chore: run npm run format
This commit is contained in:
@@ -6,57 +6,55 @@ This document provides examples of how to use the new AI client utilities with A
|
||||
|
||||
```javascript
|
||||
// In your direct function implementation:
|
||||
import {
|
||||
getAnthropicClientForMCP,
|
||||
getModelConfig,
|
||||
handleClaudeError
|
||||
import {
|
||||
getAnthropicClientForMCP,
|
||||
getModelConfig,
|
||||
handleClaudeError
|
||||
} from '../utils/ai-client-utils.js';
|
||||
|
||||
export async function someAiOperationDirect(args, log, context) {
|
||||
try {
|
||||
// Initialize Anthropic client with session from context
|
||||
const client = getAnthropicClientForMCP(context.session, log);
|
||||
|
||||
// Get model configuration with defaults or session overrides
|
||||
const modelConfig = getModelConfig(context.session);
|
||||
|
||||
// Make API call with proper error handling
|
||||
try {
|
||||
const response = await client.messages.create({
|
||||
model: modelConfig.model,
|
||||
max_tokens: modelConfig.maxTokens,
|
||||
temperature: modelConfig.temperature,
|
||||
messages: [
|
||||
{ role: 'user', content: 'Your prompt here' }
|
||||
]
|
||||
});
|
||||
|
||||
return {
|
||||
success: true,
|
||||
data: response
|
||||
};
|
||||
} catch (apiError) {
|
||||
// Use helper to get user-friendly error message
|
||||
const friendlyMessage = handleClaudeError(apiError);
|
||||
|
||||
return {
|
||||
success: false,
|
||||
error: {
|
||||
code: 'AI_API_ERROR',
|
||||
message: friendlyMessage
|
||||
}
|
||||
};
|
||||
}
|
||||
} catch (error) {
|
||||
// Handle client initialization errors
|
||||
return {
|
||||
success: false,
|
||||
error: {
|
||||
code: 'AI_CLIENT_ERROR',
|
||||
message: error.message
|
||||
}
|
||||
};
|
||||
}
|
||||
try {
|
||||
// Initialize Anthropic client with session from context
|
||||
const client = getAnthropicClientForMCP(context.session, log);
|
||||
|
||||
// Get model configuration with defaults or session overrides
|
||||
const modelConfig = getModelConfig(context.session);
|
||||
|
||||
// Make API call with proper error handling
|
||||
try {
|
||||
const response = await client.messages.create({
|
||||
model: modelConfig.model,
|
||||
max_tokens: modelConfig.maxTokens,
|
||||
temperature: modelConfig.temperature,
|
||||
messages: [{ role: 'user', content: 'Your prompt here' }]
|
||||
});
|
||||
|
||||
return {
|
||||
success: true,
|
||||
data: response
|
||||
};
|
||||
} catch (apiError) {
|
||||
// Use helper to get user-friendly error message
|
||||
const friendlyMessage = handleClaudeError(apiError);
|
||||
|
||||
return {
|
||||
success: false,
|
||||
error: {
|
||||
code: 'AI_API_ERROR',
|
||||
message: friendlyMessage
|
||||
}
|
||||
};
|
||||
}
|
||||
} catch (error) {
|
||||
// Handle client initialization errors
|
||||
return {
|
||||
success: false,
|
||||
error: {
|
||||
code: 'AI_CLIENT_ERROR',
|
||||
message: error.message
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
@@ -64,86 +62,85 @@ export async function someAiOperationDirect(args, log, context) {
|
||||
|
||||
```javascript
|
||||
// In your MCP tool implementation:
|
||||
import { AsyncOperationManager, StatusCodes } from '../../utils/async-operation-manager.js';
|
||||
import {
|
||||
AsyncOperationManager,
|
||||
StatusCodes
|
||||
} from '../../utils/async-operation-manager.js';
|
||||
import { someAiOperationDirect } from '../../core/direct-functions/some-ai-operation.js';
|
||||
|
||||
export async function someAiOperation(args, context) {
|
||||
const { session, mcpLog } = context;
|
||||
const log = mcpLog || console;
|
||||
|
||||
try {
|
||||
// Create operation description
|
||||
const operationDescription = `AI operation: ${args.someParam}`;
|
||||
|
||||
// Start async operation
|
||||
const operation = AsyncOperationManager.createOperation(
|
||||
operationDescription,
|
||||
async (reportProgress) => {
|
||||
try {
|
||||
// Initial progress report
|
||||
reportProgress({
|
||||
progress: 0,
|
||||
status: 'Starting AI operation...'
