error) {
console.error(chalk.red(`Error generating test: ${error.message}`));
if (error.details) {
console.error(chalk.red(error.details));
}
process.exit(1);
}
```
6. Required imports:
- chalk for colored output
- path for file path operations
- findProjectRoot and findTaskById from './utils.js'
</info added on 2025-05-23T21:02:03.909Z>
## 2. Implement AI prompt construction and FastMCP integration [pending]
### Dependencies: 24.1
@@ -76,6 +120,50 @@ Testing approach:
- Test FastMCP integration with mocked responses
- Test error handling for FastMCP failures
- Test response processing with sample FastMCP outputs
<info added on 2025-05-23T21:04:33.890Z>
## AI Integration Implementation
### AI Service Integration
- Use the unified AI service layer, not FastMCP directly
- Implement with `generateObjectService` from '../ai-services-unified.js'
- Define Zod schema for structured test generation output:
- testContent: Complete Jest test file content
- fileName: Suggested filename for the test file
- mockRequirements: External dependencies that need mocking
### Prompt Construction
- Create system prompt defining AI's role as test generator
- Build user prompt with task context (ID, title, description, details)
- Include test strategy and subtasks context in the prompt
- Follow patterns from add-task.js for prompt structure
### Task Analysis
- Retrieve task data using `findTaskById()` from utils.js
- Build context by analyzing task description, details, and testStrategy
- Examine project structure for import patterns
- Parse specific testing requirements from task.testStrategy field
### File System Operations
- Determine output path in same directory as tasks.json
- Generate standardized filename based on task ID
- Use fs.writeFileSync for writing test content to file
### Error Handling & UI
- Implement try/catch blocks for AI service calls
- Display user-friendly error messages with chalk
- Use loading indicators during AI processing
- Support both research and main AI models
### Telemetry
- Pass through telemetryData from AI service response
- Display AI usage summary for CLI output
### Required Dependencies
- generateObjectService from ai-services-unified.js
- UI components (loading indicators, display functions)
- Zod for schema validation
- Chalk for formatted console output
</info added on 2025-05-23T21:04:33.890Z>
## 3. Implement test file generation and output [pending]
### Dependencies: 24.2
@@ -97,4 +185,419 @@ Testing approach:
- Test file system operations with mocked fs module
- Test the complete flow from command input to file output
- Verify generated tests can be executed by Jest
<info added on 2025-05-23T21:06:32.457Z>
## Detailed Implementation Guidelines
### File Naming Convention Implementation
```javascript
function generateTestFileName(taskId, isSubtask = false) {
if (isSubtask) {
// For subtasks like "24.1", generate "task_024_001.test.js"
const [parentId, subtaskId] = taskId.split('.');
return `task_${parentId.padStart(3, '0')}_${subtaskId.padStart(3, '0')}.test.js`;
} else {
// For parent tasks like "24", generate "task_024.test.js"
return `task_${taskId.toString().padStart(3, '0')}.test.js`;
}
}
```
### File Location Strategy
- Place generated test files in the `tasks/` directory alongside task files
- This ensures co-location with task documentation and simplifies implementation
### File Content Structure Template
```javascript
/**
* Test file for Task ${taskId}: ${taskTitle}
* Generated automatically by Task Master
*/
import { jest } from '@jest/globals';
// Additional imports based on task requirements
describe('Task ${taskId}: ${taskTitle}', () => {
beforeEach(() => {
// Setup code
});
afterEach(() => {
// Cleanup code
});
test('should ${testDescription}', () => {
// Test implementation
});
});
```
### Code Formatting Standards
- Follow project's .prettierrc configuration:
- Tab width: 2 spaces (useTabs: true)
- Print width: 80 characters
- Semicolons: Required (semi: true)
- Quotes: Single quotes (singleQuote: true)
- Trailing commas: None (trailingComma: "none")
- Bracket spacing: True
- Arrow parens: Always
### File System Operations Implementation
```javascript
import fs from 'fs';
import path from 'path';
// Determine output path
const tasksDir = path.dirname(tasksPath); // Same directory as tasks.json
const fileName = generateTestFileName(task.id, isSubtask);
const filePath = path.join(tasksDir, fileName);
// Ensure directory exists
if (!fs.existsSync(tasksDir)) {
fs.mkdirSync(tasksDir, { recursive: true });
}
// Write test file with proper error handling
try {
fs.writeFileSync(filePath, formattedTestContent, 'utf8');
} catch (error) {
throw new Error(`Failed to write test file: ${error.message}`);
}
```
### Error Handling for File Operations
```javascript
try {
// File writing operation
fs.writeFileSync(filePath, testContent, 'utf8');
} catch (error) {
if (error.code === 'ENOENT') {
