docs: update changeset with model config while preserving existing changes
This commit is contained in:
161
tasks/tasks.json
161
tasks/tasks.json
@@ -2518,7 +2518,68 @@
|
||||
"dependencies": [],
|
||||
"priority": "medium",
|
||||
"details": "Develop a comprehensive test coverage tracking system with the following components:\n\n1. Create a `tests.json` file structure in the `tasks/` directory that associates test suites and individual tests with specific task IDs or subtask IDs.\n\n2. Build a generator that processes code coverage reports and updates the `tests.json` file to maintain an accurate mapping between tests and tasks.\n\n3. Implement a parser that can extract code coverage information from standard coverage tools (like Istanbul/nyc, Jest coverage reports) and convert it to the task-based format.\n\n4. Create CLI commands that can:\n - Display test coverage for a specific task/subtask\n - Identify untested code related to a particular task\n - Generate test suggestions for uncovered code using LLMs\n\n5. Extend the MCP (Mission Control Panel) to visualize test coverage by task, showing percentage covered and highlighting areas needing tests.\n\n6. Develop an automated test generation system that uses LLMs to create targeted tests for specific uncovered code sections within a task.\n\n7. Implement a workflow that integrates with the existing task management system, allowing developers to see test requirements alongside implementation requirements.\n\nThe system should maintain bidirectional relationships: from tests to tasks and from tasks to the code they affect, enabling precise tracking of what needs testing for each development task.",
|
||||
"testStrategy": "Testing should verify all components of the test coverage tracking system:\n\n1. **File Structure Tests**: Verify the `tests.json` file is correctly created and follows the expected schema with proper task/test relationships.\n\n2. **Coverage Report Processing**: Create mock coverage reports and verify they are correctly parsed and integrated into the `tests.json` file.\n\n3. **CLI Command Tests**: Test each CLI command with various inputs:\n - Test coverage display for existing tasks\n - Edge cases like tasks with no tests\n - Tasks with partial coverage\n\n4. **Integration Tests**: Verify the entire workflow from code changes to coverage reporting to task-based test suggestions.\n\n5. **LLM Test Generation**: Validate that generated tests actually cover the intended code paths by running them against the codebase.\n\n6. **UI/UX Tests**: Ensure the MCP correctly displays coverage information and that the interface for viewing and managing test coverage is intuitive.\n\n7. **Performance Tests**: Measure the performance impact of the coverage tracking system, especially for large codebases.\n\nCreate a test suite that can run in CI/CD to ensure the test coverage tracking system itself maintains high coverage and reliability."
|
||||
"testStrategy": "Testing should verify all components of the test coverage tracking system:\n\n1. **File Structure Tests**: Verify the `tests.json` file is correctly created and follows the expected schema with proper task/test relationships.\n\n2. **Coverage Report Processing**: Create mock coverage reports and verify they are correctly parsed and integrated into the `tests.json` file.\n\n3. **CLI Command Tests**: Test each CLI command with various inputs:\n - Test coverage display for existing tasks\n - Edge cases like tasks with no tests\n - Tasks with partial coverage\n\n4. **Integration Tests**: Verify the entire workflow from code changes to coverage reporting to task-based test suggestions.\n\n5. **LLM Test Generation**: Validate that generated tests actually cover the intended code paths by running them against the codebase.\n\n6. **UI/UX Tests**: Ensure the MCP correctly displays coverage information and that the interface for viewing and managing test coverage is intuitive.\n\n7. **Performance Tests**: Measure the performance impact of the coverage tracking system, especially for large codebases.\n\nCreate a test suite that can run in CI/CD to ensure the test coverage tracking system itself maintains high coverage and reliability.",
|
||||
"subtasks": [
|
||||
{
|
||||
"id": 1,
|
||||
"title": "Design and implement tests.json data structure",
|
||||
"description": "Create a comprehensive data structure that maps tests to tasks/subtasks and tracks coverage metrics. This structure will serve as the foundation for the entire test coverage tracking system.",
|
||||
"dependencies": [],