|
||||
});
|
||||
|
||||
// Call direct function with session and progress reporting
|
||||
const result = await someAiOperationDirect(
|
||||
args,
|
||||
log,
|
||||
{
|
||||
reportProgress,
|
||||
mcpLog: log,
|
||||
session
|
||||
}
|
||||
);
|
||||
|
||||
// Final progress update
|
||||
reportProgress({
|
||||
progress: 100,
|
||||
status: result.success ? 'Operation completed' : 'Operation failed',
|
||||
result: result.data,
|
||||
error: result.error
|
||||
});
|
||||
|
||||
return result;
|
||||
} catch (error) {
|
||||
// Handle errors in the operation
|
||||
reportProgress({
|
||||
progress: 100,
|
||||
status: 'Operation failed',
|
||||
error: {
|
||||
message: error.message,
|
||||
code: error.code || 'OPERATION_FAILED'
|
||||
}
|
||||
});
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
// Return immediate response with operation ID
|
||||
return {
|
||||
status: StatusCodes.ACCEPTED,
|
||||
body: {
|
||||
success: true,
|
||||
message: 'Operation started',
|
||||
operationId: operation.id
|
||||
}
|
||||
};
|
||||
} catch (error) {
|
||||
// Handle errors in the MCP tool
|
||||
log.error(`Error in someAiOperation: ${error.message}`);
|
||||
return {
|
||||
status: StatusCodes.INTERNAL_SERVER_ERROR,
|
||||
body: {
|
||||
success: false,
|
||||
error: {
|
||||
code: 'OPERATION_FAILED',
|
||||
message: error.message
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
const { session, mcpLog } = context;
|
||||
const log = mcpLog || console;
|
||||
|
||||
try {
|
||||
// Create operation description
|
||||
const operationDescription = `AI operation: ${args.someParam}`;
|
||||
|
||||
// Start async operation
|
||||
const operation = AsyncOperationManager.createOperation(
|
||||
operationDescription,
|
||||
async (reportProgress) => {
|
||||
try {
|
||||
// Initial progress report
|
||||
reportProgress({
|
||||
progress: 0,
|
||||
status: 'Starting AI operation...'
|
||||
});
|
||||
|
||||
// Call direct function with session and progress reporting
|
||||
const result = await someAiOperationDirect(args, log, {
|
||||
reportProgress,
|
||||
mcpLog: log,
|
||||
session
|
||||
});
|
||||
|
||||
// Final progress update
|
||||
reportProgress({
|
||||
progress: 100,
|
||||
status: result.success ? 'Operation completed' : 'Operation failed',
|
||||
result: result.data,
|
||||
error: result.error
|
||||
});
|
||||
|
||||
return result;
|
||||
} catch (error) {
|
||||
// Handle errors in the operation
|
||||
reportProgress({
|
||||
progress: 100,
|
||||
status: 'Operation failed',
|
||||
error: {
|
||||
message: error.message,
|
||||
code: error.code || 'OPERATION_FAILED'
|
||||
}
|
||||
});
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
// Return immediate response with operation ID
|
||||
return {
|
||||
status: StatusCodes.ACCEPTED,
|
||||
body: {
|
||||
success: true,
|
||||
message: 'Operation started',
|
||||
operationId: operation.id
|
||||
}
|
||||
};
|
||||
} catch (error) {
|
||||
// Handle errors in the MCP tool