throw new Error(`Directory does not exist: ${path.dirname(filePath)}`);
} else if (error.code === 'EACCES') {
throw new Error(`Permission denied writing to: ${filePath}`);
} else if (error.code === 'ENOSPC') {
throw new Error('Insufficient disk space to write test file');
} else {
throw new Error(`Failed to write test file: ${error.message}`);
}
}
```
### User Feedback Implementation
```javascript
// Success feedback
console.log(chalk.green('✅ Test file generated successfully:'));
console.log(chalk.cyan(` File: ${fileName}`));
console.log(chalk.cyan(` Location: ${filePath}`));
console.log(chalk.gray(` Size: ${testContent.length} characters`));
// Additional info
if (mockRequirements && mockRequirements.length > 0) {
console.log(chalk.yellow(` Mocks needed: ${mockRequirements.join(', ')}`));
}
```
### Content Validation Requirements
1. Jest Syntax Validation:
- Ensure proper describe/test structure
- Validate import statements
- Check for balanced brackets and parentheses
2. Code Quality Checks:
- Verify no syntax errors
- Ensure proper indentation
- Check for required imports
3. Test Completeness:
- At least one test case
- Proper test descriptions
- Appropriate assertions
### Required Dependencies
```javascript
import fs from 'fs';
import path from 'path';
import chalk from 'chalk';
import { log } from '../utils.js';
```
### Integration with Existing Patterns
Follow the pattern from `generate-task-files.js`:
1. Read task data using existing utilities
2. Process content with proper formatting
3. Write files with error handling
4. Provide feedback to user
5. Return success data for MCP integration
</info added on 2025-05-23T21:06:32.457Z>
<info added on 2025-05-23T21:18:25.369Z>
## Corrected Implementation Approach
### Updated File Location Strategy
**CORRECTION**: Tests should go in `/tests/` directory, not `/tasks/` directory.
Based on Jest configuration analysis:
- Jest is configured with `roots: ['<rootDir>/tests']`
- Test pattern: `**/?(*.)+(spec|test).js`
- Current test structure has `/tests/unit/`, `/tests/integration/`, etc.
### Recommended Directory Structure:
```
tests/
├── unit/ # Manual unit tests
├── integration/ # Manual integration tests
├── generated/ # AI-generated tests
│ ├── tasks/ # Generated task tests
│ │ ├── task_024.test.js
│ │ └── task_024_001.test.js
│ └── README.md # Explains generated tests
└── fixtures/ # Test fixtures
```
### Updated File Path Logic:
```javascript
// Determine output path - place in tests/generated/tasks/
const projectRoot = findProjectRoot() || '.';
const testsDir = path.join(projectRoot, 'tests', 'generated', 'tasks');
const fileName = generateTestFileName(task.id, isSubtask);
const filePath = path.join(testsDir, fileName);
// Ensure directory structure exists
if (!fs.existsSync(testsDir)) {
fs.mkdirSync(testsDir, { recursive: true });
}
```
### Testing Framework Configuration
The generate-test command should read the configured testing framework from `.taskmasterconfig`:
```javascript
// Read testing framework from config
const config = getConfig(projectRoot);
const testingFramework = config.testingFramework || 'jest'; // Default to Jest
// Generate different templates based on framework
switch (testingFramework) {
case 'jest':
return generateJestTest(task, context);
case 'mocha':
return generateMochaTest(task, context);
case 'vitest':
return generateVitestTest(task, context);
default:
throw new Error(`Unsupported testing framework: ${testingFramework}`);
}
```
### Framework-Specific Templates
**Jest Template** (current):
```javascript
/**
* Test file for Task ${taskId}: ${taskTitle}
* Generated automatically by Task Master
*/
import { jest } from '@jest/globals';
// Task-specific imports
describe('Task ${taskId}: ${taskTitle}', () => {
beforeEach(() => {
jest.clearAllMocks();
});
test('should ${testDescription}', () => {
// Test implementation
});
});
```
**Mocha Template**:
```javascript
/**
* Test file for Task ${taskId}: ${taskTitle}
* Generated automatically by Task Master
*/
import { expect } from 'chai';
import sinon from 'sinon';
// Task-specific imports
describe('Task ${taskId}: ${taskTitle}', () => {
beforeEach(() => {
sinon.restore();
});
it('should ${testDescription}', () => {
// Test implementation
});
});
```
**Vitest Template**:
```javascript
/**
* Test file for Task ${taskId}: ${taskTitle}
* Generated automatically by Task Master
*/
import { describe, test, expect, vi, beforeEach } from 'vitest';
// Task-specific imports
describe('Task ${taskId}: ${taskTitle}', () => {
beforeEach(() => {
vi.clearAllMocks();
});
test('should ${testDescription}', () => {
// Test implementation
});
});
```
### AI Prompt Enhancement for Mocking
To address the mocking challenge, enhance the AI prompt with project context:
```javascript
const systemPrompt = `You are an expert at generating comprehensive test files. When generating tests, pay special attention to mocking external dependencies correctly.
