mirror of
https://github.com/AutoMaker-Org/automaker.git
synced 2026-01-30 06:12:03 +00:00
- Add ApiKeySource type ('inline' | 'env' | 'credentials') to ClaudeApiProfile
- Allow profiles to source API keys from credentials.json or environment variables
- Add provider templates: OpenRouter, MiniMax, MiniMax (China)
- Auto-migrate existing users with Anthropic key to "Direct Anthropic" profile
- Update all API call sites to pass credentials for key resolution
- Add API key source selector to profile creation UI
- Increment settings version to 5 for migration support
This allows users to:
- Share a single API key across multiple profile configurations
- Use environment variables for CI/CD deployments
- Easily switch between providers without re-entering keys
309 lines
10 KiB
TypeScript
309 lines
10 KiB
TypeScript
/**
|
|
* Business logic for generating suggestions
|
|
*
|
|
* Model is configurable via phaseModels.suggestionsModel in settings
|
|
* (AI Suggestions in the UI). Supports both Claude and Cursor models.
|
|
*/
|
|
|
|
import type { EventEmitter } from '../../lib/events.js';
|
|
import { createLogger } from '@automaker/utils';
|
|
import { DEFAULT_PHASE_MODELS, isCursorModel, type ThinkingLevel } from '@automaker/types';
|
|
import { resolvePhaseModel } from '@automaker/model-resolver';
|
|
import { extractJsonWithArray } from '../../lib/json-extractor.js';
|
|
import { streamingQuery } from '../../providers/simple-query-service.js';
|
|
import { FeatureLoader } from '../../services/feature-loader.js';
|
|
import { getAppSpecPath } from '@automaker/platform';
|
|
import * as secureFs from '../../lib/secure-fs.js';
|
|
import type { SettingsService } from '../../services/settings-service.js';
|
|
import {
|
|
getAutoLoadClaudeMdSetting,
|
|
getPromptCustomization,
|
|
getActiveClaudeApiProfile,
|
|
} from '../../lib/settings-helpers.js';
|
|
|
|
const logger = createLogger('Suggestions');
|
|
|
|
/**
|
|
* Extract implemented features from app_spec.txt XML content
|
|
*
|
|
* Note: This uses regex-based parsing which is sufficient for our controlled
|
|
* XML structure. If more complex XML parsing is needed in the future, consider
|
|
* using a library like 'fast-xml-parser' or 'xml2js'.
|
|
*/
|
|
function extractImplementedFeatures(specContent: string): string[] {
|
|
const features: string[] = [];
|
|
|
|
// Match <implemented_features>...</implemented_features> section
|
|
const implementedMatch = specContent.match(
|
|
/<implemented_features>([\s\S]*?)<\/implemented_features>/
|
|
);
|
|
|
|
if (implementedMatch) {
|
|
const implementedSection = implementedMatch[1];
|
|
|
|
// Extract feature names from <name>...</name> tags using matchAll
|
|
const nameRegex = /<name>(.*?)<\/name>/g;
|
|
const matches = implementedSection.matchAll(nameRegex);
|
|
|
|
for (const match of matches) {
|
|
features.push(match[1].trim());
|
|
}
|
|
}
|
|
|
|
return features;
|
|
}
|
|
|
|
/**
|
|
* Load existing context (app spec and backlog features) to avoid duplicates
|
|
*/
|
|
async function loadExistingContext(projectPath: string): Promise<string> {
|
|
let context = '';
|
|
|
|
// 1. Read app_spec.txt for implemented features
|
|
try {
|
|
const appSpecPath = getAppSpecPath(projectPath);
|
|
const specContent = (await secureFs.readFile(appSpecPath, 'utf-8')) as string;
|
|
|
|
if (specContent && specContent.trim().length > 0) {
|
|
const implementedFeatures = extractImplementedFeatures(specContent);
|
|
|
|
if (implementedFeatures.length > 0) {
|
|
context += '\n\n=== ALREADY IMPLEMENTED FEATURES ===\n';
|
|
context += 'These features are already implemented in the codebase:\n';
|
|
context += implementedFeatures.map((feature) => `- ${feature}`).join('\n') + '\n';
|
|
}
|
|
}
|
|
} catch (error) {
|
|
// app_spec.txt doesn't exist or can't be read - that's okay
|
|
logger.debug('No app_spec.txt found or error reading it:', error);
|
|
}
|
|
|
|
// 2. Load existing features from backlog
|
|
try {
|
|
const featureLoader = new FeatureLoader();
|
|
const features = await featureLoader.getAll(projectPath);
|
|
|
|
if (features.length > 0) {
|
|
context += '\n\n=== EXISTING FEATURES IN BACKLOG ===\n';
