Files
automaker/app/electron/services/feature-executor.js
Kacper ba4cde7328 Merge main into feat/extend-models-support
Resolved conflicts:
- feature_list.json: Merged all features from both branches
- feature-loader.js: Included both model/thinkingLevel and error fields
- board-view.tsx: Merged model/thinkingLevel and error fields, kept currentProject check
- settings-view.tsx: Merged CLI status checks with navigation/scroll code
- app-store.ts: Included both model/thinkingLevel and error fields in Feature interface

Fixed linting errors in settings-view.tsx
2025-12-10 10:25:13 +01:00

1027 lines
36 KiB
JavaScript

const { query, AbortError } = require("@anthropic-ai/claude-agent-sdk");
const promptBuilder = require("./prompt-builder");
const contextManager = require("./context-manager");
const featureLoader = require("./feature-loader");
const mcpServerFactory = require("./mcp-server-factory");
const { ModelRegistry } = require("./model-registry");
const { ModelProviderFactory } = require("./model-provider");
// Model name mappings for Claude (legacy - kept for backwards compatibility)
const MODEL_MAP = {
haiku: "claude-haiku-4-5",
sonnet: "claude-sonnet-4-20250514",
opus: "claude-opus-4-5-20251101",
};
// Thinking level to budget_tokens mapping
// These values control how much "thinking time" the model gets for extended thinking
const THINKING_BUDGET_MAP = {
none: null, // No extended thinking
low: 4096, // Light thinking
medium: 16384, // Moderate thinking
high: 65536, // Deep thinking
ultrathink: 262144, // Ultra-deep thinking (maximum reasoning)
};
/**
* Feature Executor - Handles feature implementation using Claude Agent SDK
* Now supports multiple model providers (Claude, Codex/OpenAI)
*/
class FeatureExecutor {
/**
* Get the model string based on feature's model setting
* Supports both Claude and Codex/OpenAI models
*/
getModelString(feature) {
const modelKey = feature.model || "opus"; // Default to opus
// First check if this is a Codex model - they use the model key directly as the string
if (ModelRegistry.isCodexModel(modelKey)) {
const model = ModelRegistry.getModel(modelKey);
if (model && model.modelString) {
console.log(`[FeatureExecutor] getModelString: modelKey=${modelKey}, modelString=${model.modelString} (Codex model)`);
return model.modelString;
}
// If model exists in registry but somehow no modelString, use the key itself
console.log(`[FeatureExecutor] getModelString: modelKey=${modelKey}, modelString=${modelKey} (Codex fallback)`);
return modelKey;
}
// For Claude models, use the registry lookup
let modelString = ModelRegistry.getModelString(modelKey);
// Fallback to MODEL_MAP if registry doesn't have it (legacy support)
if (!modelString) {
modelString = MODEL_MAP[modelKey];
}
// Final fallback to opus for Claude models only
if (!modelString) {
modelString = MODEL_MAP.opus;
}
// Validate model string format - ensure it's not incorrectly constructed
// Prevent incorrect formats like "claude-haiku-4-20250514" (mixing haiku with sonnet date)
if (modelString.includes('haiku') && modelString.includes('20250514')) {
console.error(`[FeatureExecutor] Invalid model string detected: ${modelString}, using correct format`);
modelString = MODEL_MAP.haiku || 'claude-haiku-4-5';
}
console.log(`[FeatureExecutor] getModelString: modelKey=${modelKey}, modelString=${modelString}`);
return modelString;
}
/**
* Determine if the feature uses a Codex/OpenAI model
*/
isCodexModel(feature) {
const modelKey = feature.model || "opus";
return ModelRegistry.isCodexModel(modelKey);
}
/**
* Get the appropriate provider for the feature's model
*/
getProvider(feature) {
const modelKey = feature.model || "opus";
return ModelProviderFactory.getProviderForModel(modelKey);
}
/**
* Get thinking configuration based on feature's thinkingLevel
*/
getThinkingConfig(feature) {