CRITICAL MOCKING GUIDELINES:
1. Analyze the task requirements to identify external dependencies (APIs, databases, file system, etc.)
2. Mock external dependencies at the module level, not inline
3. Use the testing framework's mocking utilities (jest.mock(), sinon.stub(), vi.mock())
4. Create realistic mock data that matches the expected API responses
5. Test both success and error scenarios for mocked dependencies
6. Ensure mocks are cleared between tests to prevent test pollution
Testing Framework: ${testingFramework}
Project Structure: ${projectStructureContext}
`;
```
### Integration with Future Features
This primitive command design enables:
1. **Automatic test generation**: `task-master add-task --with-test`
2. **Batch test generation**: `task-master generate-tests --all`
3. **Framework-agnostic**: Support multiple testing frameworks
4. **Smart mocking**: LLM analyzes dependencies and generates appropriate mocks
### Updated Implementation Requirements:
1. **Read testing framework** from `.taskmasterconfig`
2. **Create tests directory structure** if it doesn't exist
3. **Generate framework-specific templates** based on configuration
4. **Enhanced AI prompts** with mocking best practices
5. **Project structure analysis** for better import resolution
6. **Mock dependency detection** from task requirements
</info added on 2025-05-23T21:18:25.369Z>
## 4. Implement MCP tool integration for generate-test command [pending]
### Dependencies: 24.3
### Description: Create MCP server tool support for the generate-test command to enable integration with Claude Code and other MCP clients.
### Details:
Implementation steps:
1. Create direct function wrapper in mcp-server/src/core/direct-functions/
2. Create MCP tool registration in mcp-server/src/tools/
3. Add tool to the main tools index
4. Implement proper parameter validation and error handling
5. Ensure telemetry data is properly passed through
6. Add tool to MCP server registration
The MCP tool should support the same parameters as the CLI command:
- id: Task ID to generate tests for
- file: Path to tasks.json file
- research: Whether to use research model
- prompt: Additional context for test generation
Follow the existing pattern from other MCP tools like add-task.js and expand-task.js.
## 5. Add testing framework configuration to project initialization [pending]
### Dependencies: 24.3
### Description: Enhance the init.js process to let users choose their preferred testing framework (Jest, Mocha, Vitest, etc.) and store this choice in .taskmasterconfig for use by the generate-test command.
### Details:
Implementation requirements:
1. **Add Testing Framework Prompt to init.js**:
- Add interactive prompt asking users to choose testing framework
- Support Jest (default), Mocha + Chai, Vitest, Ava, Jasmine
- Include brief descriptions of each framework
- Allow --testing-framework flag for non-interactive mode
2. **Update .taskmasterconfig Template**:
- Add testingFramework field to configuration file
- Include default dependencies for each framework
- Store framework-specific configuration options
3. **Framework-Specific Setup**:
- Generate appropriate config files (jest.config.js, vitest.config.ts, etc.)
- Add framework dependencies to package.json suggestions
- Create sample test file for the chosen framework
4. **Integration Points**:
- Ensure generate-test command reads testingFramework from config
- Add validation to prevent conflicts between framework choices
- Support switching frameworks later via models command or separate config command
This makes the generate-test command truly framework-agnostic and sets up the foundation for --with-test flags in other commands.