|
||||
"details": "1. Design a JSON schema for tests.json that includes: test IDs, associated task/subtask IDs, coverage percentages, test types (unit/integration/e2e), file paths, and timestamps.\n2. Implement bidirectional relationships by creating references between tests.json and tasks.json.\n3. Define fields for tracking statement coverage, branch coverage, and function coverage per task.\n4. Add metadata fields for test quality metrics beyond coverage (complexity, mutation score).\n5. Create utility functions to read/write/update the tests.json file.\n6. Implement validation logic to ensure data integrity between tasks and tests.\n7. Add version control compatibility by using relative paths and stable identifiers.\n8. Test the data structure with sample data representing various test scenarios.\n9. Document the schema with examples and usage guidelines.",
|
||||
"status": "pending",
|
||||
"parentTaskId": 50
|
||||
},
|
||||
{
|
||||
"id": 2,
|
||||
"title": "Develop coverage report parser and adapter system",
|
||||
"description": "Create a framework-agnostic system that can parse coverage reports from various testing tools and convert them to the standardized task-based format in tests.json.",
|
||||
"dependencies": [
|
||||
1
|
||||
],
|
||||
"details": "1. Research and document output formats for major coverage tools (Istanbul/nyc, Jest, Pytest, JaCoCo).\n2. Design a normalized intermediate coverage format that any test tool can map to.\n3. Implement adapter classes for each major testing framework that convert their reports to the intermediate format.\n4. Create a parser registry that can automatically detect and use the appropriate parser based on input format.\n5. Develop a mapping algorithm that associates coverage data with specific tasks based on file paths and code blocks.\n6. Implement file path normalization to handle different operating systems and environments.\n7. Add error handling for malformed or incomplete coverage reports.\n8. Create unit tests for each adapter using sample coverage reports.\n9. Implement a command-line interface for manual parsing and testing.\n10. Document the extension points for adding custom coverage tool adapters.",
|
||||
"status": "pending",
|
||||
"parentTaskId": 50
|
||||
},
|
||||
{
|
||||
"id": 3,
|
||||
"title": "Build coverage tracking and update generator",
|
||||
"description": "Create a system that processes code coverage reports, maps them to tasks, and updates the tests.json file to maintain accurate coverage tracking over time.",
|
||||
"dependencies": [
|
||||
1,
|
||||
2
|
||||
],
|
||||
"details": "1. Implement a coverage processor that takes parsed coverage data and maps it to task IDs.\n2. Create algorithms to calculate aggregate coverage metrics at the task and subtask levels.\n3. Develop a change detection system that identifies when tests or code have changed and require updates.\n4. Implement incremental update logic to avoid reprocessing unchanged tests.\n5. Create a task-code association system that maps specific code blocks to tasks for granular tracking.\n6. Add historical tracking to monitor coverage trends over time.\n7. Implement hooks for CI/CD integration to automatically update coverage after test runs.\n8. Create a conflict resolution strategy for when multiple tests cover the same code areas.\n9. Add performance optimizations for large codebases and test suites.\n10. Develop unit tests that verify correct aggregation and mapping of coverage data.\n11. Document the update workflow with sequence diagrams and examples.",
|
||||
"status": "pending",
|
||||
"parentTaskId": 50
|
||||
},
|
||||
{
|
||||
"id": 4,
|
||||
"title": "Implement CLI commands for coverage operations",
|
||||
"description": "Create a set of command-line interface tools that allow developers to view, analyze, and manage test coverage at the task level.",
|
||||
"dependencies": [
|
||||
1,
|
||||
2,
|
||||
3
|
||||
],
|
||||
"details": "1. Design a cohesive CLI command structure with subcommands for different coverage operations.\n2. Implement 'coverage show' command to display test coverage for a specific task/subtask.\n3. Create 'coverage gaps' command to identify untested code related to a particular task.\n4. Develop 'coverage history' command to show how coverage has changed over time.\n5. Implement 'coverage generate' command that uses LLMs to suggest tests for uncovered code.\n6. Add filtering options to focus on specific test types or coverage thresholds.\n7. Create formatted output options (JSON, CSV, markdown tables) for integration with other tools.\n8. Implement colorized terminal output for better readability of coverage reports.\n9. Add batch processing capabilities for running operations across multiple tasks.\n10. Create comprehensive help documentation and examples for each command.\n11. Develop unit and integration tests for CLI commands.\n12. Document command usage patterns and example workflows.",
