/** * Auto Mode Service - Autonomous feature implementation using Claude Agent SDK * * Manages: * - Worktree creation for isolated development * - Feature execution with Claude * - Concurrent execution with max concurrency limits * - Progress streaming via events * - Verification and merge workflows */ import { ProviderFactory } from '../providers/provider-factory.js'; import type { ExecuteOptions, Feature, ModelProvider, PipelineStep, ThinkingLevel, PlanningMode, } from '@automaker/types'; import { DEFAULT_PHASE_MODELS, stripProviderPrefix } from '@automaker/types'; import { buildPromptWithImages, classifyError, loadContextFiles, appendLearning, recordMemoryUsage, createLogger, } from '@automaker/utils'; const logger = createLogger('AutoMode'); import { resolveModelString, resolvePhaseModel, DEFAULT_MODELS } from '@automaker/model-resolver'; import { resolveDependencies, areDependenciesSatisfied } from '@automaker/dependency-resolver'; import { getFeatureDir, getAutomakerDir, getFeaturesDir, getExecutionStatePath, ensureAutomakerDir, } from '@automaker/platform'; import { exec } from 'child_process'; import { promisify } from 'util'; import path from 'path'; import * as secureFs from '../lib/secure-fs.js'; import type { EventEmitter } from '../lib/events.js'; import { createAutoModeOptions, createCustomOptions, validateWorkingDirectory, } from '../lib/sdk-options.js'; import { FeatureLoader } from './feature-loader.js'; import type { SettingsService } from './settings-service.js'; import { pipelineService, PipelineService } from './pipeline-service.js'; import { getAutoLoadClaudeMdSetting, filterClaudeMdFromContext, getMCPServersFromSettings, getPromptCustomization, } from '../lib/settings-helpers.js'; const execAsync = promisify(exec); // PlanningMode type is imported from @automaker/types interface ParsedTask { id: string; // e.g., "T001" description: string; // e.g., "Create user model" filePath?: string; // e.g., "src/models/user.ts" phase?: string; // e.g., "Phase 1: Foundation" (for full mode) status: 'pending' | 'in_progress' | 'completed' | 'failed'; } interface PlanSpec { status: 'pending' | 'generating' | 'generated' | 'approved' | 'rejected'; content?: string; version: number; generatedAt?: string; approvedAt?: string; reviewedByUser: boolean; tasksCompleted?: number; tasksTotal?: number; currentTaskId?: string; tasks?: ParsedTask[]; } /** * Parse tasks from generated spec content * Looks for the ```tasks code block and extracts task lines * Format: - [ ] T###: Description | File: path/to/file */ function parseTasksFromSpec(specContent: string): ParsedTask[] { const tasks: ParsedTask[] = []; // Extract content within ```tasks ... ``` block const tasksBlockMatch = specContent.match(/```tasks\s*([\s\S]*?)```/); if (!tasksBlockMatch) { // Try fallback: look for task lines anywhere in content const taskLines = specContent.match(/- \[ \] T\d{3}:.*$/gm); if (!taskLines) { return tasks; } // Parse fallback task lines let currentPhase: string | undefined; for (const line of taskLines) { const parsed = parseTaskLine(line, currentPhase); if (parsed) { tasks.push(parsed); } } return tasks; } const tasksContent = tasksBlockMatch[1]; const lines = tasksContent.split('\n'); let currentPhase: string | undefined; for (const line of lines) { const trimmedLine = line.trim(); // Check for phase header (e.g., "## Phase 1: Foundation") const phaseMatch = trimmedLine.match(/^##\s*(.+)$/); if (phaseMatch) { currentPhase = phaseMatch[1].trim(); continue; } // Check for task line if (trimmedLine.startsWith('- [ ]')) { const parsed = parseTaskLine(trimmedLine, currentPhase); if (parsed) { tasks.push(parsed); } } } return tasks; } /** * Parse a single task line * Format: - [ ] T###: Description | File: path/to/file */ function parseTaskLine(line: string, currentPhase?: string): ParsedTask | null { // Match pattern: - [ ] T###: Description | File: path const taskMatch = line.match(/- \[ \] (T\d{3}):\s*([^|]+)(?:\|\s*File:\s*(.+))?$/); if (!taskMatch) { // Try simpler pattern without file const simpleMatch = line.match(/- \[ \] (T\d{3}):\s*(.