<info added on 2025-05-23T21:22:02.048Z>
# Implementation Plan for Testing Framework Integration
## Code Structure
### 1. Update init.js
- Add testing framework prompt after addAliases prompt
- Implement framework selection with descriptions
- Support non-interactive mode with --testing-framework flag
- Create setupTestingFramework() function to handle framework-specific setup
### 2. Create New Module Files
- Create `scripts/modules/testing-frameworks.js` for framework templates and setup
- Add sample test generators for each supported framework
- Implement config file generation for each framework
### 3. Update Configuration Templates
- Modify `assets/.taskmasterconfig` to include testing fields:
```json
"testingFramework": "{{testingFramework}}",
"testingConfig": {
"framework": "{{testingFramework}}",
"setupFiles": [],
"testDirectory": "tests",
"testPattern": "**/*.test.js",
"coverage": {
"enabled": false,
"threshold": 80
}
}
```
### 4. Create Framework-Specific Templates
- `assets/jest.config.template.js`
- `assets/vitest.config.template.ts`
- `assets/.mocharc.template.json`
- `assets/ava.config.template.js`
- `assets/jasmine.json.template`
### 5. Update commands.js
- Add `--testing-framework <framework>` option to init command
- Add validation for supported frameworks
## Error Handling
- Validate selected framework against supported list
- Handle existing config files gracefully with warning/overwrite prompt
- Provide recovery options if framework setup fails
- Add conflict detection for multiple testing frameworks
## Integration Points
- Ensure generate-test command reads testingFramework from config
- Prepare for future --with-test flag in other commands
- Support framework switching via config command
## Testing Requirements
- Unit tests for framework selection logic
- Integration tests for config file generation
- Validation tests for each supported framework
</info added on 2025-05-23T21:22:02.048Z>

View File

@@ -1,6 +1,6 @@
# Task ID: 32
# Title: Implement "learn" Command for Automatic Cursor Rule Generation
# Status: pending
# Status: deferred
# Dependencies: None
# Priority: high
# Description: Create a new "learn" command that analyzes Cursor's chat history and code changes to automatically generate or update rule files in the .cursor/rules directory, following the cursor_rules.mdc template format. This command will help Cursor autonomously improve its ability to follow development standards by learning from successful implementations.

View File

@@ -77,48 +77,263 @@ This implementation should include:
### Description: Design and implement the command-line interface for the dependency graph tool, including argument parsing and help documentation.
### Details:
Define commands for input file specification, output options, filtering, and other user-configurable parameters.
<info added on 2025-05-23T21:02:26.442Z>
Implement a new 'diagram' command (with 'graph' alias) in commands.js following the Commander.js pattern. The command should:
1. Import diagram-generator.js module functions for generating visual representations
2. Support multiple visualization types with --type option:
- dependencies: show task dependency relationships
- subtasks: show task/subtask hierarchy
- flow: show task workflow
- gantt: show timeline visualization
3. Include the following options:
- --task <id>: Filter diagram to show only specified task and its relationships
- --mermaid: Output raw Mermaid markdown for external rendering
- --visual: Render diagram directly in terminal
- --format <format>: Output format (text, svg, png)
4. Implement proper error handling and validation:
- Validate task IDs using existing taskExists() function
- Handle invalid option combinations
- Provide descriptive error messages
5. Integrate with UI components:
- Use ui.js display functions for consistent output formatting
- Apply chalk coloring for terminal output
- Use boxen formatting consistent with other commands
6. Handle file operations:
- Resolve file paths using findProjectRoot() pattern
- Support saving diagrams to files when appropriate
7. Include comprehensive help text following the established pattern in other commands
</info added on 2025-05-23T21:02:26.442Z>
## 2. Graph Layout Algorithms [pending]
### Dependencies: 41.1
### Description: Develop or integrate algorithms to compute optimal node and edge placement for clear and readable graph layouts in a terminal environment.
### Details:
Consider topological sorting, hierarchical, and force-directed layouts suitable for ASCII/Unicode rendering.
<info added on 2025-05-23T21:02:49.434Z>
Create a new diagram-generator.js module in the scripts/modules/ directory following Task Master's module architecture pattern. The module should include:
1. Core functions for generating Mermaid diagrams:
- generateDependencyGraph(tasks, options) - creates flowchart showing task dependencies
- generateSubtaskDiagram(task, options) - creates hierarchy diagram for subtasks
- generateProjectFlow(tasks, options) - creates overall project workflow
- generateGanttChart(tasks, options) - creates timeline visualization
2. Integration with existing Task Master data structures:
- Use the same task object format from task-manager.js
- Leverage dependency analysis from dependency-manager.js
- Support complexity scores from analyze-complexity functionality
- Handle both main tasks and subtasks with proper ID notation (parentId.subtaskId)
3. Layout algorithm considerations for Mermaid:
- Topological sorting for dependency flows
- Hierarchical layouts for subtask trees
- Circular dependency detection and highlighting
- Terminal width-aware formatting for ASCII fallback
4. Export functions following the existing module pattern at the bottom of the file
</info added on 2025-05-23T21:02:49.434Z>
## 3. ASCII/Unicode Rendering Engine [pending]
### Dependencies: 41.2
### Description: Implement rendering logic to display the dependency graph using ASCII and Unicode characters in the terminal.