const modelId = feature.model || "opus";
// Skip thinking config for models that don't support it (e.g., Codex CLI)
if (!ModelRegistry.modelSupportsThinking(modelId)) {
return null;
}
const level = feature.thinkingLevel || "none";
const budgetTokens = THINKING_BUDGET_MAP[level];
if (budgetTokens === null) {
return null; // No extended thinking
}
return {
type: "enabled",
budget_tokens: budgetTokens,
};
}
/**
* Prepare for ultrathink execution - validate and warn
*/
prepareForUltrathink(feature, thinkingConfig) {
if (feature.thinkingLevel !== 'ultrathink') {
return { ready: true };
}
const warnings = [];
const recommendations = [];
// Check CLI installation
const claudeCliDetector = require('./claude-cli-detector');
const cliInfo = claudeCliDetector.getInstallationInfo();
if (cliInfo.status === 'not_installed') {
warnings.push('Claude Code CLI not detected - ultrathink may have timeout issues');
recommendations.push('Install Claude Code CLI for optimal ultrathink performance');
}
// Validate budget tokens
if (thinkingConfig && thinkingConfig.budget_tokens > 32000) {
warnings.push(`Ultrathink budget (${thinkingConfig.budget_tokens} tokens) exceeds recommended 32K - may cause long-running requests`);
recommendations.push('Consider using batch processing for budgets above 32K');
}
// Cost estimate (rough)
const estimatedCost = (thinkingConfig?.budget_tokens || 0) / 1000 * 0.015; // Rough estimate
if (estimatedCost > 1.0) {
warnings.push(`Estimated cost: ~$${estimatedCost.toFixed(2)} per execution`);
}
// Time estimate
warnings.push('Ultrathink tasks typically take 45-180 seconds');
return {
ready: true,
warnings,
recommendations,
estimatedCost,
estimatedTime: '45-180 seconds',
cliInfo
};
}
/**
* Sleep helper
*/
sleep(ms) {
return new Promise((resolve) => setTimeout(resolve, ms));
}
/**
* Implement a single feature using Claude Agent SDK
* Uses a Plan-Act-Verify loop with detailed phase logging
*/
async implementFeature(feature, projectPath, sendToRenderer, execution) {
console.log(`[FeatureExecutor] Implementing: ${feature.description}`);
// Declare variables outside try block so they're available in catch
let modelString;
let providerName;
let isCodex;
try {
// ========================================
// PHASE 1: PLANNING
// ========================================
const planningMessage = `📋 Planning implementation for: ${feature.description}\n`;
await contextManager.writeToContextFile(projectPath, feature.id, planningMessage);
sendToRenderer({
type: "auto_mode_phase",
featureId: feature.id,
phase: "planning",
message: `Planning implementation for: ${feature.description}`,
});
console.log(`[FeatureExecutor] Phase: PLANNING for ${feature.description}`);
const abortController = new AbortController();
execution.abortController = abortController;
// Create custom MCP server with UpdateFeatureStatus tool
const featureToolsServer = mcpServerFactory.createFeatureToolsServer(
featureLoader.updateFeatureStatus.bind(featureLoader),
projectPath
);
// Ensure feature has a model set (for backward compatibility with old features)
if (!feature.model) {
console.warn(`[FeatureExecutor] Feature ${feature.id} missing model property, defaulting to 'opus'`);
feature.model = "opus";
}
// Get model and thinking configuration from feature settings
const modelString = this.getModelString(feature);
const thinkingConfig = this.getThinkingConfig(feature);
// Prepare for ultrathink if needed
if (feature.thinkingLevel === 'ultrathink') {
const preparation = this.prepareForUltrathink(feature, thinkingConfig);
console.log(`[FeatureExecutor] Ultrathink preparation:`, preparation);
// Log warnings
if (preparation.warnings && preparation.warnings.length > 0) {
preparation.warnings.forEach(warning => {
console.warn(`[FeatureExecutor] ⚠️ ${warning}`);
});
}
// Send preparation info to renderer
