fix: ensure API key detection properly reads .env in MCP context

Problem:
- Task Master model configuration wasn't properly checking for API keys in the project's .env file when running through MCP
- The isApiKeySet function was only checking session.env and process.env but not inspecting the .env file directly
- This caused incorrect API key status reporting in MCP tools even when keys were properly set in .env

Solution:
- Modified resolveEnvVariable function in utils.js to properly read from .env file at projectRoot
- Updated isApiKeySet to correctly pass projectRoot to resolveEnvVariable
- Enhanced the key detection logic to have consistent behavior between CLI and MCP contexts
- Maintains the correct precedence: session.env → .env file → process.env

Testing:
- Verified working correctly with both MCP and CLI tools
- API keys properly detected in .env file in both contexts
- Deleted .cursor/mcp.json to confirm introspection of .env as fallback works
This commit is contained in:
Eyal Toledano
2025-05-01 13:23:52 -04:00
parent d4a2e34b3b
commit 40df57f969
6 changed files with 105 additions and 46 deletions

View File

@@ -1,31 +1,31 @@
{
"models": {
"main": {
"provider": "anthropic",
"modelId": "claude-3-7-sonnet-20250219",
"maxTokens": 100000,
"temperature": 0.2
},
"research": {
"provider": "xai",
"modelId": "grok-3",
"maxTokens": 8700,
"temperature": 0.1
},
"fallback": {
"provider": "anthropic",
"modelId": "claude-3-5-sonnet-20241022",
"maxTokens": 120000,
"temperature": 0.2
}
},
"global": {
"logLevel": "info",
"debug": false,
"defaultSubtasks": 5,
"defaultPriority": "medium",
"projectName": "Taskmaster",
"ollamaBaseUrl": "http://localhost:11434/api",
"azureOpenaiBaseUrl": "https://your-endpoint.openai.azure.com/"
}
"models": {
"main": {
"provider": "anthropic",
"modelId": "claude-3-7-sonnet-20250219",
"maxTokens": 100000,
"temperature": 0.2
},
"research": {
"provider": "perplexity",
"modelId": "sonar-pro",
"maxTokens": 8700,
"temperature": 0.1
},
"fallback": {
"provider": "anthropic",
"modelId": "claude-3-5-sonnet-20241022",
"maxTokens": 120000,
"temperature": 0.2
}
},
"global": {
"logLevel": "info",
"debug": false,
"defaultSubtasks": 5,
"defaultPriority": "medium",
"projectName": "Taskmaster",
"ollamaBaseUrl": "http://localhost:11434/api",
"azureOpenaiBaseUrl": "https://your-endpoint.openai.azure.com/"
}
}

View File

@@ -424,12 +424,13 @@ function getParametersForRole(role, explicitRoot = null) {
/**
* Checks if the API key for a given provider is set in the environment.
* Checks process.env first, then session.env if session is provided.
* Checks process.env first, then session.env if session is provided, then .env file if projectRoot provided.
* @param {string} providerName - The name of the provider (e.g., 'openai', 'anthropic').
* @param {object|null} [session=null] - The MCP session object (optional).
* @param {string|null} [projectRoot=null] - The project root directory (optional, for .env file check).
* @returns {boolean} True if the API key is set, false otherwise.
*/
function isApiKeySet(providerName, session = null) {
function isApiKeySet(providerName, session = null, projectRoot = null) {
// Define the expected environment variable name for each provider
if (providerName?.toLowerCase() === 'ollama') {
return true; // Indicate key status is effectively "OK"
@@ -454,7 +455,7 @@ function isApiKeySet(providerName, session = null) {
}
const envVarName = keyMap[providerKey];
const apiKeyValue = resolveEnvVariable(envVarName, session);
const apiKeyValue = resolveEnvVariable(envVarName, session, projectRoot);
// Check if the key exists, is not empty, and is not a placeholder
return (