+)$/); if (simpleMatch) { return { id: simpleMatch[1], description: simpleMatch[2].trim(), phase: currentPhase, status: 'pending', }; } return null; } return { id: taskMatch[1], description: taskMatch[2].trim(), filePath: taskMatch[3]?.trim(), phase: currentPhase, status: 'pending', }; } // Feature type is imported from feature-loader.js // Extended type with planning fields for local use interface FeatureWithPlanning extends Feature { planningMode?: PlanningMode; planSpec?: PlanSpec; requirePlanApproval?: boolean; } interface RunningFeature { featureId: string; projectPath: string; worktreePath: string | null; branchName: string | null; abortController: AbortController; isAutoMode: boolean; startTime: number; model?: string; provider?: ModelProvider; } interface AutoLoopState { projectPath: string; maxConcurrency: number; abortController: AbortController; isRunning: boolean; } interface PendingApproval { resolve: (result: { approved: boolean; editedPlan?: string; feedback?: string }) => void; reject: (error: Error) => void; featureId: string; projectPath: string; } interface AutoModeConfig { maxConcurrency: number; useWorktrees: boolean; projectPath: string; } /** * Execution state for recovery after server restart * Tracks which features were running and auto-loop configuration */ interface ExecutionState { version: 1; autoLoopWasRunning: boolean; maxConcurrency: number; projectPath: string; runningFeatureIds: string[]; savedAt: string; } // Default empty execution state const DEFAULT_EXECUTION_STATE: ExecutionState = { version: 1, autoLoopWasRunning: false, maxConcurrency: 3, projectPath: '', runningFeatureIds: [], savedAt: '', }; // Constants for consecutive failure tracking const CONSECUTIVE_FAILURE_THRESHOLD = 3; // Pause after 3 consecutive failures const FAILURE_WINDOW_MS = 60000; // Failures within 1 minute count as consecutive export class AutoModeService { private events: EventEmitter; private runningFeatures = new Map(); private autoLoop: AutoLoopState | null = null; private featureLoader = new FeatureLoader(); private autoLoopRunning = false; private autoLoopAbortController: AbortController | null = null; private config: AutoModeConfig | null = null; private pendingApprovals = new Map(); private settingsService: SettingsService | null = null; // Track consecutive failures to detect quota/API issues private consecutiveFailures: { timestamp: number; error: string }[] = []; private pausedDueToFailures = false; constructor(events: EventEmitter, settingsService?: SettingsService) { this.events = events; this.settingsService = settingsService ?? null; } /** * Track a failure and check if we should pause due to consecutive failures. * This handles cases where the SDK doesn't return useful error messages. */ private trackFailureAndCheckPause(errorInfo: { type: string; message: string }): boolean { const now = Date.now(); // Add this failure this.consecutiveFailures.push({ timestamp: now, error: errorInfo.message }); // Remove old failures outside the window this.consecutiveFailures = this.consecutiveFailures.filter( (f) => now - f.timestamp < FAILURE_WINDOW_MS ); // Check if we've hit the threshold if (this.consecutiveFailures.length >= CONSECUTIVE_FAILURE_THRESHOLD) { return true; // Should pause } // Also immediately pause for known quota/rate limit errors if (errorInfo.type === 'quota_exhausted' || errorInfo.type === 'rate_limit') { return true; } return false; } /** * Signal that we should pause due to repeated failures or quota exhaustion. * This will pause the auto loop to prevent repeated failures. */ private signalShouldPause(errorInfo: { type: string; message: string }): void { if (this.pausedDueToFailures) { return; // Already paused } this.pausedDueToFailures = true; const failureCount = this.consecutiveFailures.length; logger.info( `Pausing auto loop after ${failureCount} consecutive failures. Last error: ${errorInfo.type}` ); // Emit event to notify UI this.emitAutoModeEvent('auto_mode_paused_failures', { message: failureCount >= CONSECUTIVE_FAILURE_THRESHOLD ? `Auto Mode paused: ${failureCount} consecutive failures detected. This may indicate a quota limit or API issue. Please check your usage and try again.