feat: Claude Code slash commands for Task Master (#774)

* Fix Cursor deeplink installation with copy-paste instructions (#723)

* fix: expand-task (#755)

* docs: Update o3 model price (#751)

* docs: Auto-update and format models.md

* docs: Auto-update and format models.md

* feat: Add Claude Code task master commands

Adds Task Master slash commands for Claude Code under /project:tm/ namespace

---------

Co-authored-by: Joe Danziger <joe@ticc.net>
Co-authored-by: Ralph Khreish <35776126+Crunchyman-ralph@users.noreply.github.com>
Co-authored-by: Volodymyr Zahorniak <7808206+zahorniak@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: neno-is-ooo <204701868+neno-is-ooo@users.noreply.github.com>
This commit is contained in:
neno
2025-06-21 20:48:20 +02:00
committed by GitHub
parent 122a0465d8
commit b9299c5af0
51 changed files with 3555 additions and 0 deletions

View File

@@ -0,0 +1,97 @@
Enhanced auto-implementation with intelligent code generation and testing.
Arguments: $ARGUMENTS
## Intelligent Auto-Implementation
Advanced implementation with context awareness and quality checks.
### 1. **Pre-Implementation Analysis**
Before starting:
- Analyze task complexity and requirements
- Check codebase patterns and conventions
- Identify similar completed tasks
- Assess test coverage needs
- Detect potential risks
### 2. **Smart Implementation Strategy**
Based on task type and context:
**Feature Tasks**
1. Research existing patterns
2. Design component architecture
3. Implement with tests
4. Integrate with system
5. Update documentation
**Bug Fix Tasks**
1. Reproduce issue
2. Identify root cause
3. Implement minimal fix
4. Add regression tests
5. Verify side effects
**Refactoring Tasks**
1. Analyze current structure
2. Plan incremental changes
3. Maintain test coverage
4. Refactor step-by-step
5. Verify behavior unchanged
### 3. **Code Intelligence**
**Pattern Recognition**
- Learn from existing code
- Follow team conventions
- Use preferred libraries
- Match style guidelines
**Test-Driven Approach**
- Write tests first when possible
- Ensure comprehensive coverage
- Include edge cases
- Performance considerations
### 4. **Progressive Implementation**
Step-by-step with validation:
```
Step 1/5: Setting up component structure ✓
Step 2/5: Implementing core logic ✓
Step 3/5: Adding error handling ⚡ (in progress)
Step 4/5: Writing tests ⏳
Step 5/5: Integration testing ⏳
Current: Adding try-catch blocks and validation...
```
### 5. **Quality Assurance**
Automated checks:
- Linting and formatting
- Test execution
- Type checking
- Dependency validation
- Performance analysis
### 6. **Smart Recovery**
If issues arise:
- Diagnostic analysis
- Suggestion generation
- Fallback strategies
- Manual intervention points
- Learning from failures
### 7. **Post-Implementation**
After completion:
- Generate PR description
- Update documentation
- Log lessons learned
- Suggest follow-up tasks
- Update task relationships
Result: High-quality, production-ready implementations.

View File

@@ -0,0 +1,77 @@
Execute a pipeline of commands based on a specification.
Arguments: $ARGUMENTS
## Command Pipeline Execution
Parse pipeline specification from arguments. Supported formats:
### Simple Pipeline
`init → expand-all → sprint-plan`
### Conditional Pipeline
`status → if:pending>10 → sprint-plan → else → next`
### Iterative Pipeline
`for:pending-tasks → expand → complexity-check`
### Smart Pipeline Patterns
**1. Project Setup Pipeline**
```
init [prd] →
expand-all →
complexity-report →
sprint-plan →
show first-sprint
```
**2. Daily Work Pipeline**
```
standup →
if:in-progress → continue →
else → next → start
```
**3. Task Completion Pipeline**
```
complete [id] →
git-commit →
if:blocked-tasks-freed → show-freed →
next
```
**4. Quality Check Pipeline**
```
list in-progress →
for:each → check-idle-time →
if:idle>1day → prompt-update
```
### Pipeline Features
**Variables**
- Store results: `status → $count=pending-count`
- Use in conditions: `if:$count>10`
- Pass between commands: `expand $high-priority-tasks`
**Error Handling**
- On failure: `try:complete → catch:show-blockers`
- Skip on error: `optional:test-run`
- Retry logic: `retry:3:commit`
**Parallel Execution**
- Parallel branches: `[analyze | test | lint]`
- Join results: `parallel → join:report`
### Execution Flow
1. Parse pipeline specification
2. Validate command sequence
3. Execute with state passing
4. Handle conditions and loops
5. Aggregate results
6. Show summary
This enables complex workflows like:
`parse-prd → expand-all → filter:complex>70 → assign:senior → sprint-plan:weighted`

View File

@@ -0,0 +1,55 @@
Execute an intelligent workflow based on current project state and recent commands.
This command analyzes:
1. Recent commands you've run
2. Current project state
3. Time of day / day of week
4. Your working patterns
Arguments: $ARGUMENTS
## Intelligent Workflow Selection
Based on context, I'll determine the best workflow:
### Context Analysis
- Previous command executed
- Current task states
- Unfinished work from last session
- Your typical patterns
### Smart Execution
If last command was:
- `status` → Likely starting work → Run daily standup
- `complete` → Task finished → Find next task
- `list pending` → Planning → Suggest sprint planning
- `expand` → Breaking down work → Show complexity analysis
- `init` → New project → Show onboarding workflow
If no recent commands:
- Morning? → Daily standup workflow
- Many pending tasks? → Sprint planning
- Tasks blocked? → Dependency resolution
- Friday? → Weekly review
### Workflow Composition
I'll chain appropriate commands:
1. Analyze current state
2. Execute primary workflow
3. Suggest follow-up actions
4. Prepare environment for coding
### Learning Mode
This command learns from your patterns:
- Track command sequences
- Note time preferences
- Remember common workflows
- Adapt to your style
Example flows detected:
- Morning: standup → next → start
- After lunch: status → continue task
- End of day: complete → commit → status