View File

@@ -77,7 +77,7 @@ function fetchOpenRouterModels() {
* @returns {Object} RESTful response with current model configuration
*/
async function getModelConfiguration(options = {}) {
const { mcpLog, projectRoot } = options;
const { mcpLog, projectRoot, session } = options;
const report = (level, ...args) => {
if (mcpLog && typeof mcpLog[level] === 'function') {
@@ -125,12 +125,16 @@ async function getModelConfiguration(options = {}) {
const fallbackModelId = getFallbackModelId(projectRoot);
// Check API keys
const mainCliKeyOk = isApiKeySet(mainProvider);
const mainCliKeyOk = isApiKeySet(mainProvider, session, projectRoot);
const mainMcpKeyOk = getMcpApiKeyStatus(mainProvider, projectRoot);
const researchCliKeyOk = isApiKeySet(researchProvider);
const researchCliKeyOk = isApiKeySet(
researchProvider,
session,
projectRoot
);
const researchMcpKeyOk = getMcpApiKeyStatus(researchProvider, projectRoot);
const fallbackCliKeyOk = fallbackProvider
? isApiKeySet(fallbackProvider)
? isApiKeySet(fallbackProvider, session, projectRoot)
: true;
const fallbackMcpKeyOk = fallbackProvider
? getMcpApiKeyStatus(fallbackProvider, projectRoot)
@@ -523,7 +527,7 @@ async function getApiKeyStatusReport(options = {}) {
); // Ollama is not a provider, it's a service, doesn't need an api key usually
const statusReport = providersToCheck.map((provider) => {
// Use provided projectRoot for MCP status check
const cliOk = isApiKeySet(provider, session); // Pass session for CLI check too
const cliOk = isApiKeySet(provider, session, projectRoot); // Pass session and projectRoot for CLI check
const mcpOk = getMcpApiKeyStatus(provider, projectRoot);
return {
provider,

View File

@@ -6,6 +6,7 @@
import fs from 'fs';
import path from 'path';
import chalk from 'chalk';
import dotenv from 'dotenv';
// Import specific config getters needed here
import { getLogLevel, getDebugFlag } from './config-manager.js';
@@ -14,16 +15,47 @@ let silentMode = false;
// --- Environment Variable Resolution Utility ---
/**
* Resolves an environment variable by checking process.env first, then session.env.
* @param {string} varName - The name of the environment variable.
* @param {string|null} session - The MCP session object (optional).
* Resolves an environment variable's value.
* Precedence:
* 1. session.env (if session provided)
* 2. process.env
* 3. .env file at projectRoot (if projectRoot provided)
* @param {string} key - The environment variable key.
* @param {object|null} [session=null] - The MCP session object.
* @param {string|null} [projectRoot=null] - The project root directory (for .env fallback).
* @returns {string|undefined} The value of the environment variable or undefined if not found.
*/
function resolveEnvVariable(varName, session) {
// Ensure session and session.env exist before attempting access
const sessionValue =
session && session.env ? session.env[varName] : undefined;
return process.env[varName] ?? sessionValue;
function resolveEnvVariable(key, session = null, projectRoot = null) {
// 1. Check session.env
if (session?.env?.[key]) {
return session.env[key];
}
// 2. Read .env file at projectRoot
if (projectRoot) {
const envPath = path.join(projectRoot, '.env');
if (fs.existsSync(envPath)) {
try {
const envFileContent = fs.readFileSync(envPath, 'utf-8');
const parsedEnv = dotenv.parse(envFileContent); // Use dotenv to parse
if (parsedEnv && parsedEnv[key]) {
// console.log(`DEBUG: Found key ${key} in ${envPath}`); // Optional debug log
return parsedEnv[key];
}
} catch (error) {
// Log error but don't crash, just proceed as if key wasn't found in file
log('warn', `Could not read or parse ${envPath}: ${error.message}`);
}
}
}
// 3. Fallback: Check process.env
if (process.env[key]) {
return process.env[key];
}
// Not found anywhere
return undefined;
}
// --- Project Root Finding Utility ---