` : 'Auto Mode paused: Usage limit or API error detected. Please wait for your quota to reset or check your API configuration.', errorType: errorInfo.type, originalError: errorInfo.message, failureCount, projectPath: this.config?.projectPath, }); // Stop the auto loop this.stopAutoLoop(); } /** * Reset failure tracking (called when user manually restarts auto mode) */ private resetFailureTracking(): void { this.consecutiveFailures = []; this.pausedDueToFailures = false; } /** * Record a successful feature completion to reset consecutive failure count */ private recordSuccess(): void { this.consecutiveFailures = []; } /** * Start the auto mode loop - continuously picks and executes pending features */ async startAutoLoop(projectPath: string, maxConcurrency = 3): Promise { if (this.autoLoopRunning) { throw new Error('Auto mode is already running'); } // Reset failure tracking when user manually starts auto mode this.resetFailureTracking(); this.autoLoopRunning = true; this.autoLoopAbortController = new AbortController(); this.config = { maxConcurrency, useWorktrees: true, projectPath, }; this.emitAutoModeEvent('auto_mode_started', { message: `Auto mode started with max ${maxConcurrency} concurrent features`, projectPath, }); // Save execution state for recovery after restart await this.saveExecutionState(projectPath); // Note: Memory folder initialization is now handled by loadContextFiles // Run the loop in the background this.runAutoLoop().catch((error) => { logger.error('Loop error:', error); const errorInfo = classifyError(error); this.emitAutoModeEvent('auto_mode_error', { error: errorInfo.message, errorType: errorInfo.type, }); }); } private async runAutoLoop(): Promise { while ( this.autoLoopRunning && this.autoLoopAbortController && !this.autoLoopAbortController.signal.aborted ) { try { // Check if we have capacity if (this.runningFeatures.size >= (this.config?.maxConcurrency || 3)) { await this.sleep(5000); continue; } // Load pending features const pendingFeatures = await this.loadPendingFeatures(this.config!.projectPath); if (pendingFeatures.length === 0) { this.emitAutoModeEvent('auto_mode_idle', { message: 'No pending features - auto mode idle', projectPath: this.config!.projectPath, }); await this.sleep(10000); continue; } // Find a feature not currently running const nextFeature = pendingFeatures.find((f) => !this.runningFeatures.has(f.id)); if (nextFeature) { // Start feature execution in background this.executeFeature( this.config!.projectPath, nextFeature.id, this.config!.useWorktrees, true ).catch((error) => { logger.error(`Feature ${nextFeature.id} error:`, error); }); } await this.sleep(2000); } catch (error) { logger.error('Loop iteration error:', error); await this.sleep(5000); } } this.autoLoopRunning = false; } /** * Stop the auto mode loop */ async stopAutoLoop(): Promise { const wasRunning = this.autoLoopRunning; const projectPath = this.config?.projectPath; this.autoLoopRunning = false; if (this.autoLoopAbortController) { this.autoLoopAbortController.abort(); this.autoLoopAbortController = null; } // Clear execution state when auto-loop is explicitly stopped if (projectPath) { await this.clearExecutionState(projectPath); } // Emit stop event immediately when user explicitly stops if (wasRunning) { this.emitAutoModeEvent('auto_mode_stopped', { message: 'Auto mode stopped', projectPath, }); } return this.runningFeatures.size; } /** * Execute a single feature * @param projectPath - The main project path * @param featureId - The feature ID to execute * @param useWorktrees - Whether to use worktrees for isolation * @param isAutoMode - Whether this is running in auto mode */ async executeFeature( projectPath: string, featureId: string, useWorktrees = false, isAutoMode = false, providedWorktreePath?: string, options?: { continuationPrompt?: string; } ): Promise { if (this.runningFeatures.has(featureId)) { throw new Error('already running'); } // Add to running features immediately to prevent race conditions const abortController = new AbortController(); const tempRunningFeature: RunningFeature = { featureId, projectPath, worktreePath: null, branchName: null, abortController, isAutoMode, startTime: Date.now(), }; this.runningFeatures.set(featureId, tempRunningFeature); // Save execution state when feature starts if (isAutoMode) { await this.saveExecutionState(projectPath); } try { // Validate that project path is allowed using centralized validation validateWorkingDirectory(projectPath); // Check if feature has