feat(refactor): Finalize AI service migration and cleanup obsolete files
This commit completes the major refactoring initiative (Task 61) to migrate all AI-interacting task management functions to the unified service layer (`ai-services-unified.js`) and standardized configuration (`config-manager.js`).
Key Changes:
1. **Refactor `update-task-by-id` & `update-subtask-by-id`:**
* Replaced direct AI client logic and config fetching with calls to `generateTextService`.
* Preserved original prompt logic while ensuring JSON output format is requested.
* Implemented robust manual JSON parsing and Zod validation for text-based AI responses.
* Corrected logger implementation (`logFn`/`isMCP`/`report` pattern) for both CLI and MCP contexts.
* Ensured correct passing of `session` context to the unified service.
* Refactored associated direct function wrappers (`updateTaskByIdDirect`, `updateSubtaskByIdDirect`) to remove AI client initialization and call core logic appropriately.
2. **CLI Environment Loading:**
* Added `dotenv.config()` to `scripts/dev.js` to ensure consistent loading of the `.env` file for CLI operations.
3. **Obsolete Code Removal:**
* Deleted unused helper files:
* `scripts/modules/task-manager/get-subtasks-from-ai.js`
* `scripts/modules/task-manager/generate-subtask-prompt.js`
* `scripts/modules/ai-services.js`
* `scripts/modules/ai-client-factory.js`
* `mcp-server/src/core/utils/ai-client-utils.js`
* Removed corresponding imports/exports from `scripts/modules/task-manager.js` and `mcp-server/src/core/task-master-core.js`.
4. **Verification:**
* Successfully tested `update-task` and `update-subtask` via both CLI and MCP after refactoring.
5. **Task Management:**
* Marked subtasks 61.38, 61.39, 61.40, 61.41, and 61.33 as 'done'.
* Includes other task content/status updates as reflected in the diff.
This completes the migration of core AI features to the new architecture, enhancing maintainability and flexibility.
This commit is contained in:
@@ -11,8 +11,6 @@ import {
|
||||
disableSilentMode,
|
||||
isSilentMode
|
||||
} from '../../../../scripts/modules/utils.js';
|
||||
// Removed AI client imports:
|
||||
// import { getAnthropicClientForMCP, getModelConfig } from '../utils/ai-client-utils.js';
|
||||
import path from 'path';
|
||||
import fs from 'fs';
|
||||
|
||||
|
||||
@@ -8,10 +8,6 @@ import {
|
||||
enableSilentMode,
|
||||
disableSilentMode
|
||||
} from '../../../../scripts/modules/utils.js';
|
||||
import {
|
||||
getAnthropicClientForMCP,
|
||||
getPerplexityClientForMCP
|
||||
} from '../utils/ai-client-utils.js';
|
||||
|
||||
/**
|
||||
* Direct function wrapper for updateSubtaskById with error handling.
|
||||
@@ -95,27 +91,6 @@ export async function updateSubtaskByIdDirect(args, log, context = {}) {
|
||||
`Updating subtask with ID ${subtaskIdStr} with prompt "${prompt}" and research: ${useResearch}`
|
||||
);
|
||||
|
||||
// Initialize the appropriate AI client based on research flag
|
||||
try {
|
||||
if (useResearch) {
|
||||
// Initialize Perplexity client
|
||||
await getPerplexityClientForMCP(session);
|
||||
} else {
|
||||
// Initialize Anthropic client
|
||||
await getAnthropicClientForMCP(session);
|
||||
}
|
||||
} catch (error) {
|
||||
log.error(`AI client initialization error: ${error.message}`);
|
||||
return {
|
||||
success: false,
|
||||
error: {
|
||||
code: 'AI_CLIENT_ERROR',
|
||||
message: error.message || 'Failed to initialize AI client'
|
||||
},
|
||||
fromCache: false
|
||||
};
|
||||
}
|
||||
|
||||
try {
|
||||
// Enable silent mode to prevent console logs from interfering with JSON response
|
||||
enableSilentMode();
|
||||
|
||||
@@ -8,10 +8,6 @@ import {
|
||||
enableSilentMode,
|
||||
disableSilentMode
|
||||
} from '../../../../scripts/modules/utils.js';
|
||||
import {
|
||||
getAnthropicClientForMCP,
|
||||
getPerplexityClientForMCP
|
||||
} from '../utils/ai-client-utils.js';
|
||||
|
||||
/**
|
||||
* Direct function wrapper for updateTaskById with error handling.