sendToRenderer({
type: 'auto_mode_ultrathink_preparation',
featureId: feature.id,
warnings: preparation.warnings || [],
recommendations: preparation.recommendations || [],
estimatedCost: preparation.estimatedCost,
estimatedTime: preparation.estimatedTime
});
}
providerName = this.isCodexModel(feature) ? 'Codex/OpenAI' : 'Claude';
console.log(`[FeatureExecutor] Using provider: ${providerName}, model: ${modelString}, thinking: ${feature.thinkingLevel || 'none'}`);
// Note: Claude Agent SDK handles authentication automatically - it can use:
// 1. CLAUDE_CODE_OAUTH_TOKEN env var (for SDK mode)
// 2. Claude CLI's own authentication (if CLI is installed)
// 3. ANTHROPIC_API_KEY (fallback)
// We don't need to validate here - let the SDK/CLI handle auth errors
// Configure options for the SDK query
const options = {
model: modelString,
systemPrompt: promptBuilder.getCodingPrompt(),
maxTurns: 1000,
cwd: projectPath,
mcpServers: {
"automaker-tools": featureToolsServer
},
allowedTools: [
"Read",
"Write",
"Edit",
"Glob",
"Grep",
"Bash",
"WebSearch",
"WebFetch",
"mcp__automaker-tools__UpdateFeatureStatus",
],
permissionMode: "acceptEdits",
sandbox: {
enabled: true,
autoAllowBashIfSandboxed: true,
},
abortController: abortController,
};
// Add thinking configuration if enabled
if (thinkingConfig) {
options.thinking = thinkingConfig;
}
// Build the prompt for this specific feature
let prompt = promptBuilder.buildFeaturePrompt(feature);
// Add images to prompt if feature has imagePaths
if (feature.imagePaths && feature.imagePaths.length > 0) {
const contentBlocks = [];
// Add text block
contentBlocks.push({
type: "text",
text: prompt,
});
// Add image blocks
const fs = require("fs");
const path = require("path");
for (const imagePathObj of feature.imagePaths) {
try {
const imagePath = imagePathObj.path;
const imageBuffer = fs.readFileSync(imagePath);
const base64Data = imageBuffer.toString("base64");
const ext = path.extname(imagePath).toLowerCase();
const mimeTypeMap = {
".jpg": "image/jpeg",
".jpeg": "image/jpeg",
".png": "image/png",
".gif": "image/gif",
".webp": "image/webp",
};
const mediaType = mimeTypeMap[ext] || imagePathObj.mimeType || "image/png";
contentBlocks.push({
type: "image",
source: {
type: "base64",
media_type: mediaType,
data: base64Data,
},
});
console.log(`[FeatureExecutor] Added image to prompt: ${imagePath}`);
} catch (error) {
console.error(
`[FeatureExecutor] Failed to load image ${imagePathObj.path}:`,
error
);
}
}
// Wrap content blocks in async generator for SDK (required format for multimodal prompts)
prompt = (async function* () {
yield {
type: "user",
session_id: "",
message: {
role: "user",
content: contentBlocks,
},
parent_tool_use_id: null,
};
})();
}
// Planning: Analyze the codebase and create implementation plan
sendToRenderer({
type: "auto_mode_progress",
featureId: feature.id,
content:
"Analyzing codebase structure and creating implementation plan...",
});
// Small delay to show planning phase
await this.sleep(500);
// ========================================
// PHASE 2: ACTION
// ========================================
const actionMessage = `⚡ Executing implementation for: ${feature.description}\n`;
await contextManager.writeToContextFile(projectPath, feature.id, actionMessage);
sendToRenderer({
type: "auto_mode_phase",
featureId: feature.id,
phase: "action",
message: `Executing implementation for: ${feature.description}`,
});
console.log(`[FeatureExecutor] Phase: ACTION for ${feature.description}`);
// Send query - use appropriate provider based on model
let currentQuery;
isCodex = this.isCodexModel(feature);
// Ensure provider auth is available (especially for Claude SDK)
const provider = this.getProvider(feature);
if (provider?.ensureAuthEnv && !provider.ensureAuthEnv()) {
const authMsg =
