feat(telemetry): Implement AI usage telemetry pattern and apply to add-task
This commit introduces a standardized pattern for capturing and propagating AI usage telemetry (cost, tokens, model used) across the Task Master stack and applies it to the 'add-task' functionality. Key changes include: - **Telemetry Pattern Definition:** - Added defining the integration pattern for core logic, direct functions, MCP tools, and CLI commands. - Updated related rules (, , Usage: mcp [OPTIONS] COMMAND [ARGS]... MCP development tools ╭─ Options ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ --help Show this message and exit. │ ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ ╭─ Commands ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ version Show the MCP version. │ │ dev Run a MCP server with the MCP Inspector. │ │ run Run a MCP server. │ │ install Install a MCP server in the Claude desktop app. │ ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯, , ) to reference the new telemetry rule. - **Core Telemetry Implementation ():** - Refactored the unified AI service to generate and return a object alongside the main AI result. - Fixed an MCP server startup crash by removing redundant local loading of and instead using the imported from for cost calculations. - Added to the object. - ** Integration:** - Modified (core) to receive from the AI service, return it, and call the new UI display function for CLI output. - Updated to receive from the core function and include it in the payload of its response. - Ensured (MCP tool) correctly passes the through via . - Updated to correctly pass context (, ) to the core function and rely on it for CLI telemetry display. - **UI Enhancement:** - Added function to to show telemetry details in the CLI. - **Project Management:** - Added subtasks 77.6 through 77.12 to track the rollout of this telemetry pattern to other AI-powered commands (, , , , , , ). This establishes the foundation for tracking AI usage across the application.
This commit is contained in:
@@ -25,6 +25,7 @@ This document outlines the architecture and usage patterns for interacting with
|
||||
* Implements **retry logic** for specific API errors (`_attemptProviderCallWithRetries`).
|
||||
* Resolves API keys automatically via `_resolveApiKey` (using `resolveEnvVariable`).
|
||||
* Maps requests to the correct provider implementation (in `src/ai-providers/`) via `PROVIDER_FUNCTIONS`.
|
||||
* Returns a structured object containing the primary AI result (`mainResult`) and telemetry data (`telemetryData`). See [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc) for details on how this telemetry data is propagated and handled.
|
||||
|
||||
* **Provider Implementations (`src/ai-providers/*.js`):**
|
||||
* Contain provider-specific wrappers around Vercel AI SDK functions (`generateText`, `generateObject`).
|
||||
|
||||
@@ -42,6 +42,7 @@ alwaysApply: false
|
||||
- Resolves API keys (from `.env` or `session.env`).
|
||||
- Implements fallback and retry logic.
|
||||
- Orchestrates calls to provider-specific implementations (`src/ai-providers/`).
|
||||
- Telemetry data generated by the AI service layer is propagated upwards through core logic, direct functions, and MCP tools. See [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc) for the detailed integration pattern.
|
||||
|
||||
- **[`src/ai-providers/*.js`](mdc:src/ai-providers/): Provider-Specific Implementations**
|
||||
- **Purpose**: Provider-specific wrappers for Vercel AI SDK functions.
|
||||
|
||||
@@ -3,7 +3,6 @@ description: Glossary of other Cursor rules
|
||||
globs: **/*
|
||||
alwaysApply: true
|
||||
---
|
||||
|
||||
# Glossary of Task Master Cursor Rules
|
||||
|
||||
This file provides a quick reference to the purpose of each rule file located in the `.cursor/rules` directory.
|
||||
@@ -23,4 +22,5 @@ This file provides a quick reference to the purpose of each rule file located in
|
||||
- **[`tests.mdc`](mdc:.cursor/rules/tests.mdc)**: Guidelines for implementing and maintaining tests for Task Master CLI.
|
||||
- **[`ui.mdc`](mdc:.cursor/rules/ui.mdc)**: Guidelines for implementing and maintaining user interface components.
|
||||
- **[`utilities.mdc`](mdc:.cursor/rules/utilities.mdc)**: Guidelines for implementing utility functions.
|
||||
- **[`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc)**: Guidelines for integrating AI usage telemetry across Task Master.
|
||||
|
||||
|
||||
@@ -522,3 +522,8 @@ Follow these steps to add MCP support for an existing Task Master command (see [
|
||||
// Add more functions as implemented
|
||||
};
|
||||
```
|
||||
|
||||
## Telemetry Integration
|
||||
|
||||
- Direct functions calling core logic that involves AI should receive and pass through `telemetryData` within their successful `data` payload. See [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc) for the standard pattern.