### Details:
Support for various node and edge styles, and ensure compatibility with different terminal types.
<info added on 2025-05-23T21:03:10.001Z>
Extend ui.js with diagram display functions that integrate with Task Master's existing UI patterns:
1. Implement core diagram display functions:
- displayTaskDiagram(tasksPath, diagramType, options) as the main entry point
- displayMermaidCode(mermaidCode, title) for formatted code output with boxen
- displayDiagramLegend() to explain symbols and colors
2. Ensure UI consistency by:
- Using established chalk color schemes (blue/green/yellow/red)
- Applying boxen for consistent component formatting
- Following existing display function patterns (displayTaskById, displayComplexityReport)
- Utilizing cli-table3 for any diagram metadata tables
3. Address terminal rendering challenges:
- Implement ASCII/Unicode fallback when Mermaid rendering isn't available
- Respect terminal width constraints using process.stdout.columns
- Integrate with loading indicators via startLoadingIndicator/stopLoadingIndicator
4. Update task file generation to include Mermaid diagram sections in individual task files
5. Support both CLI and MCP output formats through the outputFormat parameter
</info added on 2025-05-23T21:03:10.001Z>
## 4. Color Coding Support [pending]
### Dependencies: 41.3
### Description: Add color coding to nodes and edges to visually distinguish types, statuses, or other attributes in the graph.
### Details:
Use ANSI escape codes for color; provide options for colorblind-friendly palettes.
<info added on 2025-05-23T21:03:35.762Z>
Integrate color coding with Task Master's existing status system:
1. Extend getStatusWithColor() in ui.js to support diagram contexts:
- Add 'diagram' parameter to determine rendering context
- Modify color intensity for better visibility in graph elements
2. Implement Task Master's established color scheme using ANSI codes:
- Green (\x1b[32m) for 'done'/'completed' tasks
- Yellow (\x1b[33m) for 'pending' tasks
- Orange (\x1b[38;5;208m) for 'in-progress' tasks
- Red (\x1b[31m) for 'blocked' tasks
- Gray (\x1b[90m) for 'deferred'/'cancelled' tasks
- Magenta (\x1b[35m) for 'review' tasks
3. Create diagram-specific color functions:
- getDependencyLineColor(fromTaskStatus, toTaskStatus) - color dependency arrows based on relationship status
- getNodeBorderColor(task) - style node borders using priority/complexity indicators
- getSubtaskGroupColor(parentTask) - visually group related subtasks
4. Integrate complexity visualization:
- Use getComplexityWithColor() for node background or border thickness
- Map complexity scores to visual weight in the graph
5. Ensure accessibility:
- Add text-based indicators (symbols like ✓, ⚠, ⏳) alongside colors
- Implement colorblind-friendly palettes as user-selectable option
- Include shape variations for different statuses
6. Follow existing ANSI patterns:
- Maintain consistency with terminal UI color usage
- Reuse color constants from the codebase
7. Support graceful degradation:
- Check terminal capabilities using existing detection
- Provide monochrome fallbacks with distinctive patterns
- Use bold/underline as alternatives when colors unavailable
</info added on 2025-05-23T21:03:35.762Z>
## 5. Circular Dependency Detection [pending]
### Dependencies: 41.2
### Description: Implement algorithms to detect and highlight circular dependencies within the graph.
### Details:
Clearly mark cycles in the rendered output and provide warnings or errors as appropriate.
<info added on 2025-05-23T21:04:20.125Z>
Integrate with Task Master's existing circular dependency detection:
1. Import the dependency detection logic from dependency-manager.js module
2. Utilize the findCycles function from utils.js or dependency-manager.js
3. Extend validateDependenciesCommand functionality to highlight cycles in diagrams
Visual representation in Mermaid diagrams:
- Apply red/bold styling to nodes involved in dependency cycles
- Add warning annotations to cyclic edges
- Implement cycle path highlighting with distinctive line styles
Integration with validation workflow:
- Execute dependency validation before diagram generation
- Display cycle warnings consistent with existing CLI error messaging
- Utilize chalk.red and boxen for error highlighting following established patterns
Add diagram legend entries that explain cycle notation and warnings
Ensure detection of cycles in both:
- Main task dependencies
- Subtask dependencies within parent tasks
Follow Task Master's error handling patterns for graceful cycle reporting and user notification
</info added on 2025-05-23T21:04:20.125Z>
## 6. Filtering and Search Functionality [pending]
### Dependencies: 41.1, 41.2
### Description: Enable users to filter nodes and edges by criteria such as name, type, or dependency depth.
### Details:
Support command-line flags for filtering and interactive search if feasible.