"Missing Anthropic auth. Set ANTHROPIC_API_KEY or run `claude login` so ~/.claude/config.json contains oauth_token.";
console.error(`[FeatureExecutor] ${authMsg}`);
throw new Error(authMsg);
}
// Validate that model string matches the provider
if (isCodex) {
// Ensure model string is actually a Codex model, not a Claude model
if (modelString.startsWith('claude-')) {
console.error(`[FeatureExecutor] ERROR: Codex provider selected but Claude model string detected: ${modelString}`);
console.error(`[FeatureExecutor] Feature model: ${feature.model || 'not set'}, modelString: ${modelString}`);
throw new Error(`Invalid model configuration: Codex provider cannot use Claude model '${modelString}'. Please check feature model setting.`);
}
// Use Codex provider for OpenAI models
console.log(`[FeatureExecutor] Using Codex provider for model: ${modelString}`);
currentQuery = provider.executeQuery({
prompt,
model: modelString,
cwd: projectPath,
systemPrompt: promptBuilder.getCodingPrompt(),
maxTurns: 20, // Codex CLI typically uses fewer turns
allowedTools: options.allowedTools,
abortController: abortController,
env: {
OPENAI_API_KEY: process.env.OPENAI_API_KEY
}
});
} else {
// Ensure model string is actually a Claude model, not a Codex model
if (!modelString.startsWith('claude-') && !modelString.match(/^(gpt-|o\d)/)) {
console.warn(`[FeatureExecutor] WARNING: Claude provider selected but unexpected model string: ${modelString}`);
}
// Use Claude SDK (original implementation)
currentQuery = query({ prompt, options });
}
execution.query = currentQuery;
// Stream responses
let responseText = "";
let hasStartedToolUse = false;
for await (const msg of currentQuery) {
// Check if this specific feature was aborted
if (!execution.isActive()) break;
// Handle error messages
if (msg.type === "error") {
const errorMsg = `\n❌ Error: ${msg.error}\n`;
await contextManager.writeToContextFile(projectPath, feature.id, errorMsg);
sendToRenderer({
type: "auto_mode_error",
featureId: feature.id,
error: msg.error,
});
throw new Error(msg.error);
}
if (msg.type === "assistant" && msg.message?.content) {
for (const block of msg.message.content) {
if (block.type === "text") {
responseText += block.text;
// Write to context file
await contextManager.writeToContextFile(projectPath, feature.id, block.text);
// Stream progress to renderer
sendToRenderer({
type: "auto_mode_progress",
featureId: feature.id,
content: block.text,
});
} else if (block.type === "thinking") {
// Handle thinking output from Codex O-series models
const thinkingMsg = `\n💭 Thinking: ${block.thinking?.substring(0, 200)}...\n`;
await contextManager.writeToContextFile(projectPath, feature.id, thinkingMsg);
sendToRenderer({
type: "auto_mode_progress",
featureId: feature.id,
content: thinkingMsg,
});
} else if (block.type === "tool_use") {
// First tool use indicates we're actively implementing
if (!hasStartedToolUse) {
hasStartedToolUse = true;
const startMsg = "Starting code implementation...\n";
await contextManager.writeToContextFile(projectPath, feature.id, startMsg);
sendToRenderer({
type: "auto_mode_progress",
featureId: feature.id,
content: startMsg,
});
}
// Write tool use to context file
const toolMsg = `\n🔧 Tool: ${block.name}\n`;
await contextManager.writeToContextFile(projectPath, feature.id, toolMsg);
// Notify about tool use
sendToRenderer({
type: "auto_mode_tool",
featureId: feature.id,
tool: block.name,
input: block.input,
});
}
}
}
}
execution.query = null;
execution.abortController = null;
// ========================================
// PHASE 3: VERIFICATION
// ========================================
const verificationMessage = `✅ Verifying implementation for: ${feature.description}\n`;
await contextManager.writeToContextFile(projectPath, feature.id, verificationMessage);
sendToRenderer({
type: "auto_mode_phase",