|
||||
- MCP tools use `handleApiResult`, which ensures the `data` object (potentially including `telemetryData`) from the direct function is correctly included in the final response.
|
||||
|
||||
@@ -3,7 +3,6 @@ description: Guidelines for integrating new features into the Task Master CLI
|
||||
globs: scripts/modules/*.js
|
||||
alwaysApply: false
|
||||
---
|
||||
|
||||
# Task Master Feature Integration Guidelines
|
||||
|
||||
## Feature Placement Decision Process
|
||||
@@ -196,6 +195,8 @@ The standard pattern for adding a feature follows this workflow:
|
||||
- ✅ **DO**: If an MCP tool fails with vague errors (e.g., JSON parsing issues like `Unexpected token ... is not valid JSON`), **try running the equivalent CLI command directly in the terminal** (e.g., `task-master expand --all`). CLI output often provides much more specific error messages (like missing function definitions or stack traces from the core logic) that pinpoint the root cause.
|
||||
- ❌ **DON'T**: Rely solely on MCP logs if the error is unclear; use the CLI as a complementary debugging tool for core logic issues.
|
||||
|
||||
- **Telemetry Integration**: Ensure AI calls correctly handle and propagate `telemetryData` as described in [`telemetry.mdc`](mdc:.cursor/rules/telemetry.mdc).
|
||||
|
||||
```javascript
|
||||
// 1. CORE LOGIC: Add function to appropriate module (example in task-manager.js)
|
||||
/**
|
||||
|
||||
228
.cursor/rules/telemetry.mdc
Normal file
228
.cursor/rules/telemetry.mdc
Normal file
@@ -0,0 +1,228 @@
|
||||
---
|
||||
description: Guidelines for integrating AI usage telemetry across Task Master.
|
||||
globs: scripts/modules/**/*.js,mcp-server/src/**/*.js
|
||||
alwaysApply: true
|
||||
---
|
||||
|
||||
# AI Usage Telemetry Integration
|
||||
|
||||
This document outlines the standard pattern for capturing, propagating, and handling AI usage telemetry data (cost, tokens, model, etc.) across the Task Master stack. This ensures consistent telemetry for both CLI and MCP interactions.
|
||||
|
||||
## Overview
|
||||
|
||||
Telemetry data is generated within the unified AI service layer ([`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js)) and then passed upwards through the calling functions.
|
||||
|
||||
- **Data Source**: [`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js) (specifically its `generateTextService`, `generateObjectService`, etc.) returns an object like `{ mainResult: AI_CALL_OUTPUT, telemetryData: TELEMETRY_OBJECT }`.
|
||||
- **`telemetryData` Object Structure**:
|
||||
```json
|
||||
{
|
||||
"timestamp": "ISO_STRING_DATE",
|
||||
"userId": "USER_ID_FROM_CONFIG",
|
||||
"commandName": "invoking_command_or_tool_name",
|
||||
"modelUsed": "ai_model_id",
|
||||
"providerName": "ai_provider_name",
|
||||
"inputTokens": NUMBER,
|
||||
"outputTokens": NUMBER,
|
||||
"totalTokens": NUMBER,
|
||||
"totalCost": NUMBER, // e.g., 0.012414
|
||||
"currency": "USD" // e.g., "USD"
|
||||
}
|
||||
```
|
||||
|
||||
## Integration Pattern by Layer
|
||||
|
||||
The key principle is that each layer receives telemetry data from the layer below it (if applicable) and passes it to the layer above it, or handles it for display in the case of the CLI.
|
||||
|
||||
### 1. Core Logic Functions (e.g., in `scripts/modules/task-manager/`)
|
||||
|
||||
Functions in this layer that invoke AI services are responsible for handling the `telemetryData` they receive from [`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js).
|
||||
|
||||
- **Actions**:
|
||||
1. Call the appropriate AI service function (e.g., `generateObjectService`).
|
||||
- Pass `commandName` (e.g., `add-task`, `expand-task`) and `outputType` (e.g., `cli` or `mcp`) in the `params` object to the AI service. The `outputType` can be derived from context (e.g., presence of `mcpLog`).
|
||||
2. The AI service returns an object, e.g., `aiServiceResponse = { mainResult: {/*AI output*/}, telemetryData: {/*telemetry data*/} }`.
|
||||
3. Extract `aiServiceResponse.mainResult` for the core processing.
|
||||
4. **Must return an object that includes `aiServiceResponse.telemetryData`**.
