chore: run format

This commit is contained in:
Ralph Khreish
2025-07-08 09:40:30 +03:00
parent 395693af24
commit d4208f372a
12 changed files with 2099 additions and 1776 deletions

View File

@@ -2,56 +2,58 @@ import { readFileSync } from 'fs';
import fetch from 'node-fetch';
export class LLMAnalyzer {
constructor(config, logger) {
this.config = config;
this.logger = logger;
this.apiKey = process.env.ANTHROPIC_API_KEY;
this.apiEndpoint = 'https://api.anthropic.com/v1/messages';
}
constructor(config, logger) {
this.config = config;
this.logger = logger;
this.apiKey = process.env.ANTHROPIC_API_KEY;
this.apiEndpoint = 'https://api.anthropic.com/v1/messages';
}
async analyzeLog(logFile, providerSummaryFile = null) {
if (!this.config.llmAnalysis.enabled) {
this.logger.info('LLM analysis is disabled in configuration');
return null;
}
async analyzeLog(logFile, providerSummaryFile = null) {
if (!this.config.llmAnalysis.enabled) {
this.logger.info('LLM analysis is disabled in configuration');
return null;
}
if (!this.apiKey) {
this.logger.error('ANTHROPIC_API_KEY not found in environment');
return null;
}
if (!this.apiKey) {
this.logger.error('ANTHROPIC_API_KEY not found in environment');
return null;
}
try {
const logContent = readFileSync(logFile, 'utf8');
const prompt = this.buildAnalysisPrompt(logContent, providerSummaryFile);
try {
const logContent = readFileSync(logFile, 'utf8');
const prompt = this.buildAnalysisPrompt(logContent, providerSummaryFile);
const response = await this.callLLM(prompt);
const analysis = this.parseResponse(response);
// Calculate and log cost
if (response.usage) {
const cost = this.calculateCost(response.usage);
this.logger.addCost(cost);
this.logger.info(`LLM Analysis AI Cost: $${cost.toFixed(6)} USD`);
}
const response = await this.callLLM(prompt);
const analysis = this.parseResponse(response);
return analysis;
} catch (error) {
this.logger.error(`LLM analysis failed: ${error.message}`);
return null;
}
}
// Calculate and log cost
if (response.usage) {
const cost = this.calculateCost(response.usage);
this.logger.addCost(cost);
this.logger.info(`LLM Analysis AI Cost: $${cost.toFixed(6)} USD`);
}
buildAnalysisPrompt(logContent, providerSummaryFile) {
let providerSummary = '';
if (providerSummaryFile) {
try {
providerSummary = readFileSync(providerSummaryFile, 'utf8');
} catch (error) {
this.logger.warning(`Could not read provider summary file: ${error.message}`);
}
}
return analysis;
} catch (error) {
this.logger.error(`LLM analysis failed: ${error.message}`);
return null;
}
}
return `Analyze the following E2E test log for the task-master tool. The log contains output from various 'task-master' commands executed sequentially.
buildAnalysisPrompt(logContent, providerSummaryFile) {
let providerSummary = '';
if (providerSummaryFile) {
try {
providerSummary = readFileSync(providerSummaryFile, 'utf8');
} catch (error) {
this.logger.warning(
`Could not read provider summary file: ${error.message}`
);
}
}
return `Analyze the following E2E test log for the task-master tool. The log contains output from various 'task-master' commands executed sequentially.
Your goal is to:
1. Verify if the key E2E steps completed successfully based on the log messages (e.g., init, parse PRD, list tasks, analyze complexity, expand task, set status, manage models, add/remove dependencies, add/update/remove tasks/subtasks, generate files).
@@ -88,81 +90,82 @@ Return your analysis **strictly** in the following JSON format. Do not include a
Here is the main log content:
${logContent}`;
}
}
async callLLM(prompt) {
const payload = {
model: this.config.llmAnalysis.model,
max_tokens: this.config.llmAnalysis.maxTokens,
messages: [
{ role: 'user', content: prompt }
]
};
async callLLM(prompt) {
const payload = {
model: this.config.llmAnalysis.model,
max_tokens: this.config.llmAnalysis.maxTokens,
messages: [{ role: 'user', content: prompt }]
};
const response = await fetch(this.apiEndpoint, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'x-api-key': this.apiKey,
'anthropic-version': '2023-06-01'
},
body: JSON.stringify(payload)
});
const response = await fetch(this.apiEndpoint, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'x-api-key': this.apiKey,
'anthropic-version': '2023-06-01'
},
body: JSON.stringify(payload)
});
if (!response.ok) {
const error = await response.text();
throw new Error(`LLM API call failed: ${response.status} - ${error}`);
}
if (!response.ok) {
const error = await response.text();
throw new Error(`LLM API call failed: ${response.status} - ${error}`);
}
return response.json();
}
return response.json();
}
parseResponse(response) {
try {
const content = response.content[0].text;
const jsonStart = content.indexOf('{');
const jsonEnd = content.lastIndexOf('}');
if (jsonStart === -1 || jsonEnd === -1) {
throw new Error('No JSON found in response');
}
parseResponse(response) {
try {
const content = response.content[0].text;
const jsonStart = content.indexOf('{');
const jsonEnd = content.lastIndexOf('}');
const jsonString = content.substring(jsonStart, jsonEnd + 1);
return JSON.parse(jsonString);
} catch (error) {
this.logger.error(`Failed to parse LLM response: ${error.message}`);
return null;
}
}
if (jsonStart === -1 || jsonEnd === -1) {
throw new Error('No JSON found in response');
}
calculateCost(usage) {
const modelCosts = {
'claude-3-7-sonnet-20250219': {
input: 3.00, // per 1M tokens
output: 15.00 // per 1M tokens
}
};
const jsonString = content.substring(jsonStart, jsonEnd + 1);
return JSON.parse(jsonString);
} catch (error) {
this.logger.error(`Failed to parse LLM response: ${error.message}`);
return null;
}
}
const costs = modelCosts[this.config.llmAnalysis.model] || { input: 0, output: 0 };
const inputCost = (usage.input_tokens / 1000000) * costs.input;
const outputCost = (usage.output_tokens / 1000000) * costs.output;
return inputCost + outputCost;
}
calculateCost(usage) {
const modelCosts = {
'claude-3-7-sonnet-20250219': {
input: 3.0, // per 1M tokens
output: 15.0 // per 1M tokens
}
};
formatReport(analysis) {
if (!analysis) return null;
const costs = modelCosts[this.config.llmAnalysis.model] || {
input: 0,
output: 0
};
const inputCost = (usage.input_tokens / 1000000) * costs.input;
const outputCost = (usage.output_tokens / 1000000) * costs.output;
const report = {
title: 'TASKMASTER E2E Test Analysis Report',
timestamp: new Date().toISOString(),
status: analysis.overall_status,
summary: analysis.llm_summary_points,
verifiedSteps: analysis.verified_steps,
providerComparison: analysis.provider_add_task_comparison,
issues: analysis.detected_issues
};
return inputCost + outputCost;
}
return report;
}
}
formatReport(analysis) {
if (!analysis) return null;
const report = {
title: 'TASKMASTER E2E Test Analysis Report',
timestamp: new Date().toISOString(),
status: analysis.overall_status,
summary: analysis.llm_summary_points,
verifiedSteps: analysis.verified_steps,
providerComparison: analysis.provider_add_task_comparison,
issues: analysis.detected_issues
};
return report;
}
}