featureId: feature.id,
phase: "verification",
message: `Verifying implementation for: ${feature.description}`,
});
console.log(`[FeatureExecutor] Phase: VERIFICATION for ${feature.description}`);
const checkingMsg =
"Verifying implementation and checking test results...\n";
await contextManager.writeToContextFile(projectPath, feature.id, checkingMsg);
sendToRenderer({
type: "auto_mode_progress",
featureId: feature.id,
content: checkingMsg,
});
// Re-load features to check if it was marked as verified or waiting_approval (for skipTests)
const updatedFeatures = await featureLoader.loadFeatures(projectPath);
const updatedFeature = updatedFeatures.find((f) => f.id === feature.id);
// For skipTests features, waiting_approval is also considered a success
const passes = updatedFeature?.status === "verified" ||
(updatedFeature?.skipTests && updatedFeature?.status === "waiting_approval");
// Send verification result
const resultMsg = passes
? "✓ Verification successful: All tests passed\n"
: "✗ Verification: Tests need attention\n";
await contextManager.writeToContextFile(projectPath, feature.id, resultMsg);
sendToRenderer({
type: "auto_mode_progress",
featureId: feature.id,
content: resultMsg,
});
return {
passes,
message: responseText.substring(0, 500), // First 500 chars
};
} catch (error) {
if (error instanceof AbortError || error?.name === "AbortError") {
console.log("[FeatureExecutor] Feature run aborted");
if (execution) {
execution.abortController = null;
execution.query = null;
}
return {
passes: false,
message: "Auto mode aborted",
};
}
console.error("[FeatureExecutor] Error implementing feature:", error);
// Safely get model info for error logging (may not be set if error occurred early)
const modelInfo = modelString ? {
message: error.message,
stack: error.stack,
name: error.name,
code: error.code,
model: modelString,
provider: providerName || 'unknown',
isCodex: isCodex !== undefined ? isCodex : 'unknown'
} : {
message: error.message,
stack: error.stack,
name: error.name,
code: error.code,
model: 'not initialized',
provider: 'unknown',
isCodex: 'unknown'
};
console.error("[FeatureExecutor] Error details:", modelInfo);
// Check if this is a Claude CLI process error
if (error.message && error.message.includes("process exited with code")) {
const modelDisplay = modelString ? `Model: ${modelString}` : 'Model: not initialized';
const errorMsg = `Claude Code CLI failed with exit code 1. This might be due to:\n` +
`- Invalid or unsupported model (${modelDisplay})\n` +
`- Missing or invalid CLAUDE_CODE_OAUTH_TOKEN\n` +
`- Claude CLI configuration issue\n` +
`- Model not available in your Claude account\n\n` +
`Original error: ${error.message}`;
await contextManager.writeToContextFile(projectPath, feature.id, `\n${errorMsg}\n`);
sendToRenderer({
type: "auto_mode_error",
featureId: feature.id,
error: errorMsg,
});
}
// Clean up
if (execution) {
execution.abortController = null;
execution.query = null;
}
throw error;
}
}
/**
* Resume feature implementation with previous context
*/
async resumeFeatureWithContext(feature, projectPath, sendToRenderer, previousContext, execution) {
console.log(`[FeatureExecutor] Resuming with context for: ${feature.description}`);
try {
const resumeMessage = `\n🔄 Resuming implementation for: ${feature.description}\n`;
await contextManager.writeToContextFile(projectPath, feature.id, resumeMessage);
sendToRenderer({
type: "auto_mode_phase",
featureId: feature.id,
phase: "action",
message: `Resuming implementation for: ${feature.description}`,
});
const abortController = new AbortController();
execution.abortController = abortController;
// Create custom MCP server with UpdateFeatureStatus tool
const featureToolsServer = mcpServerFactory.createFeatureToolsServer(
featureLoader.updateFeatureStatus.bind(featureLoader),
projectPath
);