|
||||
Example: `return { operationSpecificData: /*...*/, telemetryData: aiServiceResponse.telemetryData };`
|
||||
|
||||
- **CLI Output Handling (If Applicable)**:
|
||||
- If the core function also handles CLI output (e.g., it has an `outputFormat` parameter that can be `'text'` or `'cli'`):
|
||||
1. Check if `outputFormat === 'text'` (or `'cli'`).
|
||||
2. If so, and if `aiServiceResponse.telemetryData` is available, call `displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli')` from [`scripts/modules/ui.js`](mdc:scripts/modules/ui.js).
|
||||
- This ensures telemetry is displayed directly to CLI users after the main command output.
|
||||
|
||||
- **Example Snippet (Core Logic in `scripts/modules/task-manager/someAiAction.js`)**:
|
||||
```javascript
|
||||
import { generateObjectService } from '../ai-services-unified.js';
|
||||
import { displayAiUsageSummary } from '../ui.js';
|
||||
|
||||
async function performAiRelatedAction(params, context, outputFormat = 'text') {
|
||||
const { commandNameFromContext, /* other context vars */ } = context;
|
||||
let aiServiceResponse = null;
|
||||
|
||||
try {
|
||||
aiServiceResponse = await generateObjectService({
|
||||
// ... other parameters for AI service ...
|
||||
commandName: commandNameFromContext || 'default-action-name',
|
||||
outputType: context.mcpLog ? 'mcp' : 'cli' // Derive outputType
|
||||
});
|
||||
|
||||
const usefulAiOutput = aiServiceResponse.mainResult.object;
|
||||
// ... do work with usefulAiOutput ...
|
||||
|
||||
if (outputFormat === 'text' && aiServiceResponse.telemetryData) {
|
||||
displayAiUsageSummary(aiServiceResponse.telemetryData, 'cli');
|
||||
}
|
||||
|
||||
return {
|
||||
actionData: /* results of processing */,
|
||||
telemetryData: aiServiceResponse.telemetryData
|
||||
};
|
||||
} catch (error) {
|
||||
// ... handle error ...
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 2. Direct Function Wrappers (in `mcp-server/src/core/direct-functions/`)
|
||||
|
||||
These functions adapt core logic for the MCP server, ensuring structured responses.
|
||||
|
||||
- **Actions**:
|
||||
1. Call the corresponding core logic function.
|
||||
- Pass necessary context (e.g., `session`, `mcpLog`, `projectRoot`).
|
||||
- Provide the `commandName` (typically derived from the MCP tool name) and `outputType: 'mcp'` in the context object passed to the core function.
|
||||
- If the core function supports an `outputFormat` parameter, pass `'json'` to suppress CLI-specific UI.
|
||||
2. The core logic function returns an object (e.g., `coreResult = { actionData: ..., telemetryData: ... }`).
|
||||
3. Include `coreResult.telemetryData` as a field within the `data` object of the successful response returned by the direct function.
|
||||
|
||||
- **Example Snippet (Direct Function `someAiActionDirect.js`)**:
|
||||
```javascript
|
||||
import { performAiRelatedAction } from '../../../../scripts/modules/task-manager/someAiAction.js'; // Core function
|
||||
import { createLogWrapper } from '../../tools/utils.js'; // MCP Log wrapper
|
||||
|
||||
export async function someAiActionDirect(args, log, context = {}) {
|
||||
const { session } = context;
|
||||
// ... prepare arguments for core function from args, including args.projectRoot ...
|
||||
|
||||
try {
|
||||
const coreResult = await performAiRelatedAction(
|
||||
{ /* parameters for core function */ },
|
||||
{ // Context for core function
|
||||
session,
|
||||
mcpLog: createLogWrapper(log),
|
||||
projectRoot: args.projectRoot,
|
||||
commandNameFromContext: 'mcp_tool_some_ai_action', // Example command name
|
||||
outputType: 'mcp'
|
||||
},
|
||||
'json' // Request 'json' output format from core function
|
||||
);
|
||||
|
||||
return {
|
||||
success: true,
|
||||
data: {
|
||||
operationSpecificData: coreResult.actionData,
|
||||
telemetryData: coreResult.telemetryData // Pass telemetry through
|
||||
}
|
||||
};
|
||||
} catch (error) {
|
||||
// ... error handling, return { success: false, error: ... } ...