|
||||
"status": "pending",
|
||||
"parentTaskId": 50
|
||||
},
|
||||
{
|
||||
"id": 5,
|
||||
"title": "Develop AI-powered test generation system",
|
||||
"description": "Create an intelligent system that uses LLMs to generate targeted tests for uncovered code sections within tasks, integrating with the existing task management workflow.",
|
||||
"dependencies": [
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
4
|
||||
],
|
||||
"details": "1. Design prompt templates for different test types (unit, integration, E2E) that incorporate task descriptions and code context.\n2. Implement code analysis to extract relevant context from uncovered code sections.\n3. Create a test generation pipeline that combines task metadata, code context, and coverage gaps.\n4. Develop strategies for maintaining test context across task changes and updates.\n5. Implement test quality evaluation to ensure generated tests are meaningful and effective.\n6. Create a feedback mechanism to improve prompts based on acceptance or rejection of generated tests.\n7. Add support for different testing frameworks and languages through templating.\n8. Implement caching to avoid regenerating similar tests.\n9. Create a workflow that integrates with the task management system to suggest tests alongside implementation requirements.\n10. Develop specialized generation modes for edge cases, regression tests, and performance tests.\n11. Add configuration options for controlling test generation style and coverage goals.\n12. Create comprehensive documentation on how to use and extend the test generation system.\n13. Implement evaluation metrics to track the effectiveness of AI-generated tests.",
|
||||
"status": "pending",
|
||||
"parentTaskId": 50
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 51,
|
||||
@@ -2528,7 +2589,63 @@
|
||||
"dependencies": [],
|
||||
"priority": "medium",
|
||||
"details": "Develop a new command called 'research' that integrates with Perplexity AI's API to fetch information on specified topics. The command should:\n\n1. Accept the following parameters:\n - A search query string (required)\n - A task or subtask ID for context (optional)\n - A custom prompt to guide the research (optional)\n\n2. When a task/subtask ID is provided, extract relevant information from it to enrich the research query with context.\n\n3. Implement proper API integration with Perplexity, including authentication and rate limiting handling.\n\n4. Format and display the research results in a readable format in the terminal, with options to:\n - Save the results to a file\n - Copy results to clipboard\n - Generate a summary of key points\n\n5. Cache research results to avoid redundant API calls for the same queries.\n\n6. Provide a configuration option to set the depth/detail level of research (quick overview vs. comprehensive).\n\n7. Handle errors gracefully, especially network issues or API limitations.\n\nThe command should follow the existing CLI structure and maintain consistency with other commands in the system.",
|
||||
"testStrategy": "1. Unit tests:\n - Test the command with various combinations of parameters (query only, query+task, query+custom prompt, all parameters)\n - Mock the Perplexity API responses to test different scenarios (successful response, error response, rate limiting)\n - Verify that task context is correctly extracted and incorporated into the research query\n\n2. Integration tests:\n - Test actual API calls to Perplexity with valid credentials (using a test account)\n - Verify the caching mechanism works correctly for repeated queries\n - Test error handling with intentionally invalid requests\n\n3. User acceptance testing:\n - Have team members use the command for real research needs and provide feedback\n - Verify the command works in different network environments\n - Test the command with very long queries and responses\n\n4. Performance testing:\n - Measure and optimize response time for queries\n - Test behavior under poor network conditions\n\nValidate that the research results are properly formatted, readable, and that all output options (save, copy) function correctly."