<info added on 2025-05-23T21:04:57.811Z>
Implement MCP tool integration for task dependency visualization:
1. Create task_diagram.js in mcp-server/src/tools/ following existing tool patterns
2. Implement taskDiagramDirect.js in mcp-server/src/core/direct-functions/
3. Use Zod schema for parameter validation:
- diagramType (dependencies, subtasks, flow, gantt)
- taskId (optional string)
- format (mermaid, text, json)
- includeComplexity (boolean)
4. Structure response data with:
- mermaidCode for client-side rendering
- metadata (nodeCount, edgeCount, cycleWarnings)
- support for both task-specific and project-wide diagrams
5. Integrate with session management and project root handling
6. Implement error handling using handleApiResult pattern
7. Register the tool in tools/index.js
Maintain compatibility with existing command-line flags for filtering and interactive search.
</info added on 2025-05-23T21:04:57.811Z>
## 7. Accessibility Features [pending]
### Dependencies: 41.3, 41.4
### Description: Ensure the tool is accessible, including support for screen readers, high-contrast modes, and keyboard navigation.
### Details:
Provide alternative text output and ensure color is not the sole means of conveying information.
<info added on 2025-05-23T21:05:54.584Z>
# Accessibility and Export Integration
## Accessibility Features
- Provide alternative text output for visual elements
- Ensure color is not the sole means of conveying information
- Support keyboard navigation through the dependency graph
- Add screen reader compatible node descriptions
## Export Integration
- Extend generateTaskFiles function in task-manager.js to include Mermaid diagram sections
- Add Mermaid code blocks to task markdown files under ## Diagrams header
- Follow existing task file generation patterns and markdown structure
- Support multiple diagram types per task file:
* Task dependencies (prerequisite relationships)
* Subtask hierarchy visualization
* Task flow context in project workflow
- Integrate with existing fs module file writing operations
- Add diagram export options to the generate command in commands.js
- Support SVG and PNG export using Mermaid CLI when available
- Implement error handling for diagram generation failures
- Reference exported diagrams in task markdown with proper paths
- Update CLI generate command with options like --include-diagrams
</info added on 2025-05-23T21:05:54.584Z>
## 8. Performance Optimization [pending]
### Dependencies: 41.2, 41.3, 41.4, 41.5, 41.6
### Description: Profile and optimize the tool for large graphs to ensure responsive rendering and low memory usage.
### Details:
Implement lazy loading, efficient data structures, and parallel processing where appropriate.
<info added on 2025-05-23T21:06:14.533Z>
# Mermaid Library Integration and Terminal-Specific Handling
## Package Dependencies
- Add mermaid package as an optional dependency in package.json for generating raw Mermaid diagram code
- Consider mermaid-cli for SVG/PNG conversion capabilities
- Evaluate terminal-image or similar libraries for terminals with image support
- Explore ascii-art-ansi or box-drawing character libraries for text-only terminals
## Terminal Capability Detection
- Leverage existing terminal detection from ui.js to assess rendering capabilities
- Implement detection for:
- iTerm2 and other terminals with image protocol support
- Terminals with Unicode/extended character support
- Basic terminals requiring pure ASCII output
## Rendering Strategy with Fallbacks
1. Primary: Generate raw Mermaid code for user copy/paste
2. Secondary: Render simplified ASCII tree/flow representation using box characters
3. Tertiary: Present dependencies in tabular format for minimal terminals
## Implementation Approach
- Use dynamic imports for optional rendering libraries to maintain lightweight core
- Implement graceful degradation when optional packages aren't available
- Follow Task Master's philosophy of minimal dependencies
- Ensure performance optimization through lazy loading where appropriate
- Design modular rendering components that can be swapped based on terminal capabilities
</info added on 2025-05-23T21:06:14.533Z>
## 9. Documentation [pending]
### Dependencies: 41.1, 41.2, 41.3, 41.4, 41.5, 41.6, 41.7, 41.8
@@ -131,4 +346,28 @@ Include examples, troubleshooting, and contribution guidelines.