existing context - if so, resume instead of starting fresh // Skip this check if we're already being called with a continuation prompt (from resumeFeature) if (!options?.continuationPrompt) { const hasExistingContext = await this.contextExists(projectPath, featureId); if (hasExistingContext) { logger.info( `Feature ${featureId} has existing context, resuming instead of starting fresh` ); // Remove from running features temporarily, resumeFeature will add it back this.runningFeatures.delete(featureId); return this.resumeFeature(projectPath, featureId, useWorktrees); } } // Emit feature start event early this.emitAutoModeEvent('auto_mode_feature_start', { featureId, projectPath, feature: { id: featureId, title: 'Loading...', description: 'Feature is starting', }, }); // Load feature details FIRST to get branchName const feature = await this.loadFeature(projectPath, featureId); if (!feature) { throw new Error(`Feature ${featureId} not found`); } // Derive workDir from feature.branchName // Worktrees should already be created when the feature is added/edited let worktreePath: string | null = null; const branchName = feature.branchName; if (useWorktrees && branchName) { // Try to find existing worktree for this branch // Worktree should already exist (created when feature was added/edited) worktreePath = await this.findExistingWorktreeForBranch(projectPath, branchName); if (worktreePath) { logger.info(`Using worktree for branch "${branchName}": ${worktreePath}`); } else { // Worktree doesn't exist - log warning and continue with project path logger.warn(`Worktree for branch "${branchName}" not found, using project path`); } } // Ensure workDir is always an absolute path for cross-platform compatibility const workDir = worktreePath ? path.resolve(worktreePath) : path.resolve(projectPath); // Validate that working directory is allowed using centralized validation validateWorkingDirectory(workDir); // Update running feature with actual worktree info tempRunningFeature.worktreePath = worktreePath; tempRunningFeature.branchName = branchName ?? null; // Update feature status to in_progress await this.updateFeatureStatus(projectPath, featureId, 'in_progress'); // Load autoLoadClaudeMd setting to determine context loading strategy const autoLoadClaudeMd = await getAutoLoadClaudeMdSetting( projectPath, this.settingsService, '[AutoMode]' ); // Build the prompt - use continuation prompt if provided (for recovery after plan approval) let prompt: string; // Load project context files (CLAUDE.md, CODE_QUALITY.md, etc.) and memory files // Context loader uses task context to select relevant memory files const contextResult = await loadContextFiles({ projectPath, fsModule: secureFs as Parameters[0]['fsModule'], taskContext: { title: feature.title ?? '', description: feature.description ?? '', }, }); // When autoLoadClaudeMd is enabled, filter out CLAUDE.md to avoid duplication // (SDK handles CLAUDE.md via settingSources), but keep other context files like CODE_QUALITY.md // Note: contextResult.formattedPrompt now includes both context AND memory const combinedSystemPrompt = filterClaudeMdFromContext(contextResult, autoLoadClaudeMd); if (options?.continuationPrompt) { // Continuation prompt is used when recovering from a plan approval // The plan was already approved, so skip the planning phase prompt = options.continuationPrompt; logger.info(`Using continuation prompt for feature ${featureId}`); } else { // Normal flow: build prompt with planning phase const featurePrompt = this.buildFeaturePrompt(feature); const planningPrefix = await this.getPlanningPromptPrefix(feature); prompt = planningPrefix + featurePrompt; // Emit planning mode info if (feature.planningMode && feature.planningMode !