|
||||
"testStrategy": "1. Unit tests:\n - Test the command with various combinations of parameters (query only, query+task, query+custom prompt, all parameters)\n - Mock the Perplexity API responses to test different scenarios (successful response, error response, rate limiting)\n - Verify that task context is correctly extracted and incorporated into the research query\n\n2. Integration tests:\n - Test actual API calls to Perplexity with valid credentials (using a test account)\n - Verify the caching mechanism works correctly for repeated queries\n - Test error handling with intentionally invalid requests\n\n3. User acceptance testing:\n - Have team members use the command for real research needs and provide feedback\n - Verify the command works in different network environments\n - Test the command with very long queries and responses\n\n4. Performance testing:\n - Measure and optimize response time for queries\n - Test behavior under poor network conditions\n\nValidate that the research results are properly formatted, readable, and that all output options (save, copy) function correctly.",
|
||||
"subtasks": [
|
||||
{
|
||||
"id": 1,
|
||||
"title": "Create Perplexity API Client Service",
|
||||
"description": "Develop a service module that handles all interactions with the Perplexity AI API, including authentication, request formatting, and response handling.",
|
||||
"dependencies": [],
|
||||
"details": "Implementation details:\n1. Create a new service file `services/perplexityService.js`\n2. Implement authentication using the PERPLEXITY_API_KEY from environment variables\n3. Create functions for making API requests to Perplexity with proper error handling:\n - `queryPerplexity(searchQuery, options)` - Main function to query the API\n - `handleRateLimiting(response)` - Logic to handle rate limits with exponential backoff\n4. Implement response parsing and formatting functions\n5. Add proper error handling for network issues, authentication problems, and API limitations\n6. Create a simple caching mechanism using a Map or object to store recent query results\n7. Add configuration options for different detail levels (quick vs comprehensive)\n\nTesting approach:\n- Write unit tests using Jest to verify API client functionality with mocked responses\n- Test error handling with simulated network failures\n- Verify caching mechanism works correctly\n- Test with various query types and options",
|
||||
"status": "pending",
|
||||
"parentTaskId": 51
|
||||
},
|
||||
{
|
||||
"id": 2,
|
||||
"title": "Implement Task Context Extraction Logic",
|
||||
"description": "Create utility functions to extract relevant context from tasks and subtasks to enhance research queries with project-specific information.",
|
||||
"dependencies": [],
|
||||
"details": "Implementation details:\n1. Create a new utility file `utils/contextExtractor.js`\n2. Implement a function `extractTaskContext(taskId)` that:\n - Loads the task/subtask data from tasks.json\n - Extracts relevant information (title, description, details)\n - Formats the extracted information into a context string for research\n3. Add logic to handle both task and subtask IDs\n4. Implement a function to combine extracted context with the user's search query\n5. Create a function to identify and extract key terminology from tasks\n6. Add functionality to include parent task context when a subtask ID is provided\n7. Implement proper error handling for invalid task IDs\n\nTesting approach:\n- Write unit tests to verify context extraction from sample tasks\n- Test with various task structures and content types\n- Verify error handling for missing or invalid tasks\n- Test the quality of extracted context with sample queries",
|
||||
"status": "pending",
|
||||
"parentTaskId": 51
|
||||
},
|
||||
{
|
||||
"id": 3,
|
||||
"title": "Build Research Command CLI Interface",
|
||||
"description": "Implement the Commander.js command structure for the 'research' command with all required options and parameters.",
|
||||
"dependencies": [
|
||||
1,
|
||||
2
|
||||
],
|
||||
"details": "Implementation details:\n1. Create a new command file `commands/research.js`\n2. Set up the Commander.js command structure with the following options:\n - Required search query parameter\n - `--task` or `-t` option for task/subtask ID\n - `--prompt` or `-p` option for custom research prompt\n - `--save` or `-s` option to save results to a file\n - `--copy` or `-c` option to copy results to clipboard\n - `--summary` or `-m` option to generate a summary\n - `--detail` or `-d` option to set research depth (default: medium)\n3. Implement command validation logic\n4. Connect the command to the Perplexity service created in subtask 1\n5. Integrate the context extraction logic from subtask 2\n6. Register the command in the main CLI application\n7. Add help text and examples\n\nTesting approach:\n- Test command registration and option parsing\n- Verify command validation logic works correctly\n- Test with various combinations of options\n- Ensure proper error messages for invalid inputs",
|
||||
"status": "pending",
|
||||
"parentTaskId": 51
|
||||
},
|
||||
{
|
||||
"id": 4,
|
||||
"title": "Implement Results Processing and Output Formatting",
|
||||
"description": "Create functionality to process, format, and display research results in the terminal with options for saving, copying, and summarizing.",