|
|
context += 'These features are already planned or in progress:\n';
|
|
context +=
|
|
features
|
|
.map((feature) => {
|
|
const status = feature.status || 'pending';
|
|
const title = feature.title || feature.description?.substring(0, 50) || 'Untitled';
|
|
return `- ${title} (${status})`;
|
|
})
|
|
.join('\n') + '\n';
|
|
}
|
|
} catch (error) {
|
|
// Features directory doesn't exist or can't be read - that's okay
|
|
logger.debug('No features found or error loading them:', error);
|
|
}
|
|
|
|
return context;
|
|
}
|
|
|
|
/**
|
|
* JSON Schema for suggestions output
|
|
*/
|
|
const suggestionsSchema = {
|
|
type: 'object',
|
|
properties: {
|
|
suggestions: {
|
|
type: 'array',
|
|
items: {
|
|
type: 'object',
|
|
properties: {
|
|
id: { type: 'string' },
|
|
category: { type: 'string' },
|
|
description: { type: 'string' },
|
|
priority: {
|
|
type: 'number',
|
|
minimum: 1,
|
|
maximum: 3,
|
|
},
|
|
reasoning: { type: 'string' },
|
|
},
|
|
required: ['category', 'description', 'priority', 'reasoning'],
|
|
},
|
|
},
|
|
},
|
|
required: ['suggestions'],
|
|
additionalProperties: false,
|
|
};
|
|
|
|
export async function generateSuggestions(
|
|
projectPath: string,
|
|
suggestionType: string,
|
|
events: EventEmitter,
|
|
abortController: AbortController,
|
|
settingsService?: SettingsService,
|
|
modelOverride?: string,
|
|
thinkingLevelOverride?: ThinkingLevel
|
|
): Promise<void> {
|
|
// Get customized prompts from settings
|
|
const prompts = await getPromptCustomization(settingsService, '[Suggestions]');
|
|
|
|
// Map suggestion types to their prompts
|
|
const typePrompts: Record<string, string> = {
|
|
features: prompts.suggestions.featuresPrompt,
|
|
refactoring: prompts.suggestions.refactoringPrompt,
|
|
security: prompts.suggestions.securityPrompt,
|
|
performance: prompts.suggestions.performancePrompt,
|
|
};
|
|
|
|
// Load existing context to avoid duplicates
|
|
const existingContext = await loadExistingContext(projectPath);
|
|
|
|
const prompt = `${typePrompts[suggestionType] || typePrompts.features}
|
|
${existingContext}
|
|
|
|
${existingContext ? '\nIMPORTANT: Do NOT suggest features that are already implemented or already in the backlog above. Focus on NEW ideas that complement what already exists.\n' : ''}
|
|
${prompts.suggestions.baseTemplate}`;
|
|
|
|
// Don't send initial message - let the agent output speak for itself
|
|
// The first agent message will be captured as an info entry
|
|
|
|
// Load autoLoadClaudeMd setting
|
|
const autoLoadClaudeMd = await getAutoLoadClaudeMdSetting(
|
|
projectPath,
|
|
settingsService,
|
|
'[Suggestions]'
|
|
);
|
|
|
|
// Get model from phase settings (AI Suggestions = suggestionsModel)
|
|
// Use override if provided, otherwise fall back to settings
|
|
const settings = await settingsService?.getGlobalSettings();
|
|
let model: string;
|
|
let thinkingLevel: ThinkingLevel | undefined;
|
|
|
|
if (modelOverride) {
|
|
// Use explicit override - resolve the model string
|
|
const resolved = resolvePhaseModel({
|
|
model: modelOverride,
|
|
thinkingLevel: thinkingLevelOverride,
|
|
});
|
|
model = resolved.model;
|
|
thinkingLevel = resolved.thinkingLevel;
|
|
} else {
|
|
// Use settings-based model
|
|
const phaseModelEntry =
|
|
settings?.phaseModels?.suggestionsModel || DEFAULT_PHASE_MODELS.suggestionsModel;
|
|
const resolved = resolvePhaseModel(phaseModelEntry);
|
|
model = resolved.model;
|
|
thinkingLevel = resolved.thinkingLevel;
|
|
}
|
|
|
|
logger.info('[Suggestions] Using model:', model);
|
|
|
|
// Get active Claude API profile for alternative endpoint configuration
|
|
const { profile: claudeApiProfile, credentials } = await getActiveClaudeApiProfile(
|
|
settingsService,
|
|
'[Suggestions]'
|
|
);
|
|
|
|
let responseText = '';
|
|
|
|
// Determine if we should use structured output (Claude supports it, Cursor doesn't)
|
|
const useStructuredOutput = !isCursorModel(model);
|
|
|
|
// Build the final prompt - for Cursor, include JSON schema instructions
|
|
let finalPrompt = prompt;
|
|
if (!useStructuredOutput) {
|
|
finalPrompt = `${prompt}
|
|
|
|
CRITICAL INSTRUCTIONS:
|
|
1. DO NOT write any files. Return the JSON in your response only.
|
|
2. After analyzing the project, respond with ONLY a JSON object - no explanations, no markdown, just raw JSON.
|
|
3. The JSON must match this exact schema:
|
|
|
|
${JSON.stringify(suggestionsSchema, null, 2)}
|
|
|
|
Your entire response should be valid JSON starting with { and ending with }. No text before or after.`;
|
|
}
|
|
|
|
// Use streamingQuery with event callbacks
|
|
const result = await streamingQuery({
|
|
prompt: finalPrompt,
|
|
model,
|
|
cwd: projectPath,
|
|
maxTurns: 250,
|
|
allowedTools: ['Read', 'Glob', 'Grep'],
|
|
abortController,
|
|
thinkingLevel,
|
|
readOnly: true, // Suggestions only reads code, doesn't write
|
|
settingSources: autoLoadClaudeMd ? ['user', 'project', 'local'] : undefined,
|
|
claudeApiProfile, // Pass active Claude API profile for alternative endpoint configuration
|
|
credentials, // Pass credentials for resolving 'credentials' apiKeySource
|
|
outputFormat: useStructuredOutput
|
|
? {
|
|
type: 'json_schema',
|
|
schema: suggestionsSchema,
|
|
}
|
|
: undefined,
|
|
onText: (text) => {
|
|
responseText += text;
|
|
events.emit('suggestions:event', {
|
|
type: 'suggestions_progress',
|
|
content: text,
|
|
});
|
|
},
|
|
onToolUse: (tool, input) => {
|
|
events.emit('suggestions:event', {
|
|
type: 'suggestions_tool',
|
|
tool,
|
|
input,
|
|
});
|
|
},
|
|
});
|
|
|
|
// Use structured output if available, otherwise fall back to parsing text
|
|
try {
|
|
let structuredOutput: { suggestions: Array<Record<string, unknown>> } | null = null;
|
|
|
|
if (result.structured_output) {
|
|
structuredOutput = result.structured_output as {
|
|
suggestions: Array<Record<string, unknown>>;
|
|
};
|
|
logger.debug('Received structured output:', structuredOutput);
|
|
} else if (responseText) {
|
|
// Fallback: try to parse from text using shared extraction utility
|
|
logger.warn('No structured output received, attempting to parse from text');
|
|
structuredOutput = extractJsonWithArray<{ suggestions: Array<Record<string, unknown>> }>(
|
|
responseText,
|
|
'suggestions',
|
|
{ logger }
|
|
);
|
|
}
|
|
|
|
if (structuredOutput && structuredOutput.suggestions) {
|
|
// Use structured output directly
|
|
events.emit('suggestions:event', {
|
|
type: 'suggestions_complete',
|
|
suggestions: structuredOutput.suggestions.map((s: Record<string, unknown>, i: number) => ({
|
|
...s,
|
|
id: s.id || `suggestion-${Date.now()}-${i}`,
|
|
})),
|
|
});
|
|
} else {
|
|
throw new Error('No valid JSON found in response');
|
|
}
|
|
} catch (error) {
|
|
// Log the parsing error for debugging
|
|
logger.error('Failed to parse suggestions JSON from AI response:', error);
|
|
// Return generic suggestions if parsing fails
|
|
events.emit('suggestions:event', {
|
|
type: 'suggestions_complete',
|
|
suggestions: [
|
|
{
|
|
id: `suggestion-${Date.now()}-0`,
|
|
category: 'Analysis',
|
|
description: 'Review the AI analysis output for insights',
|
|
priority: 1,
|
|
reasoning: 'The AI provided analysis but suggestions need manual review',
|
|
},
|
|
],
|
|
});
|
|
}
|
|
}
|