feat(telemetry): Implement AI usage telemetry pattern and apply to add-task

This commit introduces a standardized pattern for capturing and propagating AI usage telemetry (cost, tokens, model used) across the Task Master stack and applies it to the 'add-task' functionality.

Key changes include:

- **Telemetry Pattern Definition:**
  - Added  defining the integration pattern for core logic, direct functions, MCP tools, and CLI commands.
  - Updated related rules (, ,
 Usage: mcp [OPTIONS] COMMAND [ARGS]...

 MCP development tools

╭─ Options ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ --help          Show this message and exit.                                                                                                │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Commands ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ version   Show the MCP version.                                                                                                            │
│ dev       Run a MCP server with the MCP Inspector.                                                                                         │
│ run       Run a MCP server.                                                                                                                │
│ install   Install a MCP server in the Claude desktop app.                                                                                  │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯, , ) to reference the new telemetry rule.

- **Core Telemetry Implementation ():**
  - Refactored the unified AI service to generate and return a  object alongside the main AI result.
  - Fixed an MCP server startup crash by removing redundant local loading of  and instead using the  imported from  for cost calculations.
  - Added  to the  object.

- ** Integration:**
  - Modified  (core) to receive  from the AI service, return it, and call the new UI display function for CLI output.
  - Updated  to receive  from the core function and include it in the  payload of its response.
  - Ensured  (MCP tool) correctly passes the  through via .
  - Updated  to correctly pass context (, ) to the core  function and rely on it for CLI telemetry display.

- **UI Enhancement:**
  - Added  function to  to show telemetry details in the CLI.

- **Project Management:**
  - Added subtasks 77.6 through 77.12 to track the rollout of this telemetry pattern to other AI-powered commands (, , , , , , ).

This establishes the foundation for tracking AI usage across the application.
This commit is contained in:
Eyal Toledano
2025-05-07 13:41:25 -04:00
parent 0527c363e3
commit 245c3cb398
23 changed files with 1239 additions and 294 deletions

View File

@@ -62,7 +62,8 @@ import {
stopLoadingIndicator,
displayModelConfiguration,
displayAvailableModels,
displayApiKeyStatus
displayApiKeyStatus,
displayAiUsageSummary
} from './ui.js';
import { initializeProject } from '../init.js';
@@ -1263,7 +1264,7 @@ function registerCommands(programInstance) {
// add-task command
programInstance
.command('add-task')
.description('Add a new task using AI or manual input')
.description('Add a new task using AI, optionally providing manual details')
.option('-f, --file <file>', 'Path to the tasks file', 'tasks/tasks.json')
.option(
'-p, --prompt <prompt>',
@@ -1308,74 +1309,70 @@ function registerCommands(programInstance) {
process.exit(1);
}
const tasksPath =
options.file ||
path.join(findProjectRoot() || '.', 'tasks', 'tasks.json') || // Ensure tasksPath is also relative to a found root or current dir
'tasks/tasks.json';
// Correctly determine projectRoot
const projectRoot = findProjectRoot();
let manualTaskData = null;
if (isManualCreation) {
manualTaskData = {
title: options.title,
description: options.description,
details: options.details || '',
testStrategy: options.testStrategy || ''
};
// Restore specific logging for manual creation
console.log(
chalk.blue(`Creating task manually with title: "${options.title}"`)
);
} else {
// Restore specific logging for AI creation
console.log(
chalk.blue(`Creating task with AI using prompt: "${options.prompt}"`)
);
}
// Log dependencies and priority if provided (restored)
const dependenciesArray = options.dependencies
? options.dependencies.split(',').map((id) => id.trim())
: [];
if (dependenciesArray.length > 0) {
console.log(
chalk.blue(`Dependencies: [${dependenciesArray.join(', ')}]`)
);
}
if (options.priority) {
console.log(chalk.blue(`Priority: ${options.priority}`));
}
const context = {
projectRoot,
commandName: 'add-task',
outputType: 'cli'
};
try {
// Prepare dependencies if provided
let dependencies = [];
if (options.dependencies) {
dependencies = options.dependencies
.split(',')
.map((id) => parseInt(id.trim(), 10));
}
// Create manual task data if title and description are provided
let manualTaskData = null;
if (isManualCreation) {
manualTaskData = {
title: options.title,
description: options.description,
details: options.details || '',
testStrategy: options.testStrategy || ''
};
console.log(
chalk.blue(`Creating task manually with title: "${options.title}"`)
);
if (dependencies.length > 0) {
console.log(
chalk.blue(`Dependencies: [${dependencies.join(', ')}]`)
);
}
if (options.priority) {
console.log(chalk.blue(`Priority: ${options.priority}`));
}
} else {
console.log(
chalk.blue(
`Creating task with AI using prompt: "${options.prompt}"`
)
);
if (dependencies.length > 0) {
console.log(
chalk.blue(`Dependencies: [${dependencies.join(', ')}]`)
);
}
if (options.priority) {
console.log(chalk.blue(`Priority: ${options.priority}`));
}
}
// Pass mcpLog and session for MCP mode
const newTaskId = await addTask(
options.file,
options.prompt, // Pass prompt (will be null/undefined if not provided)
dependencies,
const { newTaskId, telemetryData } = await addTask(
tasksPath,
options.prompt,
dependenciesArray,
options.priority,
{
// For CLI, session context isn't directly available like MCP
// We don't need to pass session here for CLI API key resolution
// as dotenv loads .env, and utils.resolveEnvVariable checks process.env
},
'text', // outputFormat
manualTaskData, // Pass the potentially created manualTaskData object
options.research || false // Pass the research flag value
context,
'text',
manualTaskData,
options.research
);
console.log(chalk.green(`✓ Added new task #${newTaskId}`));
console.log(chalk.gray('Next: Complete this task or add more tasks'));
// addTask handles detailed CLI success logging AND telemetry display when outputFormat is 'text'
// No need to call displayAiUsageSummary here anymore.
} catch (error) {
console.error(chalk.red(`Error adding task: ${error.message}`));
if (error.stack && getDebugFlag()) {
console.error(error.stack);
if (error.details) {
console.error(chalk.red(error.details));
}
process.exit(1);
}