|
||||
"dependencies": [
|
||||
1,
|
||||
3
|
||||
],
|
||||
"details": "Implementation details:\n1. Create a new module `utils/researchFormatter.js`\n2. Implement terminal output formatting with:\n - Color-coded sections for better readability\n - Proper text wrapping for terminal width\n - Highlighting of key points\n3. Add functionality to save results to a file:\n - Create a `research-results` directory if it doesn't exist\n - Save results with timestamp and query in filename\n - Support multiple formats (text, markdown, JSON)\n4. Implement clipboard copying using a library like `clipboardy`\n5. Create a summarization function that extracts key points from research results\n6. Add progress indicators during API calls\n7. Implement pagination for long results\n\nTesting approach:\n- Test output formatting with various result lengths and content types\n- Verify file saving functionality creates proper files with correct content\n- Test clipboard functionality\n- Verify summarization produces useful results",
|
||||
"status": "pending",
|
||||
"parentTaskId": 51
|
||||
},
|
||||
{
|
||||
"id": 5,
|
||||
"title": "Implement Caching and Results Management System",
|
||||
"description": "Create a persistent caching system for research results and implement functionality to manage, retrieve, and reference previous research.",
|
||||
"dependencies": [
|
||||
1,
|
||||
4
|
||||
],
|
||||
"details": "Implementation details:\n1. Create a research results database using a simple JSON file or SQLite:\n - Store queries, timestamps, and results\n - Index by query and related task IDs\n2. Implement cache retrieval and validation:\n - Check for cached results before making API calls\n - Validate cache freshness with configurable TTL\n3. Add commands to manage research history:\n - List recent research queries\n - Retrieve past research by ID or search term\n - Clear cache or delete specific entries\n4. Create functionality to associate research results with tasks:\n - Add metadata linking research to specific tasks\n - Implement command to show all research related to a task\n5. Add configuration options for cache behavior in user settings\n6. Implement export/import functionality for research data\n\nTesting approach:\n- Test cache storage and retrieval with various queries\n- Verify cache invalidation works correctly\n- Test history management commands\n- Verify task association functionality\n- Test with large cache sizes to ensure performance",
|
||||
"status": "pending",
|
||||
"parentTaskId": 51
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 52,
|
||||
@@ -2569,6 +2686,46 @@
|
||||
"priority": "medium",
|
||||
"details": "This task involves modifying the command parsing logic in commands.js to support positional arguments as an alternative to the current flag-based approach. The implementation should:\n\n1. Update the argument parsing logic to detect when arguments are provided without flag prefixes (--)\n2. Map positional arguments to their corresponding parameters based on their order\n3. For each command in commands.js, define a consistent positional argument order (e.g., for set-status: first arg = id, second arg = status)\n4. Maintain backward compatibility with the existing flag-based syntax\n5. Handle edge cases such as:\n - Commands with optional parameters\n - Commands with multiple parameters\n - Commands that accept arrays or complex data types\n6. Update the help text for each command to show both usage patterns\n7. Modify the cursor rules to work with both input styles\n8. Ensure error messages are clear when positional arguments are provided incorrectly\n\nExample implementations:\n- `task-master set-status 25 done` should be equivalent to `task-master set-status --id=25 --status=done`\n- `task-master add-task \"New task name\" \"Task description\"` should be equivalent to `task-master add-task --name=\"New task name\" --description=\"Task description\"`\n\nThe code should prioritize maintaining the existing functionality while adding this new capability.",
|
||||
"testStrategy": "Testing should verify both the new positional argument functionality and continued support for flag-based syntax:\n\n1. Unit tests:\n - Create tests for each command that verify it works with both positional and flag-based arguments\n - Test edge cases like missing arguments, extra arguments, and mixed usage (some positional, some flags)\n - Verify help text correctly displays both usage patterns\n\n2. Integration tests:\n - Test the full CLI with various commands using both syntax styles\n - Verify that output is identical regardless of which syntax is used\n - Test commands with different numbers of arguments\n\n3. Manual testing:\n - Run through a comprehensive set of real-world usage scenarios with both syntax styles\n - Verify cursor behavior works correctly with both input methods\n - Check that error messages are helpful when incorrect positional arguments are provided\n\n4. Documentation verification:\n - Ensure README and help text accurately reflect the new dual syntax support\n - Verify examples in documentation show both styles where appropriate\n\nAll tests should pass with 100% of commands supporting both argument styles without any regression in existing functionality."
