feat(telemetry): Implement AI usage telemetry pattern and apply to add-task

This commit introduces a standardized pattern for capturing and propagating AI usage telemetry (cost, tokens, model used) across the Task Master stack and applies it to the 'add-task' functionality.

Key changes include:

- **Telemetry Pattern Definition:**
  - Added  defining the integration pattern for core logic, direct functions, MCP tools, and CLI commands.
  - Updated related rules (, ,
 Usage: mcp [OPTIONS] COMMAND [ARGS]...

 MCP development tools

╭─ Options ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ --help          Show this message and exit.                                                                                                │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Commands ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ version   Show the MCP version.                                                                                                            │
│ dev       Run a MCP server with the MCP Inspector.                                                                                         │
│ run       Run a MCP server.                                                                                                                │
│ install   Install a MCP server in the Claude desktop app.                                                                                  │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯, , ) to reference the new telemetry rule.

- **Core Telemetry Implementation ():**
  - Refactored the unified AI service to generate and return a  object alongside the main AI result.
  - Fixed an MCP server startup crash by removing redundant local loading of  and instead using the  imported from  for cost calculations.
  - Added  to the  object.

- ** Integration:**
  - Modified  (core) to receive  from the AI service, return it, and call the new UI display function for CLI output.
  - Updated  to receive  from the core function and include it in the  payload of its response.
  - Ensured  (MCP tool) correctly passes the  through via .
  - Updated  to correctly pass context (, ) to the core  function and rely on it for CLI telemetry display.

- **UI Enhancement:**
  - Added  function to  to show telemetry details in the CLI.

- **Project Management:**
  - Added subtasks 77.6 through 77.12 to track the rollout of this telemetry pattern to other AI-powered commands (, , , , , , ).

This establishes the foundation for tracking AI usage across the application.
This commit is contained in:
Eyal Toledano
2025-05-07 13:41:25 -04:00
parent 0527c363e3
commit 245c3cb398
23 changed files with 1239 additions and 294 deletions

View File

@@ -8,7 +8,8 @@ import {
displayBanner,
getStatusWithColor,
startLoadingIndicator,
stopLoadingIndicator
stopLoadingIndicator,
displayAiUsageSummary
} from '../ui.js';
import { readJSON, writeJSON, log as consoleLog, truncate } from '../utils.js';
import { generateObjectService } from '../ai-services-unified.js';
@@ -44,7 +45,9 @@ const AiTaskDataSchema = z.object({
* @param {boolean} useResearch - Whether to use the research model (passed to unified service)
* @param {Object} context - Context object containing session and potentially projectRoot
* @param {string} [context.projectRoot] - Project root path (for MCP/env fallback)
* @returns {number} The new task ID
* @param {string} [context.commandName] - The name of the command being executed (for telemetry)
* @param {string} [context.outputType] - The output type ('cli' or 'mcp', for telemetry)
* @returns {Promise<object>} An object containing newTaskId and telemetryData
*/
async function addTask(
tasksPath,
@@ -56,7 +59,7 @@ async function addTask(
manualTaskData = null,
useResearch = false
) {
const { session, mcpLog, projectRoot } = context;
const { session, mcpLog, projectRoot, commandName, outputType } = context;
const isMCP = !!mcpLog;
// Create a consistent logFn object regardless of context
@@ -78,6 +81,7 @@ async function addTask(
);
let loadingIndicator = null;
let aiServiceResponse = null; // To store the full response from AI service
// Create custom reporter that checks for MCP log
const report = (message, level = 'info') => {
@@ -229,29 +233,40 @@ async function addTask(
// Start the loading indicator - only for text mode
if (outputFormat === 'text') {
loadingIndicator = startLoadingIndicator(
`Generating new task with ${useResearch ? 'Research' : 'Main'} AI...`
`Generating new task with ${useResearch ? 'Research' : 'Main'} AI..\n`
);
}
try {
// Determine the service role based on the useResearch flag
const serviceRole = useResearch ? 'research' : 'main';
report('DEBUG: Calling generateObjectService...', 'debug');
// Call the unified AI service
const aiGeneratedTaskData = await generateObjectService({
role: serviceRole, // <-- Use the determined role
session: session, // Pass session for API key resolution
projectRoot: projectRoot, // <<< Pass projectRoot here
schema: AiTaskDataSchema, // Pass the Zod schema
objectName: 'newTaskData', // Name for the object
aiServiceResponse = await generateObjectService({
// Capture the full response
role: serviceRole,
session: session,
projectRoot: projectRoot,
schema: AiTaskDataSchema,
objectName: 'newTaskData',
systemPrompt: systemPrompt,
prompt: userPrompt
prompt: userPrompt,
commandName: commandName || 'add-task', // Use passed commandName or default
outputType: outputType || (isMCP ? 'mcp' : 'cli') // Use passed outputType or derive
});
report('DEBUG: generateObjectService returned successfully.', 'debug');
if (
!aiServiceResponse ||
!aiServiceResponse.mainResult ||
!aiServiceResponse.mainResult.object
) {
throw new Error(
'AI service did not return the expected object structure.'
);
}
taskData = aiServiceResponse.mainResult.object; // Extract the AI-generated task data
report('Successfully generated task data from AI.', 'success');
taskData = aiGeneratedTaskData; // Assign the validated object
} catch (error) {
report(
`DEBUG: generateObjectService caught error: ${error.message}`,
@@ -362,11 +377,25 @@ async function addTask(
{ padding: 1, borderColor: 'green', borderStyle: 'round' }
)
);
// Display AI Usage Summary if telemetryData is available
if (
aiServiceResponse &&
aiServiceResponse.telemetryData &&
(outputType === 'cli' || outputType === 'text')
) {
displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli');
}
}
// Return the new task ID
report(`DEBUG: Returning new task ID: ${newTaskId}`, 'debug');
return newTaskId;
report(
`DEBUG: Returning new task ID: ${newTaskId} and telemetry.`,
'debug'
);
return {
newTaskId: newTaskId,
telemetryData: aiServiceResponse ? aiServiceResponse.telemetryData : null
};
} catch (error) {
// Stop any loading indicator on error
if (loadingIndicator) {