|
||||
@@ -92,28 +88,6 @@ export async function updateTaskByIdDirect(args, log, context = {}) {
|
||||
// Get research flag
|
||||
const useResearch = research === true;
|
||||
|
||||
// Initialize appropriate AI client based on research flag
|
||||
let aiClient;
|
||||
try {
|
||||
if (useResearch) {
|
||||
log.info('Using Perplexity AI for research-backed task update');
|
||||
aiClient = await getPerplexityClientForMCP(session, log);
|
||||
} else {
|
||||
log.info('Using Claude AI for task update');
|
||||
aiClient = getAnthropicClientForMCP(session, log);
|
||||
}
|
||||
} catch (error) {
|
||||
log.error(`Failed to initialize AI client: ${error.message}`);
|
||||
return {
|
||||
success: false,
|
||||
error: {
|
||||
code: 'AI_CLIENT_ERROR',
|
||||
message: `Cannot initialize AI client: ${error.message}`
|
||||
},
|
||||
fromCache: false
|
||||
};
|
||||
}
|
||||
|
||||
log.info(
|
||||
`Updating task with ID ${taskId} with prompt "${prompt}" and research: ${useResearch}`
|
||||
);
|
||||
|
||||
@@ -34,15 +34,6 @@ import { modelsDirect } from './direct-functions/models.js';
|
||||
// Re-export utility functions
|
||||
export { findTasksJsonPath } from './utils/path-utils.js';
|
||||
|
||||
// Re-export AI client utilities
|
||||
export {
|
||||
getAnthropicClientForMCP,
|
||||
getPerplexityClientForMCP,
|
||||
getModelConfig,
|
||||
getBestAvailableAIModel,
|
||||
handleClaudeError
|
||||
} from './utils/ai-client-utils.js';
|
||||
|
||||
// Use Map for potential future enhancements like introspection or dynamic dispatch
|
||||
export const directFunctions = new Map([
|
||||
['listTasksDirect', listTasksDirect],
|
||||
|
||||
@@ -1,213 +0,0 @@
|
||||
/**
|
||||
* ai-client-utils.js
|
||||
* Utility functions for initializing AI clients in MCP context
|
||||
*/
|
||||
|
||||
import { Anthropic } from '@anthropic-ai/sdk';
|
||||
import dotenv from 'dotenv';
|
||||
|
||||
// Load environment variables for CLI mode
|
||||
dotenv.config();
|
||||
|
||||
// Default model configuration from CLI environment
|
||||
const DEFAULT_MODEL_CONFIG = {
|
||||
model: 'claude-3-7-sonnet-20250219',
|
||||
maxTokens: 64000,
|
||||
temperature: 0.2
|
||||
};
|
||||
|
||||
/**
|
||||
* Get an Anthropic client instance initialized with MCP session environment variables
|
||||
* @param {Object} [session] - Session object from MCP containing environment variables
|
||||
* @param {Object} [log] - Logger object to use (defaults to console)
|
||||
* @returns {Anthropic} Anthropic client instance
|
||||
* @throws {Error} If API key is missing
|
||||
*/
|
||||
export function getAnthropicClientForMCP(session, log = console) {
|
||||
try {
|
||||
// Extract API key from session.env or fall back to environment variables
|
||||
const apiKey =
|
||||
session?.env?.ANTHROPIC_API_KEY || process.env.ANTHROPIC_API_KEY;
|
||||
|
||||
if (!apiKey) {
|
||||
throw new Error(
|
||||
'ANTHROPIC_API_KEY not found in session environment or process.env'
|
||||
);
|
||||
}
|
||||
|
||||
// Initialize and return a new Anthropic client
|
||||
return new Anthropic({
|
||||
apiKey,
|
||||
defaultHeaders: {
|
||||
'anthropic-beta': 'output-128k-2025-02-19' // Include header for increased token limit
|
||||
}
|
||||
});
|
||||
} catch (error) {
|
||||
log.error(`Failed to initialize Anthropic client: ${error.message}`);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get a Perplexity client instance initialized with MCP session environment variables
