fix(ai): Correctly imports generateText in openai.js, adds specific cause and reason for OpenRouter failures in the openrouter.js catch, performs complexity analysis on all tm tasks, adds new tasks to further improve the maxTokens to take input and output maximum into account. Adjusts default fallback max tokens so 3.5 does not fail.

This commit is contained in:
Eyal Toledano
2025-05-17 18:42:57 -04:00
parent 8a3b611fc2
commit 026815353f
12 changed files with 1364 additions and 304 deletions

93
tasks/task_084.txt Normal file
View File

@@ -0,0 +1,93 @@
# Task ID: 84
# Title: Implement token counting utility
# Status: pending
# Dependencies: 82
# Priority: high
# Description: Create a utility function to count tokens for prompts based on the model being used, primarily using tiktoken for OpenAI and Anthropic models with character-based fallbacks for other providers.
# Details:
1. Install the tiktoken package:
```bash
npm install tiktoken
```
2. Create a new file `scripts/modules/token-counter.js`:
```javascript
const tiktoken = require('tiktoken');
/**
* Count tokens for a given text and model
* @param {string} text - The text to count tokens for
* @param {string} provider - The AI provider (e.g., 'openai', 'anthropic')
* @param {string} modelId - The model ID
* @returns {number} - Estimated token count
*/
function countTokens(text, provider, modelId) {
if (!text) return 0;
// Convert to lowercase for case-insensitive matching
const providerLower = provider?.toLowerCase();
try {
// OpenAI models
if (providerLower === 'openai') {
// Most OpenAI chat models use cl100k_base encoding
const encoding = tiktoken.encoding_for_model(modelId) || tiktoken.get_encoding('cl100k_base');
return encoding.encode(text).length;
}
// Anthropic models - can use cl100k_base as an approximation
// or follow Anthropic's guidance
if (providerLower === 'anthropic') {
try {
// Try to use cl100k_base as a reasonable approximation
const encoding = tiktoken.get_encoding('cl100k_base');
return encoding.encode(text).length;
} catch (e) {
// Fallback to Anthropic's character-based estimation
return Math.ceil(text.length / 3.5); // ~3.5 chars per token for English
}
}
// For other providers, use character-based estimation as fallback
// Different providers may have different tokenization schemes
return Math.ceil(text.length / 4); // General fallback estimate
} catch (error) {
console.warn(`Token counting error: ${error.message}. Using character-based estimate.`);
return Math.ceil(text.length / 4); // Fallback if tiktoken fails
}
}
module.exports = { countTokens };
```
3. Add tests for the token counter in `tests/token-counter.test.js`:
```javascript
const { countTokens } = require('../scripts/modules/token-counter');
describe('Token Counter', () => {
test('counts tokens for OpenAI models', () => {
const text = 'Hello, world! This is a test.';
const count = countTokens(text, 'openai', 'gpt-4');
expect(count).toBeGreaterThan(0);
expect(typeof count).toBe('number');
});
test('counts tokens for Anthropic models', () => {
const text = 'Hello, world! This is a test.';
const count = countTokens(text, 'anthropic', 'claude-3-7-sonnet-20250219');
expect(count).toBeGreaterThan(0);
expect(typeof count).toBe('number');
});
test('handles empty text', () => {
expect(countTokens('', 'openai', 'gpt-4')).toBe(0);
expect(countTokens(null, 'openai', 'gpt-4')).toBe(0);
});
});
```
# Test Strategy:
1. Unit test the countTokens function with various inputs and models
2. Compare token counts with known examples from OpenAI and Anthropic documentation
3. Test edge cases: empty strings, very long texts, non-English texts
4. Test fallback behavior when tiktoken fails or is not applicable