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 3. MCP Tools (in `mcp-server/src/tools/`)
|
||||
|
||||
These are the exposed endpoints for MCP clients.
|
||||
|
||||
- **Actions**:
|
||||
1. Call the corresponding direct function wrapper.
|
||||
2. The direct function returns an object structured like `{ success: true, data: { operationSpecificData: ..., telemetryData: ... } }` (or an error object).
|
||||
3. Pass this entire result object to `handleApiResult(result, log)` from [`mcp-server/src/tools/utils.js`](mdc:mcp-server/src/tools/utils.js).
|
||||
4. `handleApiResult` ensures that the `data` field from the direct function's response (which correctly includes `telemetryData`) is part of the final MCP response.
|
||||
|
||||
- **Example Snippet (MCP Tool `some_ai_action.js`)**:
|
||||
```javascript
|
||||
import { someAiActionDirect } from '../core/task-master-core.js';
|
||||
import { handleApiResult, withNormalizedProjectRoot } from './utils.js';
|
||||
// ... zod for parameters ...
|
||||
|
||||
export function registerSomeAiActionTool(server) {
|
||||
server.addTool({
|
||||
name: "some_ai_action",
|
||||
// ... description, parameters ...
|
||||
execute: withNormalizedProjectRoot(async (args, { log, session }) => {
|
||||
try {
|
||||
const resultFromDirectFunction = await someAiActionDirect(
|
||||
{ /* args including projectRoot */ },
|
||||
log,
|
||||
{ session }
|
||||
);
|
||||
return handleApiResult(resultFromDirectFunction, log); // This passes the nested telemetryData through
|
||||
} catch (error) {
|
||||
// ... error handling ...
|
||||
}
|
||||
})
|
||||
});
|
||||
}
|
||||
```
|
||||
|
||||
### 4. CLI Commands (`scripts/modules/commands.js`)
|
||||
|
||||
These define the command-line interface.
|
||||
|
||||
- **Actions**:
|
||||
1. Call the appropriate core logic function.
|
||||
2. Pass `outputFormat: 'text'` (or ensure the core function defaults to text-based output for CLI).
|
||||
3. The core logic function (as per Section 1) is responsible for calling `displayAiUsageSummary` if telemetry data is available and it's in CLI mode.
|
||||
4. The command action itself **should not** call `displayAiUsageSummary` if the core logic function already handles this. This avoids duplicate display.
|
||||
|
||||
- **Example Snippet (CLI Command in `commands.js`)**:
|
||||
```javascript
|
||||
// In scripts/modules/commands.js
|
||||
import { performAiRelatedAction } from './task-manager/someAiAction.js'; // Core function
|
||||
|
||||
programInstance
|
||||
.command('some-cli-ai-action')
|
||||
// ... .option() ...
|
||||
.action(async (options) => {
|
||||
try {
|
||||
const projectRoot = findProjectRoot() || '.'; // Example root finding
|
||||
// ... prepare parameters for core function from command options ...
|
||||
await performAiRelatedAction(
|
||||
{ /* parameters for core function */ },
|
||||
{ // Context for core function
|
||||
projectRoot,
|
||||
commandNameFromContext: 'some-cli-ai-action',
|
||||
outputType: 'cli'
|
||||
},
|
||||
'text' // Explicitly request text output format for CLI
|
||||
);
|
||||
// Core function handles displayAiUsageSummary internally for 'text' outputFormat
|
||||
} catch (error) {
|
||||
// ... error handling ...
|
||||
}
|
||||
});
|
||||
```
|
||||
|
||||
## Summary Flow
|
||||
|
||||
The telemetry data flows as follows:
|
||||
|
||||
1. **[`ai-services-unified.js`](mdc:scripts/modules/ai-services-unified.js)**: Generates `telemetryData` and returns `{ mainResult, telemetryData }`.
|
||||
2. **Core Logic Function**:
|
||||
* Receives `{ mainResult, telemetryData }`.
|
||||
* Uses `mainResult`.
|
||||
* If CLI (`outputFormat: 'text'`), calls `displayAiUsageSummary(telemetryData)`.
|
||||
* Returns `{ operationSpecificData, telemetryData }`.
|
||||
3. **Direct Function Wrapper**:
|
||||
* Receives `{ operationSpecificData, telemetryData }` from core logic.
|
||||
* Returns `{ success: true, data: { operationSpecificData, telemetryData } }`.
|
||||
4. **MCP Tool**:
|
||||
* Receives direct function response.
|
||||
* `handleApiResult` ensures the final MCP response to the client is `{ success: true, data: { operationSpecificData, telemetryData } }`.
|
||||
5. **CLI Command**:
|
||||
* Calls core logic with `outputFormat: 'text'`. Display is handled by core logic.
|
||||
|
||||
This pattern ensures telemetry is captured and appropriately handled/exposed across all interaction modes.
|
||||
Reference in New Issue
Block a user