11
tasks/task_075.txt Normal file
View File

@@ -0,0 +1,11 @@
# Task ID: 75
# Title: Integrate Google Search Grounding for Research Role
# Status: pending
# Dependencies: None
# Priority: medium
# Description: Update the AI service layer to enable Google Search Grounding specifically when a Google model is used in the 'research' role.
# Details:
**Goal:** Conditionally enable Google Search Grounding based on the AI role.\n\n**Implementation Plan:**\n\n1. **Modify `ai-services-unified.js`:** Update `generateTextService`, `streamTextService`, and `generateObjectService`.\n2. **Conditional Logic:** Inside these functions, check if `providerName === 'google'` AND `role === 'research'`.\n3. **Construct `providerOptions`:** If the condition is met, create an options object:\n ```javascript\n let providerSpecificOptions = {};\n if (providerName === 'google' && role === 'research') {\n log('info', 'Enabling Google Search Grounding for research role.');\n providerSpecificOptions = {\n google: {\n useSearchGrounding: true,\n // Optional: Add dynamic retrieval for compatible models\n // dynamicRetrievalConfig: { mode: 'MODE_DYNAMIC' } \n }\n };\n }\n ```\n4. **Pass Options to SDK:** Pass `providerSpecificOptions` to the Vercel AI SDK functions (`generateText`, `streamText`, `generateObject`) via the `providerOptions` parameter:\n ```javascript\n const { text, ... } = await generateText({\n // ... other params\n providerOptions: providerSpecificOptions \n });\n ```\n5. **Update `supported-models.json`:** Ensure Google models intended for research (e.g., `gemini-1.5-pro-latest`, `gemini-1.5-flash-latest`) include `'research'` in their `allowed_roles` array.\n\n**Rationale:** This approach maintains the clear separation between 'main' and 'research' roles, ensuring grounding is only activated when explicitly requested via the `--research` flag or when the research model is invoked.
# Test Strategy:
1. Configure a Google model (e.g., gemini-1.5-flash-latest) as the 'research' model in `.taskmasterconfig`.\n2. Run a command with the `--research` flag (e.g., `task-master add-task --prompt='Latest news on AI SDK 4.2' --research`).\n3. Verify logs show 'Enabling Google Search Grounding'.\n4. Check if the task output incorporates recent information.\n5. Configure the same Google model as the 'main' model.\n6. Run a command *without* the `--research` flag.\n7. Verify logs *do not* show grounding being enabled.\n8. Add unit tests to `ai-services-unified.test.js` to verify the conditional logic for adding `providerOptions`. Ensure mocks correctly simulate different roles and providers.

View File

@@ -3937,6 +3937,17 @@
"parentTaskId": 74
}
]
},
{
"id": 75,
"title": "Integrate Google Search Grounding for Research Role",
"description": "Update the AI service layer to enable Google Search Grounding specifically when a Google model is used in the 'research' role.",
"details": "**Goal:** Conditionally enable Google Search Grounding based on the AI role.\\n\\n**Implementation Plan:**\\n\\n1. **Modify `ai-services-unified.js`:** Update `generateTextService`, `streamTextService`, and `generateObjectService`.\\n2. **Conditional Logic:** Inside these functions, check if `providerName === 'google'` AND `role === 'research'`.\\n3. **Construct `providerOptions`:** If the condition is met, create an options object:\\n ```javascript\\n let providerSpecificOptions = {};\\n if (providerName === 'google' && role === 'research') {\\n log('info', 'Enabling Google Search Grounding for research role.');\\n providerSpecificOptions = {\\n google: {\\n useSearchGrounding: true,\\n // Optional: Add dynamic retrieval for compatible models\\n // dynamicRetrievalConfig: { mode: 'MODE_DYNAMIC' } \\n }\\n };\\n }\\n ```\\n4. **Pass Options to SDK:** Pass `providerSpecificOptions` to the Vercel AI SDK functions (`generateText`, `streamText`, `generateObject`) via the `providerOptions` parameter:\\n ```javascript\\n const { text, ... } = await generateText({\\n // ... other params\\n providerOptions: providerSpecificOptions \\n });\\n ```\\n5. **Update `supported-models.json`:** Ensure Google models intended for research (e.g., `gemini-1.5-pro-latest`, `gemini-1.5-flash-latest`) include `'research'` in their `allowed_roles` array.\\n\\n**Rationale:** This approach maintains the clear separation between 'main' and 'research' roles, ensuring grounding is only activated when explicitly requested via the `--research` flag or when the research model is invoked.",
"testStrategy": "1. Configure a Google model (e.g., gemini-1.5-flash-latest) as the 'research' model in `.taskmasterconfig`.\\n2. Run a command with the `--research` flag (e.g., `task-master add-task --prompt='Latest news on AI SDK 4.2' --research`).\\n3. Verify logs show 'Enabling Google Search Grounding'.\\n4. Check if the task output incorporates recent information.\\n5. Configure the same Google model as the 'main' model.\\n6. Run a command *without* the `--research` flag.\\n7. Verify logs *do not* show grounding being enabled.\\n8. Add unit tests to `ai-services-unified.test.js` to verify the conditional logic for adding `providerOptions`. Ensure mocks correctly simulate different roles and providers.",
"status": "pending",
"dependencies": [],
"priority": "medium",
"subtasks": []
}
]
}