refactor: Standardize configuration and environment variable access

This commit centralizes configuration and environment variable access across various modules by consistently utilizing getters from scripts/modules/config-manager.js. This replaces direct access to process.env and the global CONFIG object, leading to improved consistency, maintainability, testability, and better handling of session-specific configurations within the MCP context.

Key changes include:

- Centralized Getters: Replaced numerous instances of process.env.* and CONFIG.* with corresponding getter functions (e.g., getLogLevel, getMainModelId, getResearchMaxTokens, getMainTemperature, isApiKeySet, getDebugFlag, getDefaultSubtasks).

- Session Awareness: Ensured that the session object is passed to config getters where necessary, particularly within AI service calls (ai-services.js, add-task.js) and error handling (ai-services.js), allowing for session-specific environment overrides.

- API Key Checks: Standardized API key availability checks using isApiKeySet() instead of directly checking process.env.* (e.g., for Perplexity in commands.js and ai-services.js).

- Client Instantiation Cleanup: Removed now-redundant/obsolete local client instantiation functions (getAnthropicClient, getPerplexityClient) from ai-services.js and the global Anthropic client initialization from dependency-manager.js. Client creation should now rely on the config manager and factory patterns.

- Consistent Debug Flag Usage: Standardized calls to getDebugFlag() in commands.js, removing potentially unnecessary null arguments.

- Accurate Progress Calculation: Updated AI stream progress reporting (ai-services.js, add-task.js) to use getMainMaxTokens(session) for more accurate calculations.

- Minor Cleanup: Removed unused  import from scripts/modules/commands.js.

Specific module updates:

- :

  - Uses getLogLevel() instead of process.env.LOG_LEVEL.

- :

  - Replaced direct env/config access for model IDs, tokens, temperature, API keys, and default subtasks with appropriate getters.

  - Passed session to handleClaudeError.

  - Removed local getPerplexityClient and getAnthropicClient functions.

  - Updated progress calculations to use getMainMaxTokens(session).

- :

  - Uses isApiKeySet('perplexity') for API key checks.

  - Uses getDebugFlag() consistently for debug checks.

  - Removed unused  import.

- :

  - Removed global Anthropic client initialization.

- :

  - Uses config getters (getResearch..., getMain...) for Perplexity and Claude API call parameters, preserving customEnv override logic.

This refactoring also resolves a potential SyntaxError: Identifier 'getPerplexityClient' has already been declared by removing the duplicated/obsolete function definition previously present in ai-services.js.
This commit is contained in:
Eyal Toledano
2025-04-21 21:30:12 -04:00
parent d46547a80f
commit 4a9f6cd5f5
13 changed files with 284 additions and 238 deletions