### Description: Develop automated tests for all major features, including CLI parsing, layout correctness, rendering, color coding, filtering, and cycle detection.
### Details:
Include unit, integration, and regression tests; validate accessibility and performance claims.
<info added on 2025-05-23T21:08:36.329Z>
# Documentation Tasks for Visual Task Dependency Graph
## User Documentation
1. Update README.md with diagram command documentation following existing command reference format
2. Add examples to CLI command help text in commands.js matching patterns from other commands
3. Create docs/diagrams.md with detailed usage guide including:
- Command examples for each diagram type
- Mermaid code samples and output
- Terminal compatibility notes
- Integration with task workflow examples
- Troubleshooting section for common diagram rendering issues
- Accessibility features and terminal fallback options
## Developer Documentation
1. Update MCP tool documentation to include the new task_diagram tool
2. Add JSDoc comments to all new functions following existing code standards
3. Create contributor documentation for extending diagram types
4. Update API documentation for any new MCP interface endpoints
## Integration Documentation
1. Document integration with existing commands (analyze-complexity, generate, etc.)
2. Provide examples showing how diagrams complement other Task Master features
</info added on 2025-05-23T21:08:36.329Z>

View File

@@ -1,6 +1,6 @@
# Task ID: 43
# Title: Add Research Flag to Add-Task Command
# Status: pending
# Status: done
# Dependencies: None
# Priority: medium
# Description: Implement a '--research' flag for the add-task command that enables users to automatically generate research-related subtasks when creating a new task.

View File

@@ -48,3 +48,47 @@ Testing should verify both the functionality and security of the webhook system:
5. Manual verification:
- Set up integrations with common services (GitHub, Slack, etc.) to verify real-world functionality
- Verify that the CLI interface for managing webhooks works as expected
# Subtasks:
## 1. Design webhook registration API endpoints [pending]
### Dependencies: None
### Description: Create API endpoints for registering, updating, and deleting webhook subscriptions
### Details:
Implement RESTful API endpoints that allow clients to register webhook URLs, specify event types they want to subscribe to, and manage their subscriptions. Include validation for URL format, required parameters, and authentication requirements.
## 2. Implement webhook authentication and security measures [pending]
### Dependencies: 44.1
### Description: Develop security mechanisms for webhook verification and payload signing
### Details:
Implement signature verification using HMAC, rate limiting to prevent abuse, IP whitelisting options, and webhook secret management. Create a secure token system for webhook verification and implement TLS for all webhook communications.
## 3. Create event trigger definition interface [pending]
### Dependencies: None
### Description: Design and implement the interface for defining event triggers and conditions
### Details:
Develop a user interface or API that allows defining what events should trigger webhooks. Include support for conditional triggers based on event properties, filtering options, and the ability to specify payload formats.
## 4. Build event processing and queuing system [pending]
### Dependencies: 44.1, 44.3
### Description: Implement a robust system for processing and queuing events before webhook delivery
### Details:
Create an event queue using a message broker (like RabbitMQ or Kafka) to handle high volumes of events. Implement event deduplication, prioritization, and persistence to ensure reliable delivery even during system failures.
## 5. Develop webhook delivery and retry mechanism [pending]
### Dependencies: 44.2, 44.4
### Description: Create a reliable system for webhook delivery with retry logic and failure handling
### Details:
Implement exponential backoff retry logic, configurable retry attempts, and dead letter queues for failed deliveries. Add monitoring for webhook delivery success rates and performance metrics. Include timeout handling for unresponsive webhook endpoints.
## 6. Implement comprehensive error handling and logging [pending]
### Dependencies: 44.5
### Description: Create robust error handling, logging, and monitoring for the webhook system
### Details:
Develop detailed error logging for webhook failures, including response codes, error messages, and timing information. Implement alerting for critical failures and create a dashboard for monitoring system health. Add debugging tools for webhook delivery issues.
## 7. Create webhook testing and simulation tools [pending]
### Dependencies: 44.3, 44.5, 44.6
### Description: Develop tools for testing webhook integrations and simulating event triggers
### Details:
Build a webhook testing console that allows manual triggering of events, viewing delivery history, and replaying failed webhooks. Create a webhook simulator for developers to test their endpoint implementations without generating real system events.

View File

@@ -53,3 +53,35 @@ Testing should cover the following scenarios:
- Test the interaction with other flags and commands
Create mock GitHub API responses for testing to avoid hitting rate limits during development and testing. Use environment variables to configure test credentials if needed.