// Ensure feature has a model set (for backward compatibility with old features)
if (!feature.model) {
console.warn(`[FeatureExecutor] Feature ${feature.id} missing model property, defaulting to 'opus'`);
feature.model = "opus";
}
// Get model and thinking configuration from feature settings
const modelString = this.getModelString(feature);
const thinkingConfig = this.getThinkingConfig(feature);
// Prepare for ultrathink if needed
if (feature.thinkingLevel === 'ultrathink') {
const preparation = this.prepareForUltrathink(feature, thinkingConfig);
console.log(`[FeatureExecutor] Ultrathink preparation:`, preparation);
// Log warnings
if (preparation.warnings && preparation.warnings.length > 0) {
preparation.warnings.forEach(warning => {
console.warn(`[FeatureExecutor] ⚠️ ${warning}`);
});
}
// Send preparation info to renderer
sendToRenderer({
type: 'auto_mode_ultrathink_preparation',
featureId: feature.id,
warnings: preparation.warnings || [],
recommendations: preparation.recommendations || [],
estimatedCost: preparation.estimatedCost,
estimatedTime: preparation.estimatedTime
});
}
const isCodex = this.isCodexModel(feature);
const providerName = isCodex ? 'Codex/OpenAI' : 'Claude';
console.log(`[FeatureExecutor] Resuming with provider: ${providerName}, model: ${modelString}, thinking: ${feature.thinkingLevel || 'none'}`);
const options = {
model: modelString,
systemPrompt: promptBuilder.getVerificationPrompt(),
maxTurns: 1000,
cwd: projectPath,
mcpServers: {
"automaker-tools": featureToolsServer
},
allowedTools: ["Read", "Write", "Edit", "Glob", "Grep", "Bash", "WebSearch", "WebFetch", "mcp__automaker-tools__UpdateFeatureStatus"],
permissionMode: "acceptEdits",
sandbox: {
enabled: true,
autoAllowBashIfSandboxed: true,
},
abortController: abortController,
};
// Add thinking configuration if enabled
if (thinkingConfig) {
options.thinking = thinkingConfig;
}
// Build prompt with previous context
let prompt = promptBuilder.buildResumePrompt(feature, previousContext);
// Add images to prompt if feature has imagePaths or followUpImages
const imagePaths = feature.followUpImages || feature.imagePaths;
if (imagePaths && imagePaths.length > 0) {
const contentBlocks = [];
// Add text block
contentBlocks.push({
type: "text",
text: prompt,
});
// Add image blocks
const fs = require("fs");
const path = require("path");
for (const imagePathObj of imagePaths) {
try {
// Handle both string paths and FeatureImagePath objects
const imagePath = typeof imagePathObj === 'string' ? imagePathObj : imagePathObj.path;
const imageBuffer = fs.readFileSync(imagePath);
const base64Data = imageBuffer.toString("base64");
const ext = path.extname(imagePath).toLowerCase();
const mimeTypeMap = {
".jpg": "image/jpeg",
".jpeg": "image/jpeg",
".png": "image/png",
".gif": "image/gif",
".webp": "image/webp",
};
const mediaType = typeof imagePathObj === 'string'
? (mimeTypeMap[ext] || "image/png")
: (mimeTypeMap[ext] || imagePathObj.mimeType || "image/png");
contentBlocks.push({
type: "image",
source: {
type: "base64",
media_type: mediaType,
data: base64Data,
},
});
console.log(`[FeatureExecutor] Added image to resume prompt: ${imagePath}`);
} catch (error) {
const errorPath = typeof imagePathObj === 'string' ? imagePathObj : imagePathObj.path;
console.error(
`[FeatureExecutor] Failed to load image ${errorPath}:`,
error
);
}
}
// Wrap content blocks in async generator for SDK (required format for multimodal prompts)
prompt = (async function* () {
yield {
type: "user",
session_id: "",
message: {
role: "user",
content: contentBlocks,
},
parent_tool_use_id: null,
};
})();
}
// Use appropriate provider based on model type
let currentQuery;
if (isCodex) {
// Validate that model string is actually a Codex model
if (modelString.startsWith('claude-')) {