|
||||
log.error(`Error in someAiOperation: ${error.message}`);
|
||||
return {
|
||||
status: StatusCodes.INTERNAL_SERVER_ERROR,
|
||||
body: {
|
||||
success: false,
|
||||
error: {
|
||||
code: 'OPERATION_FAILED',
|
||||
message: error.message
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
@@ -151,58 +148,56 @@ export async function someAiOperation(args, context) {
|
||||
|
||||
```javascript
|
||||
// In your direct function:
|
||||
import {
|
||||
getPerplexityClientForMCP,
|
||||
getBestAvailableAIModel
|
||||
import {
|
||||
getPerplexityClientForMCP,
|
||||
getBestAvailableAIModel
|
||||
} from '../utils/ai-client-utils.js';
|
||||
|
||||
export async function researchOperationDirect(args, log, context) {
|
||||
try {
|
||||
// Get the best AI model for this operation based on needs
|
||||
const { type, client } = await getBestAvailableAIModel(
|
||||
context.session,
|
||||
{ requiresResearch: true },
|
||||
log
|
||||
);
|
||||
|
||||
// Report which model we're using
|
||||
if (context.reportProgress) {
|
||||
await context.reportProgress({
|
||||
progress: 10,
|
||||
status: `Using ${type} model for research...`
|
||||
});
|
||||
}
|
||||
|
||||
// Make API call based on the model type
|
||||
if (type === 'perplexity') {
|
||||
// Call Perplexity
|
||||
const response = await client.chat.completions.create({
|
||||
model: context.session?.env?.PERPLEXITY_MODEL || 'sonar-medium-online',
|
||||
messages: [
|
||||
{ role: 'user', content: args.researchQuery }
|
||||
],
|
||||
temperature: 0.1
|
||||
});
|
||||
|
||||
return {
|
||||
success: true,
|
||||
data: response.choices[0].message.content
|
||||
};
|
||||
} else {
|
||||
// Call Claude as fallback
|
||||
// (Implementation depends on specific needs)
|
||||
// ...
|
||||
}
|
||||
} catch (error) {
|
||||
// Handle errors
|
||||
return {
|
||||
success: false,
|
||||
error: {
|
||||
code: 'RESEARCH_ERROR',
|
||||
message: error.message
|
||||
}
|
||||
};
|
||||
}
|
||||
try {
|
||||
// Get the best AI model for this operation based on needs
|
||||
const { type, client } = await getBestAvailableAIModel(
|
||||
context.session,
|
||||
{ requiresResearch: true },
|
||||
log
|
||||
);
|
||||
|
||||
// Report which model we're using
|
||||
if (context.reportProgress) {
|
||||
await context.reportProgress({
|
||||
progress: 10,
|
||||
status: `Using ${type} model for research...`
|
||||
});
|
||||
}
|
||||
|
||||
// Make API call based on the model type
|
||||
if (type === 'perplexity') {
|
||||
// Call Perplexity
|
||||
const response = await client.chat.completions.create({
|
||||
model: context.session?.env?.PERPLEXITY_MODEL || 'sonar-medium-online',
|
||||
messages: [{ role: 'user', content: args.researchQuery }],
|
||||
temperature: 0.1
|
||||
});
|
||||
|
||||
return {
|
||||
success: true,
|
||||
data: response.choices[0].message.content
|
||||
};
|
||||
} else {
|
||||
// Call Claude as fallback
|
||||
// (Implementation depends on specific needs)
|
||||
// ...