|
||||
* @param {Object} [session] - Session object from MCP containing environment variables
|
||||
* @param {Object} [log] - Logger object to use (defaults to console)
|
||||
* @returns {OpenAI} OpenAI client configured for Perplexity API
|
||||
* @throws {Error} If API key is missing or OpenAI package can't be imported
|
||||
*/
|
||||
export async function getPerplexityClientForMCP(session, log = console) {
|
||||
try {
|
||||
// Extract API key from session.env or fall back to environment variables
|
||||
const apiKey =
|
||||
session?.env?.PERPLEXITY_API_KEY || process.env.PERPLEXITY_API_KEY;
|
||||
|
||||
if (!apiKey) {
|
||||
throw new Error(
|
||||
'PERPLEXITY_API_KEY not found in session environment or process.env'
|
||||
);
|
||||
}
|
||||
|
||||
// Dynamically import OpenAI (it may not be used in all contexts)
|
||||
const { default: OpenAI } = await import('openai');
|
||||
|
||||
// Initialize and return a new OpenAI client configured for Perplexity
|
||||
return new OpenAI({
|
||||
apiKey,
|
||||
baseURL: 'https://api.perplexity.ai'
|
||||
});
|
||||
} catch (error) {
|
||||
log.error(`Failed to initialize Perplexity client: ${error.message}`);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get model configuration from session environment or fall back to defaults
|
||||
* @param {Object} [session] - Session object from MCP containing environment variables
|
||||
* @param {Object} [defaults] - Default model configuration to use if not in session
|
||||
* @returns {Object} Model configuration with model, maxTokens, and temperature
|
||||
*/
|
||||
export function getModelConfig(session, defaults = DEFAULT_MODEL_CONFIG) {
|
||||
// Get values from session or fall back to defaults
|
||||
return {
|
||||
model: session?.env?.MODEL || defaults.model,
|
||||
maxTokens: parseInt(session?.env?.MAX_TOKENS || defaults.maxTokens),
|
||||
temperature: parseFloat(session?.env?.TEMPERATURE || defaults.temperature)
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the best available AI model based on specified options
|
||||
* @param {Object} session - Session object from MCP containing environment variables
|
||||
* @param {Object} options - Options for model selection
|
||||
* @param {boolean} [options.requiresResearch=false] - Whether the operation requires research capabilities
|
||||
* @param {boolean} [options.claudeOverloaded=false] - Whether Claude is currently overloaded
|
||||
* @param {Object} [log] - Logger object to use (defaults to console)
|
||||
* @returns {Promise<Object>} Selected model info with type and client
|
||||
* @throws {Error} If no AI models are available
|
||||
*/
|
||||
export async function getBestAvailableAIModel(
|
||||
session,
|
||||
options = {},
|
||||
log = console
|
||||
) {
|
||||
const { requiresResearch = false, claudeOverloaded = false } = options;
|
||||
|
||||
// Test case: When research is needed but no Perplexity, use Claude
|
||||
if (
|
||||
requiresResearch &&
|
||||
!(session?.env?.PERPLEXITY_API_KEY || process.env.PERPLEXITY_API_KEY) &&
|
||||
(session?.env?.ANTHROPIC_API_KEY || process.env.ANTHROPIC_API_KEY)
|
||||
) {
|
||||
try {
|
||||
log.warn('Perplexity not available for research, using Claude');
|
||||
const client = getAnthropicClientForMCP(session, log);
|
||||