console.error(`[FeatureExecutor] ERROR: Codex provider selected but Claude model string detected: ${modelString}`);
throw new Error(`Invalid model configuration: Codex provider cannot use Claude model '${modelString}'. Please check feature model setting.`);
}
console.log(`[FeatureExecutor] Using Codex provider for resume with model: ${modelString}`);
const provider = this.getProvider(feature);
currentQuery = provider.executeQuery({
prompt,
model: modelString,
cwd: projectPath,
systemPrompt: promptBuilder.getVerificationPrompt(),
maxTurns: 20,
allowedTools: options.allowedTools,
abortController: abortController,
env: {
OPENAI_API_KEY: process.env.OPENAI_API_KEY
}
});
} else {
// Use Claude SDK
currentQuery = query({ prompt, options });
}
execution.query = currentQuery;
let responseText = "";
for await (const msg of currentQuery) {
// Check if this specific feature was aborted
if (!execution.isActive()) break;
if (msg.type === "assistant" && msg.message?.content) {
for (const block of msg.message.content) {
if (block.type === "text") {
responseText += block.text;
await contextManager.writeToContextFile(projectPath, feature.id, block.text);
sendToRenderer({
type: "auto_mode_progress",
featureId: feature.id,
content: block.text,
});
} else if (block.type === "tool_use") {
const toolMsg = `\n🔧 Tool: ${block.name}\n`;
await contextManager.writeToContextFile(projectPath, feature.id, toolMsg);
sendToRenderer({
type: "auto_mode_tool",
featureId: feature.id,
tool: block.name,
input: block.input,
});
}
}
}
}
execution.query = null;
execution.abortController = null;
// Check if feature was marked as verified or waiting_approval (for skipTests)
const updatedFeatures = await featureLoader.loadFeatures(projectPath);
const updatedFeature = updatedFeatures.find((f) => f.id === feature.id);
// For skipTests features, waiting_approval is also considered a success
const passes = updatedFeature?.status === "verified" ||
(updatedFeature?.skipTests && updatedFeature?.status === "waiting_approval");
const finalMsg = passes
? "✓ Feature successfully verified and completed\n"
: "⚠ Feature still in progress - may need additional work\n";
await contextManager.writeToContextFile(projectPath, feature.id, finalMsg);
sendToRenderer({
type: "auto_mode_progress",
featureId: feature.id,
content: finalMsg,
});
return {
passes,
message: responseText.substring(0, 500),
};
} catch (error) {
if (error instanceof AbortError || error?.name === "AbortError") {
console.log("[FeatureExecutor] Resume aborted");
if (execution) {
execution.abortController = null;
execution.query = null;
}
return {
passes: false,
message: "Resume aborted",
};
}
console.error("[FeatureExecutor] Error resuming feature:", error);
if (execution) {
execution.abortController = null;
execution.query = null;
}
throw error;
}
}
/**
* Commit changes for a feature without doing additional work
* Analyzes changes and creates a proper conventional commit message
*/
async commitChangesOnly(feature, projectPath, sendToRenderer, execution) {
console.log(`[FeatureExecutor] Committing changes for: ${feature.description}`);
try {
const commitMessage = `\n📝 Committing changes for: ${feature.description}\n`;
await contextManager.writeToContextFile(projectPath, feature.id, commitMessage);
sendToRenderer({
type: "auto_mode_progress",
featureId: feature.id,
content: "Analyzing changes and creating commit...",
});
const abortController = new AbortController();
execution.abortController = abortController;
// Create custom MCP server with UpdateFeatureStatus tool
const featureToolsServer = mcpServerFactory.createFeatureToolsServer(
featureLoader.updateFeatureStatus.bind(featureLoader),
projectPath
);
const options = {
model: "claude-sonnet-4-20250514", // Use sonnet for commit task
systemPrompt: `You are a git commit assistant that creates professional conventional commit messages.