|
||||
},
|
||||
{
|
||||
"id": 56,
|
||||
"title": "Refactor Task-Master Files into Node Module Structure",
|
||||
"description": "Restructure the task-master files by moving them from the project root into a proper node module structure to improve organization and maintainability.",
|
||||
"status": "pending",
|
||||
"dependencies": [],
|
||||
"priority": "medium",
|
||||
"details": "This task involves a significant refactoring of the task-master system to follow better Node.js module practices. Currently, task-master files are located in the project root, which creates clutter and doesn't follow best practices for Node.js applications. The refactoring should:\n\n1. Create a dedicated directory structure within node_modules or as a local package\n2. Update all import/require paths throughout the codebase to reference the new module location\n3. Reorganize the files into a logical structure (lib/, utils/, commands/, etc.)\n4. Ensure the module has a proper package.json with dependencies and exports\n5. Update any build processes, scripts, or configuration files to reflect the new structure\n6. Maintain backward compatibility where possible to minimize disruption\n7. Document the new structure and any changes to usage patterns\n\nThis is a high-risk refactoring as it touches many parts of the system, so it should be approached methodically with frequent testing. Consider using a feature branch and implementing the changes incrementally rather than all at once.",
|
||||
"testStrategy": "Testing for this refactoring should be comprehensive to ensure nothing breaks during the restructuring:\n\n1. Create a complete inventory of existing functionality through automated tests before starting\n2. Implement unit tests for each module to verify they function correctly in the new structure\n3. Create integration tests that verify the interactions between modules work as expected\n4. Test all CLI commands to ensure they continue to function with the new module structure\n5. Verify that all import/require statements resolve correctly\n6. Test on different environments (development, staging) to ensure compatibility\n7. Perform regression testing on all features that depend on task-master functionality\n8. Create a rollback plan and test it to ensure we can revert changes if critical issues arise\n9. Conduct performance testing to ensure the refactoring doesn't introduce overhead\n10. Have multiple developers test the changes on their local environments before merging"
|
||||
},
|
||||
{
|
||||
"id": 57,
|
||||
"title": "Enhance Task-Master CLI User Experience and Interface",
|
||||
"description": "Improve the Task-Master CLI's user experience by refining the interface, reducing verbose logging, and adding visual polish to create a more professional and intuitive tool.",
|
||||
"status": "pending",
|
||||
"dependencies": [],
|
||||
"priority": "medium",
|
||||
"details": "The current Task-Master CLI interface is functional but lacks polish and produces excessive log output. This task involves several key improvements:\n\n1. Log Management:\n - Implement log levels (ERROR, WARN, INFO, DEBUG, TRACE)\n - Only show INFO and above by default\n - Add a --verbose flag to show all logs\n - Create a dedicated log file for detailed logs\n\n2. Visual Enhancements:\n - Add a clean, branded header when the tool starts\n - Implement color-coding for different types of messages (success in green, errors in red, etc.)\n - Use spinners or progress indicators for operations that take time\n - Add clear visual separation between command input and output\n\n3. Interactive Elements:\n - Add loading animations for longer operations\n - Implement interactive prompts for complex inputs instead of requiring all parameters upfront\n - Add confirmation dialogs for destructive operations\n\n4. Output Formatting:\n - Format task listings in tables with consistent spacing\n - Implement a compact mode and a detailed mode for viewing tasks\n - Add visual indicators for task status (icons or colors)\n\n5. Help and Documentation:\n - Enhance help text with examples and clearer descriptions\n - Add contextual hints for common next steps after commands\n\nUse libraries like chalk, ora, inquirer, and boxen to implement these improvements. Ensure the interface remains functional in CI/CD environments where interactive elements might not be supported.",
|
||||
"testStrategy": "Testing should verify both functionality and user experience improvements:\n\n1. Automated Tests:\n - Create unit tests for log level filtering functionality\n - Test that all commands still function correctly with the new UI\n - Verify that non-interactive mode works in CI environments\n - Test that verbose and quiet modes function as expected\n\n2. User Experience Testing:\n - Create a test script that runs through common user flows\n - Capture before/after screenshots for visual comparison\n - Measure and compare the number of lines output for common operations\n\n3. Usability Testing:\n - Have 3-5 team members perform specific tasks using the new interface\n - Collect feedback on clarity, ease of use, and visual appeal\n - Identify any confusion points or areas for improvement\n\n4. Edge Case Testing:\n - Test in terminals with different color schemes and sizes\n - Verify functionality in environments without color support\n - Test with very large task lists to ensure formatting remains clean\n\nAcceptance Criteria:\n- Log output is reduced by at least 50% in normal operation\n- All commands provide clear visual feedback about their progress and completion\n- Help text is comprehensive and includes examples\n- Interface is visually consistent across all commands\n- Tool remains fully functional in non-interactive environments"