return { type: 'claude', client };
|
||||
} catch (error) {
|
||||
log.error(`Claude not available: ${error.message}`);
|
||||
throw new Error('No AI models available for research');
|
||||
}
|
||||
}
|
||||
|
||||
// Regular path: Perplexity for research when available
|
||||
if (
|
||||
requiresResearch &&
|
||||
(session?.env?.PERPLEXITY_API_KEY || process.env.PERPLEXITY_API_KEY)
|
||||
) {
|
||||
try {
|
||||
const client = await getPerplexityClientForMCP(session, log);
|
||||
return { type: 'perplexity', client };
|
||||
} catch (error) {
|
||||
log.warn(`Perplexity not available: ${error.message}`);
|
||||
// Fall through to Claude as backup
|
||||
}
|
||||
}
|
||||
|
||||
// Test case: Claude for overloaded scenario
|
||||
if (
|
||||
claudeOverloaded &&
|
||||
(session?.env?.ANTHROPIC_API_KEY || process.env.ANTHROPIC_API_KEY)
|
||||
) {
|
||||
try {
|
||||
log.warn(
|
||||
'Claude is overloaded but no alternatives are available. Proceeding with Claude anyway.'
|
||||
);
|
||||
const client = getAnthropicClientForMCP(session, log);
|
||||
return { type: 'claude', client };
|
||||
} catch (error) {
|
||||
log.error(
|
||||
`Claude not available despite being overloaded: ${error.message}`
|
||||
);
|
||||
throw new Error('No AI models available');
|
||||
}
|
||||
}
|
||||
|
||||
// Default case: Use Claude when available and not overloaded
|
||||
if (
|
||||
!claudeOverloaded &&
|
||||
(session?.env?.ANTHROPIC_API_KEY || process.env.ANTHROPIC_API_KEY)
|
||||
) {
|
||||
try {
|
||||
const client = getAnthropicClientForMCP(session, log);
|
||||
return { type: 'claude', client };
|
||||
} catch (error) {
|
||||
log.warn(`Claude not available: ${error.message}`);
|
||||
// Fall through to error if no other options
|
||||
}
|
||||
}
|
||||
|
||||
// If we got here, no models were successfully initialized
|
||||
throw new Error('No AI models available. Please check your API keys.');
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle Claude API errors with user-friendly messages
|
||||
* @param {Error} error - The error from Claude API
|
||||
* @returns {string} User-friendly error message
|
||||
*/
|
||||
export function handleClaudeError(error) {
|
||||
// Check if it's a structured error response
|
||||
if (error.type === 'error' && error.error) {
|
||||
switch (error.error.type) {
|
||||
case 'overloaded_error':
|
||||
return 'Claude is currently experiencing high demand and is overloaded. Please wait a few minutes and try again.';
|
||||
case 'rate_limit_error':
|
||||
return 'You have exceeded the rate limit. Please wait a few minutes before making more requests.';
|
||||
case 'invalid_request_error':
|
||||
return 'There was an issue with the request format. If this persists, please report it as a bug.';
|
||||
default:
|
||||
return `Claude API error: ${error.error.message}`;
|
||||
}
|
||||
}
|
||||
|
||||
// Check for network/timeout errors
|
||||
if (error.message?.toLowerCase().includes('timeout')) {
|
||||
return 'The request to Claude timed out. Please try again.';
|
||||
}
|
||||
if (error.message?.toLowerCase().includes('network')) {
|
||||
return 'There was a network error connecting to Claude. Please check your internet connection and try again.';
|
||||
}
|
||||
|
||||
// Default error message
|
||||
return `Error communicating with Claude: ${error.message}`;
|
||||
}
|
||||
Reference in New Issue
Block a user