View File

@@ -8,7 +8,17 @@ import { startLoadingIndicator, stopLoadingIndicator } from '../ui.js';
import { generateComplexityAnalysisPrompt } from '../ai-services.js';
import { getDebugFlag } from '../config-manager.js';
import {
getDebugFlag,
getProjectName,
getMainModelId,
getMainMaxTokens,
getMainTemperature,
getResearchModelId,
getResearchMaxTokens,
getResearchTemperature,
getDefaultSubtasks
} from '../config-manager.js';
/**
* Analyzes task complexity and generates expansion recommendations
@@ -127,6 +137,83 @@ async function analyzeTaskComplexity(
}
}
// If after filtering, there are no tasks left to analyze, exit early.
if (tasksData.tasks.length === 0) {
const emptyReport = {
meta: {
generatedAt: new Date().toISOString(),
tasksAnalyzed: tasksData.tasks.length,
thresholdScore: thresholdScore,
projectName: getProjectName(session),
usedResearch: useResearch
},
complexityAnalysis: []
};
// Write the report to file
reportLog(`Writing complexity report to ${outputPath}...`, 'info');
writeJSON(outputPath, emptyReport);
reportLog(
`Task complexity analysis complete. Report written to ${outputPath}`,
'success'
);
// Only show UI elements for text output (CLI)
if (outputFormat === 'text') {
console.log(
chalk.green(
`Task complexity analysis complete. Report written to ${outputPath}`
)
);
// Display a summary of findings
const highComplexity = emptyReport.complexityAnalysis.filter(
(t) => t.complexityScore >= 8
).length;
const mediumComplexity = emptyReport.complexityAnalysis.filter(
(t) => t.complexityScore >= 5 && t.complexityScore < 8
).length;
const lowComplexity = emptyReport.complexityAnalysis.filter(
(t) => t.complexityScore < 5
).length;
const totalAnalyzed = emptyReport.complexityAnalysis.length;
console.log('\nComplexity Analysis Summary:');
console.log('----------------------------');
console.log(`Tasks in input file: ${tasksData.tasks.length}`);
console.log(`Tasks successfully analyzed: ${totalAnalyzed}`);
console.log(`High complexity tasks: ${highComplexity}`);
console.log(`Medium complexity tasks: ${mediumComplexity}`);
console.log(`Low complexity tasks: ${lowComplexity}`);
console.log(
`Sum verification: ${highComplexity + mediumComplexity + lowComplexity} (should equal ${totalAnalyzed})`
);
console.log(`Research-backed analysis: ${useResearch ? 'Yes' : 'No'}`);
console.log(
`\nSee ${outputPath} for the full report and expansion commands.`
);
// Show next steps suggestions
console.log(
boxen(
chalk.white.bold('Suggested Next Steps:') +
'\n\n' +
`${chalk.cyan('1.')} Run ${chalk.yellow('task-master complexity-report')} to review detailed findings\n` +
`${chalk.cyan('2.')} Run ${chalk.yellow('task-master expand --id=<id>')} to break down complex tasks\n` +
`${chalk.cyan('3.')} Run ${chalk.yellow('task-master expand --all')} to expand all pending tasks based on complexity`,
{
padding: 1,
borderColor: 'cyan',
borderStyle: 'round',
margin: { top: 1 }
}
)
);
}
return emptyReport;
}
// Prepare the prompt for the LLM
const prompt = generateComplexityAnalysisPrompt(tasksData);
@@ -183,11 +270,9 @@ Your response must be a clean JSON array only, following exactly this format:
DO NOT include any text before or after the JSON array. No explanations, no markdown formatting.`;
// Keep the direct AI call for now, use config getters for parameters
const result = await perplexity.chat.completions.create({
model:
process.env.PERPLEXITY_MODEL ||
session?.env?.PERPLEXITY_MODEL ||
'sonar-pro',
model: getResearchModelId(session),
messages: [
{
role: 'system',
@@ -199,8 +284,8 @@ DO NOT include any text before or after the JSON array. No explanations, no mark
content: researchPrompt
}
],
temperature: session?.env?.TEMPERATURE || CONFIG.temperature,
max_tokens: 8700,
temperature: getResearchTemperature(session),
max_tokens: getResearchMaxTokens(session),
web_search_options: {
search_context_size: 'high'
},
@@ -236,6 +321,12 @@ DO NOT include any text before or after the JSON array. No explanations, no mark
console.log(chalk.gray('Response first 200 chars:'));
console.log(chalk.gray(fullResponse.substring(0, 200)));
}
if (getDebugFlag(session)) {
console.debug(
chalk.gray(`Raw response: ${fullResponse.substring(0, 500)}...`)
);
}
} catch (perplexityError) {
reportLog(
`Falling back to Claude for complexity analysis: ${perplexityError.message}`,
@@ -287,12 +378,11 @@ DO NOT include any text before or after the JSON array. No explanations, no mark
);
}
// Call the LLM API with streaming
// Keep the direct AI call for now, use config getters for parameters
const stream = await anthropic.messages.create({
max_tokens: session?.env?.MAX_TOKENS || CONFIG.maxTokens,
model:
modelOverride || CONFIG.model || session?.env?.ANTHROPIC_MODEL,
temperature: session?.env?.TEMPERATURE || CONFIG.temperature,
max_tokens: getMainMaxTokens(session),
model: modelOverride || getMainModelId(session),
temperature: getMainTemperature(session),
messages: [{ role: 'user', content: prompt }],
system:
'You are an expert software architect and project manager analyzing task complexity. Respond only with valid JSON.',
@@ -318,12 +408,13 @@ DO NOT include any text before or after the JSON array. No explanations, no mark
}
if (reportProgress) {
await reportProgress({
progress: (fullResponse.length / CONFIG.maxTokens) * 100
progress:
(fullResponse.length / getMainMaxTokens(session)) * 100
});
}
if (mcpLog) {
mcpLog.info(
`Progress: ${(fullResponse.length / CONFIG.maxTokens) * 100}%`
`Progress: ${(fullResponse.length / getMainMaxTokens(session)) * 100}%`
);
}
}
@@ -797,7 +888,7 @@ DO NOT include any text before or after the JSON array. No explanations, no mark
generatedAt: new Date().toISOString(),
tasksAnalyzed: tasksData.tasks.length,
thresholdScore: thresholdScore,
projectName: tasksData.meta?.projectName || 'Your Project Name',
projectName: getProjectName(session),
usedResearch: useResearch
},
complexityAnalysis: complexityAnalysis
@@ -865,6 +956,12 @@ DO NOT include any text before or after the JSON array. No explanations, no mark
}
)
);
if (getDebugFlag(session)) {
console.debug(
chalk.gray(`Raw response: ${fullResponse.substring(0, 500)}...`)
);
}
}
return finalReport;
@@ -885,8 +982,7 @@ DO NOT include any text before or after the JSON array. No explanations, no mark
console.error(
chalk.red(`Error parsing complexity analysis: ${error.message}`)
);
if (getDebugFlag()) {
// Use getter
if (getDebugFlag(session)) {
console.debug(
chalk.gray(`Raw response: ${fullResponse.substring(0, 500)}...`)
);
@@ -931,8 +1027,7 @@ DO NOT include any text before or after the JSON array. No explanations, no mark
);
}
if (getDebugFlag()) {
// Use getter
if (getDebugFlag(session)) {
console.error(error);
}