docs: Add comprehensive Azure OpenAI configuration documentation (#837)

* docs: Add comprehensive Azure OpenAI configuration documentation

- Add detailed Azure OpenAI configuration section with prerequisites, authentication, and setup options
- Include both global and per-model baseURL configuration examples
- Add comprehensive troubleshooting guide for common Azure OpenAI issues
- Update environment variables section with Azure OpenAI examples
- Add Azure OpenAI models to all model tables (Main, Research, Fallback)
- Include prominent Azure configuration example in main documentation
- Fix azureBaseURL format to use correct Azure OpenAI endpoint structure

Addresses common Azure OpenAI setup challenges and provides clear guidance for new users.

* refactor: Move Azure models from docs/models.md to scripts/modules/supported-models.json

- Remove Azure model entries from documentation tables
- Add Azure provider section to supported-models.json with gpt-4o, gpt-4o-mini, and gpt-4-1
- Maintain consistency with existing model configuration structure
This commit is contained in:
Jitesh Thakur
2025-06-22 01:20:20 +05:30
committed by GitHub
parent b3d43c5992
commit eaa7f24280
2 changed files with 138 additions and 2 deletions

View File

@@ -41,13 +41,14 @@ Taskmaster uses two primary methods for configuration:
"defaultTag": "master",
"projectName": "Your Project Name",
"ollamaBaseURL": "http://localhost:11434/api",
"azureBaseURL": "https://your-endpoint.azure.com/",
"azureBaseURL": "https://your-endpoint.azure.com/openai/deployments",
"vertexProjectId": "your-gcp-project-id",
"vertexLocation": "us-central1"
}
}
```
2. **Legacy `.taskmasterconfig` File (Backward Compatibility)**
- For projects that haven't migrated to the new structure yet.
@@ -129,13 +130,15 @@ ANTHROPIC_API_KEY=sk-ant-api03-your-key-here
PERPLEXITY_API_KEY=pplx-your-key-here
# OPENAI_API_KEY=sk-your-key-here
# GOOGLE_API_KEY=AIzaSy...
# AZURE_OPENAI_API_KEY=your-azure-openai-api-key-here
# etc.
# Optional Endpoint Overrides
# Use a specific provider's base URL, e.g., for an OpenAI-compatible API
# OPENAI_BASE_URL=https://api.third-party.com/v1
#
# AZURE_OPENAI_ENDPOINT=https://your-azure-endpoint.openai.azure.com/
# Azure OpenAI Configuration
# AZURE_OPENAI_ENDPOINT=https://your-resource-name.openai.azure.com/ or https://your-endpoint-name.cognitiveservices.azure.com/openai/deployments
# OLLAMA_BASE_URL=http://custom-ollama-host:11434/api
# Google Vertex AI Configuration (Required if using 'vertex' provider)
@@ -207,3 +210,104 @@ Google Vertex AI is Google Cloud's enterprise AI platform and requires specific
"vertexLocation": "us-central1"
}
```
### Azure OpenAI Configuration
Azure OpenAI provides enterprise-grade OpenAI models through Microsoft's Azure cloud platform and requires specific configuration:
1. **Prerequisites**:
- An Azure account with an active subscription
- Azure OpenAI service resource created in the Azure portal
- Azure OpenAI API key and endpoint URL
- Deployed models (e.g., gpt-4o, gpt-4o-mini, gpt-4.1, etc) in your Azure OpenAI resource
2. **Authentication**:
- Set the `AZURE_OPENAI_API_KEY` environment variable with your Azure OpenAI API key
- Configure the endpoint URL using one of the methods below
3. **Configuration Options**:
**Option 1: Using Global Azure Base URL (affects all Azure models)**
```json
// In .taskmaster/config.json
{
"models": {
"main": {
"provider": "azure",
"modelId": "gpt-4o",
"maxTokens": 16000,
"temperature": 0.7
},
"fallback": {
"provider": "azure",
"modelId": "gpt-4o-mini",
"maxTokens": 10000,
"temperature": 0.7
}
},
"global": {
"azureBaseURL": "https://your-resource-name.azure.com/openai/deployments"
}
}
```
**Option 2: Using Per-Model Base URLs (recommended for flexibility)**
```json
// In .taskmaster/config.json
{
"models": {
"main": {
"provider": "azure",
"modelId": "gpt-4o",
"maxTokens": 16000,
"temperature": 0.7,
"baseURL": "https://your-resource-name.azure.com/openai/deployments"
},
"research": {
"provider": "perplexity",
"modelId": "sonar-pro",
"maxTokens": 8700,
"temperature": 0.1
},
"fallback": {
"provider": "azure",
"modelId": "gpt-4o-mini",
"maxTokens": 10000,
"temperature": 0.7,
"baseURL": "https://your-resource-name.azure.com/openai/deployments"
}
}
}
```
4. **Environment Variables**:
```bash
# In .env file
AZURE_OPENAI_API_KEY=your-azure-openai-api-key-here
# Optional: Override endpoint for all Azure models
AZURE_OPENAI_ENDPOINT=https://your-resource-name.azure.com/openai/deployments
```
5. **Important Notes**:
- **Model Deployment Names**: The `modelId` in your configuration should match the **deployment name** you created in Azure OpenAI Studio, not the underlying model name
- **Base URL Priority**: Per-model `baseURL` settings override the global `azureBaseURL` setting
- **Endpoint Format**: When using per-model `baseURL`, use the full path including `/openai/deployments`
6. **Troubleshooting**:
**"Resource not found" errors:**
- Ensure your `baseURL` includes the full path: `https://your-resource-name.openai.azure.com/openai/deployments`
- Verify that your deployment name in `modelId` exactly matches what's configured in Azure OpenAI Studio
- Check that your Azure OpenAI resource is in the correct region and properly deployed
**Authentication errors:**
- Verify your `AZURE_OPENAI_API_KEY` is correct and has not expired
- Ensure your Azure OpenAI resource has the necessary permissions
- Check that your subscription has not been suspended or reached quota limits
**Model availability errors:**
- Confirm the model is deployed in your Azure OpenAI resource
- Verify the deployment name matches your configuration exactly (case-sensitive)
- Ensure the model deployment is in a "Succeeded" state in Azure OpenAI Studio
- Ensure youre not getting rate limited by `maxTokens` maintain appropriate Tokens per Minute Rate Limit (TPM) in your deployment.