IMPORTANT RULES:
- DO NOT modify any code
- DO NOT write tests
- DO NOT do anything except analyzing changes and committing them
- Use the git command line tools via Bash
- Create proper conventional commit messages based on what was actually changed`,
maxTurns: 15, // Allow some turns to analyze and commit
cwd: projectPath,
mcpServers: {
"automaker-tools": featureToolsServer
},
allowedTools: ["Bash", "mcp__automaker-tools__UpdateFeatureStatus"],
permissionMode: "acceptEdits",
sandbox: {
enabled: false, // Need to run git commands
},
abortController: abortController,
};
// Prompt that guides the agent to create a proper conventional commit
const prompt = `Please commit the current changes with a proper conventional commit message.
**Feature Context:**
Category: ${feature.category}
Description: ${feature.description}
**Your Task:**
1. First, run \`git status\` to see all untracked and modified files
2. Run \`git diff\` to see the actual changes (both staged and unstaged)
3. Run \`git log --oneline -5\` to see recent commit message styles in this repo
4. Analyze all the changes and draft a proper conventional commit message:
- Use conventional commit format: \`type(scope): description\`
- Types: feat, fix, refactor, style, docs, test, chore
- The description should be concise (under 72 chars) and focus on "what" was done
- Summarize the nature of the changes (new feature, enhancement, bug fix, etc.)
- Make sure the commit message accurately reflects the actual code changes
5. Run \`git add .\` to stage all changes
6. Create the commit with a message ending with:
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude Sonnet 4 <noreply@anthropic.com>
Use a HEREDOC for the commit message to ensure proper formatting:
\`\`\`bash
git commit -m "$(cat <<'EOF'
type(scope): Short description here
Optional longer description if needed.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude Sonnet 4 <noreply@anthropic.com>
EOF
)"
\`\`\`
**IMPORTANT:**
- DO NOT use the feature description verbatim as the commit message
- Analyze the actual code changes to determine the appropriate commit message
- The commit message should be professional and follow conventional commit standards
- DO NOT modify any code or run tests - ONLY commit the existing changes`;
const currentQuery = query({ prompt, options });
execution.query = currentQuery;
let responseText = "";
for await (const msg of currentQuery) {
if (!execution.isActive()) break;
if (msg.type === "assistant" && msg.message?.content) {
for (const block of msg.message.content) {
if (block.type === "text") {
responseText += block.text;
await contextManager.writeToContextFile(projectPath, feature.id, block.text);
sendToRenderer({
type: "auto_mode_progress",
featureId: feature.id,
content: block.text,
});
} else if (block.type === "tool_use") {
const toolMsg = `\n🔧 Tool: ${block.name}\n`;
await contextManager.writeToContextFile(projectPath, feature.id, toolMsg);
sendToRenderer({
type: "auto_mode_tool",
featureId: feature.id,
tool: block.name,
input: block.input,
});
}
}
}
}
execution.query = null;
execution.abortController = null;
const finalMsg = "✓ Changes committed successfully\n";
await contextManager.writeToContextFile(projectPath, feature.id, finalMsg);
sendToRenderer({
type: "auto_mode_progress",
featureId: feature.id,
content: finalMsg,
});
return {
passes: true,
message: responseText.substring(0, 500),
};
} catch (error) {
if (error instanceof AbortError || error?.name === "AbortError") {
console.log("[FeatureExecutor] Commit aborted");
if (execution) {
execution.abortController = null;
execution.query = null;
}
return {
passes: false,
message: "Commit aborted",
};
}
console.error("[FeatureExecutor] Error committing feature:", error);
if (execution) {
execution.abortController = null;
execution.query = null;
}
throw error;
}
}
}
module.exports = new FeatureExecutor();