# Subtasks:
## 1. Design GitHub API integration architecture [pending]
### Dependencies: None
### Description: Create a technical design document outlining the architecture for GitHub API integration, including authentication flow, rate limiting considerations, and error handling strategies.
### Details:
Document should include: API endpoints to be used, authentication method (OAuth vs Personal Access Token), data flow diagrams, and security considerations. Research GitHub API rate limits and implement appropriate throttling mechanisms.
## 2. Implement GitHub URL parsing and validation [pending]
### Dependencies: 45.1
### Description: Create a module to parse and validate GitHub issue URLs, extracting repository owner, repository name, and issue number.
### Details:
Handle various GitHub URL formats (e.g., github.com/owner/repo/issues/123, github.com/owner/repo/pull/123). Implement validation to ensure the URL points to a valid issue or pull request. Return structured data with owner, repo, and issue number for valid URLs.
## 3. Develop GitHub API client for issue fetching [pending]
### Dependencies: 45.1, 45.2
### Description: Create a service to authenticate with GitHub and fetch issue details using the GitHub REST API.
### Details:
Implement authentication using GitHub Personal Access Tokens or OAuth. Handle API responses, including error cases (rate limiting, authentication failures, not found). Extract relevant issue data: title, description, labels, assignees, and comments.
## 4. Create task formatter for GitHub issues [pending]
### Dependencies: 45.3
### Description: Develop a formatter to convert GitHub issue data into the application's task format.
### Details:
Map GitHub issue fields to task fields (title, description, etc.). Convert GitHub markdown to the application's supported format. Handle special GitHub features like issue references and user mentions. Generate appropriate tags based on GitHub labels.
## 5. Implement end-to-end import flow with UI [pending]
### Dependencies: 45.4
### Description: Create the user interface and workflow for importing GitHub issues, including progress indicators and error handling.
### Details:
Design and implement UI for URL input and import confirmation. Show loading states during API calls. Display meaningful error messages for various failure scenarios. Allow users to review and modify imported task details before saving. Add automated tests for the entire import flow.

View File

@@ -53,3 +53,35 @@ The command should follow the same design patterns as `analyze-complexity` for c
- The ranking should prioritize high-impact, high-confidence, easy-to-implement tasks
- Performance should be acceptable even with a large number of tasks
- The command should handle edge cases gracefully (empty projects, missing data)
# Subtasks:
## 1. Design ICE scoring algorithm [pending]
### Dependencies: None
### Description: Create the algorithm for calculating Impact, Confidence, and Ease scores for tasks
### Details:
Define the mathematical formula for ICE scoring (Impact × Confidence × Ease). Determine the scale for each component (e.g., 1-10). Create rules for how AI will evaluate each component based on task attributes like complexity, dependencies, and descriptions. Document the scoring methodology for future reference.
## 2. Implement AI integration for ICE scoring [pending]
### Dependencies: 46.1
### Description: Develop the AI component that will analyze tasks and generate ICE scores
### Details:
Create prompts for the AI to evaluate Impact, Confidence, and Ease. Implement error handling for AI responses. Add caching to prevent redundant AI calls. Ensure the AI provides justification for each score component. Test with various task types to ensure consistent scoring.
## 3. Create report file generator [pending]
### Dependencies: 46.2
### Description: Build functionality to generate a structured report file with ICE analysis results
### Details:
Design the report file format (JSON, CSV, or Markdown). Implement sorting of tasks by ICE score. Include task details, individual I/C/E scores, and final ICE score in the report. Add timestamp and project metadata. Create a function to save the report to the specified location.
## 4. Implement CLI rendering for ICE analysis [pending]
### Dependencies: 46.3
### Description: Develop the command-line interface for displaying ICE analysis results
### Details:
Design a tabular format for displaying ICE scores in the terminal. Use color coding to highlight high/medium/low priority tasks. Implement filtering options (by score range, task type, etc.). Add sorting capabilities. Create a summary view that shows top N tasks by ICE score.
## 5. Integrate with existing complexity reports [pending]
### Dependencies: 46.3, 46.4
### Description: Connect the ICE analysis functionality with the existing complexity reporting system
### Details:
Modify the existing complexity report to include ICE scores. Ensure consistent formatting between complexity and ICE reports. Add cross-referencing between reports. Update the command-line help documentation. Test the integrated system with various project sizes and configurations.

Some files were not shown because too many files have changed in this diff Show More