|
||||
}
|
||||
} catch (error) {
|
||||
// Handle errors
|
||||
return {
|
||||
success: false,
|
||||
error: {
|
||||
code: 'RESEARCH_ERROR',
|
||||
message: error.message
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
@@ -214,9 +209,9 @@ import { getModelConfig } from '../utils/ai-client-utils.js';
|
||||
|
||||
// Using custom defaults for a specific operation
|
||||
const operationDefaults = {
|
||||
model: 'claude-3-haiku-20240307', // Faster, smaller model
|
||||
maxTokens: 1000, // Lower token limit
|
||||
temperature: 0.2 // Lower temperature for more deterministic output
|
||||
model: 'claude-3-haiku-20240307', // Faster, smaller model
|
||||
maxTokens: 1000, // Lower token limit
|
||||
temperature: 0.2 // Lower temperature for more deterministic output
|
||||
};
|
||||
|
||||
// Get model config with operation-specific defaults
|
||||
@@ -224,30 +219,34 @@ const modelConfig = getModelConfig(context.session, operationDefaults);
|
||||
|
||||
// Now use modelConfig in your API calls
|
||||
const response = await client.messages.create({
|
||||
model: modelConfig.model,
|
||||
max_tokens: modelConfig.maxTokens,
|
||||
temperature: modelConfig.temperature,
|
||||
// Other parameters...
|
||||
model: modelConfig.model,
|
||||
max_tokens: modelConfig.maxTokens,
|
||||
temperature: modelConfig.temperature
|
||||
// Other parameters...
|
||||
});
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Error Handling**:
|
||||
|
||||
- Always use try/catch blocks around both client initialization and API calls
|
||||
- Use `handleClaudeError` to provide user-friendly error messages
|
||||
- Return standardized error objects with code and message
|
||||
|
||||
2. **Progress Reporting**:
|
||||
|
||||
- Report progress at key points (starting, processing, completing)
|
||||
- Include meaningful status messages
|
||||
- Include error details in progress reports when failures occur
|
||||
|
||||
3. **Session Handling**:
|
||||
|
||||
- Always pass the session from the context to the AI client getters
|
||||
- Use `getModelConfig` to respect user settings from session
|
||||
|
||||
4. **Model Selection**:
|
||||
|
||||
- Use `getBestAvailableAIModel` when you need to select between different models
|
||||
- Set `requiresResearch: true` when you need Perplexity capabilities
|
||||
|
||||
@@ -255,4 +254,4 @@ const response = await client.messages.create({
|
||||
- Create descriptive operation names
|
||||
- Handle all errors within the operation function
|
||||
- Return standardized results from direct functions
|
||||
- Return immediate responses with operation IDs
|
||||
- Return immediate responses with operation IDs
|
||||
|
||||
@@ -14,22 +14,22 @@ MCP (Model Control Protocol) provides the easiest way to get started with Task M
|
||||
|
||||
```json
|
||||
{
|
||||
"mcpServers": {
|
||||
"taskmaster-ai": {
|
||||
"command": "npx",
|
||||
"args": ["-y", "task-master-ai", "mcp-server"],
|
||||
"env": {
|
||||
"ANTHROPIC_API_KEY": "YOUR_ANTHROPIC_API_KEY_HERE",
|
||||
"PERPLEXITY_API_KEY": "YOUR_PERPLEXITY_API_KEY_HERE",
|
||||
"MODEL": "claude-3-7-sonnet-20250219",
|
||||
"PERPLEXITY_MODEL": "sonar-pro",
|
||||
"MAX_TOKENS": 128000,
|
||||
"TEMPERATURE": 0.2,
|
||||
"DEFAULT_SUBTASKS": 5,
|
||||
"DEFAULT_PRIORITY": "medium"
|
||||
}
|
||||
}
|
||||
}
|
||||
"mcpServers": {
|
||||
"taskmaster-ai": {
|
||||
"command": "npx",
|
||||
"args": ["-y", "task-master-ai", "mcp-server"],
|
||||
"env": {
|
||||
"ANTHROPIC_API_KEY": "YOUR_ANTHROPIC_API_KEY_HERE",
|
||||
"PERPLEXITY_API_KEY": "YOUR_PERPLEXITY_API_KEY_HERE",
|
||||
"MODEL": "claude-3-7-sonnet-20250219",
|
||||
"PERPLEXITY_MODEL": "sonar-pro",
|
||||
"MAX_TOKENS": 128000,
|
||||
"TEMPERATURE": 0.2,
|
||||
"DEFAULT_SUBTASKS": 5,
|
||||
"DEFAULT_PRIORITY": "medium"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
Reference in New Issue
Block a user