|
||||
},
|
||||
{
|
||||
"id": 58,
|
||||
"title": "Implement Elegant Package Update Mechanism for Task-Master",
|
||||
"description": "Create a robust update mechanism that handles package updates gracefully, ensuring all necessary files are updated when the global package is upgraded.",
|
||||
"status": "pending",
|
||||
"dependencies": [],
|
||||
"priority": "medium",
|
||||
"details": "Develop a comprehensive update system with these components:\n\n1. **Update Detection**: When task-master runs, check if the current version matches the installed version. If not, notify the user an update is available.\n\n2. **Update Command**: Implement a dedicated `task-master update` command that:\n - Updates the global package (`npm -g task-master-ai@latest`)\n - Automatically runs necessary initialization steps\n - Preserves user configurations while updating system files\n\n3. **Smart File Management**:\n - Create a manifest of core files with checksums\n - During updates, compare existing files with the manifest\n - Only overwrite files that have changed in the update\n - Preserve user-modified files with an option to merge changes\n\n4. **Configuration Versioning**:\n - Add version tracking to configuration files\n - Implement migration paths for configuration changes between versions\n - Provide backward compatibility for older configurations\n\n5. **Update Notifications**:\n - Add a non-intrusive notification when updates are available\n - Include a changelog summary of what's new\n\nThis system should work seamlessly with the existing `task-master init` command but provide a more automated and user-friendly update experience.",
|
||||
"testStrategy": "Test the update mechanism with these specific scenarios:\n\n1. **Version Detection Test**:\n - Install an older version, then verify the system correctly detects when a newer version is available\n - Test with minor and major version changes\n\n2. **Update Command Test**:\n - Verify `task-master update` successfully updates the global package\n - Confirm all necessary files are updated correctly\n - Test with and without user-modified files present\n\n3. **File Preservation Test**:\n - Modify configuration files, then update\n - Verify user changes are preserved while system files are updated\n - Test with conflicts between user changes and system updates\n\n4. **Rollback Test**:\n - Implement and test a rollback mechanism if updates fail\n - Verify system returns to previous working state\n\n5. **Integration Test**:\n - Create a test project with the current version\n - Run through the update process\n - Verify all functionality continues to work after update\n\n6. **Edge Case Tests**:\n - Test updating with insufficient permissions\n - Test updating with network interruptions\n - Test updating from very old versions to latest"
|
||||
},
|
||||
{
|
||||
"id": 59,
|
||||
"title": "Remove Manual Package.json Modifications and Implement Automatic Dependency Management",
|
||||
"description": "Eliminate code that manually modifies users' package.json files and implement proper npm dependency management that automatically handles package requirements when users install task-master-ai.",
|
||||
"status": "pending",
|
||||
"dependencies": [],
|
||||
"priority": "medium",
|
||||
"details": "Currently, the application is attempting to manually modify users' package.json files, which is not the recommended approach for npm packages. Instead:\n\n1. Review all code that directly manipulates package.json files in users' projects\n2. Remove these manual modifications\n3. Properly define all dependencies in the package.json of task-master-ai itself\n4. Ensure all peer dependencies are correctly specified\n5. For any scripts that need to be available to users, use proper npm bin linking or npx commands\n6. Update the installation process to leverage npm's built-in dependency management\n7. If configuration is needed in users' projects, implement a proper initialization command that creates config files rather than modifying package.json\n8. Document the new approach in the README and any other relevant documentation\n\nThis change will make the package more reliable, follow npm best practices, and prevent potential conflicts or errors when modifying users' project files.",
|
||||
"testStrategy": "1. Create a fresh test project directory\n2. Install the updated task-master-ai package using npm install task-master-ai\n3. Verify that no code attempts to modify the test project's package.json\n4. Confirm all dependencies are properly installed in node_modules\n5. Test all commands to ensure they work without the previous manual package.json modifications\n6. Try installing in projects with various existing configurations to ensure no conflicts occur\n7. Test the uninstall process to verify it cleanly removes the package without leaving unwanted modifications\n8. Verify the package works in different npm environments (npm 6, 7, 8) and with different Node.js versions\n9. Create an integration test that simulates a real user workflow from installation through usage"
|
||||
}
|
||||
]
|
||||
}
|
||||
Reference in New Issue
Block a user