== 'skip') { this.emitAutoModeEvent('planning_started', { featureId: feature.id, mode: feature.planningMode, message: `Starting ${feature.planningMode} planning phase`, }); } } // Extract image paths from feature const imagePaths = feature.imagePaths?.map((img) => typeof img === 'string' ? img : img.path ); // Get model from feature and determine provider const model = resolveModelString(feature.model, DEFAULT_MODELS.claude); const provider = ProviderFactory.getProviderNameForModel(model); logger.info( `Executing feature ${featureId} with model: ${model}, provider: ${provider} in ${workDir}` ); // Store model and provider in running feature for tracking tempRunningFeature.model = model; tempRunningFeature.provider = provider; // Run the agent with the feature's model and images // Context files are passed as system prompt for higher priority await this.runAgent( workDir, featureId, prompt, abortController, projectPath, imagePaths, model, { projectPath, planningMode: feature.planningMode, requirePlanApproval: feature.requirePlanApproval, systemPrompt: combinedSystemPrompt || undefined, autoLoadClaudeMd, thinkingLevel: feature.thinkingLevel, } ); // Check for pipeline steps and execute them const pipelineConfig = await pipelineService.getPipelineConfig(projectPath); const sortedSteps = [...(pipelineConfig?.steps || [])].sort((a, b) => a.order - b.order); if (sortedSteps.length > 0) { // Execute pipeline steps sequentially await this.executePipelineSteps( projectPath, featureId, feature, sortedSteps, workDir, abortController, autoLoadClaudeMd ); } // Determine final status based on testing mode: // - skipTests=false (automated testing): go directly to 'verified' (no manual verify needed) // - skipTests=true (manual verification): go to 'waiting_approval' for manual review const finalStatus = feature.skipTests ? 'waiting_approval' : 'verified'; await this.updateFeatureStatus(projectPath, featureId, finalStatus); // Record success to reset consecutive failure tracking this.recordSuccess(); // Record learnings and memory usage after successful feature completion try { const featureDir = getFeatureDir(projectPath, featureId); const outputPath = path.join(featureDir, 'agent-output.md'); let agentOutput = ''; try { const outputContent = await secureFs.readFile(outputPath, 'utf-8'); agentOutput = typeof outputContent === 'string' ? outputContent : outputContent.toString(); } catch { // Agent output might not exist yet } // Record memory usage if we loaded any memory files if (contextResult.memoryFiles.length > 0 && agentOutput) { await recordMemoryUsage( projectPath, contextResult.memoryFiles, agentOutput, true, // success secureFs as Parameters[4] ); } // Extract and record learnings from the agent output await this.recordLearningsFromFeature(projectPath, feature, agentOutput); } catch (learningError) { console.warn('[AutoMode] Failed to record learnings:', learningError); } this.emitAutoModeEvent('auto_mode_feature_complete', { featureId, passes: true, message: `Feature completed in ${Math.round( (Date.now() - tempRunningFeature.startTime) / 1000 )}s${finalStatus === 'verified' ? ' - auto-verified' : ''}`, projectPath, model: tempRunningFeature.model, provider: tempRunningFeature.provider, }); } catch (error) { const errorInfo = classifyError(error); if (errorInfo.isAbort) { this.emitAutoModeEvent('auto_mode_feature_complete', { featureId, passes: false, message: 'Feature stopped by user', projectPath, }); } else { logger.error(`Feature ${featureId} failed:`, error); await this.updateFeatureStatus(projectPath, featureId, 'backlog'); this.emitAutoModeEvent('auto_mode_error', { featureId, error: errorInfo.message, errorType: errorInfo.type, projectPath, }); // Track this failure and check if we should pause auto mode // This handles both specific quota/rate limit errors AND generic failures // that may indicate quota exhaustion (SDK doesn't always return useful errors) const shouldPause = this.trackFailureAndCheckPause({ type: errorInfo.type, message: errorInfo.message, }); if (shouldPause) { this.signalShouldPause({ type: errorInfo.type, message: errorInfo.message, }); } } } finally { logger.info(`Feature ${featureId} execution ended, cleaning up runningFeatures`); logger.info( `Pending approvals at cleanup: ${Array.from(this.pendingApprovals.keys()).join(', ') || 'none'}` ); this.runningFeatures.delete(featureId); // Update execution state after feature completes if (this.autoLoopRunning && projectPath) { await this.saveExecutionState(projectPath); } } } /** * Execute pipeline steps sequentially after initial feature implementation */ private async executePipelineSteps( projectPath: string, featureId: string, feature: Feature, steps: PipelineStep[], workDir: string, abortController: AbortController, autoLoadClaudeMd: boolean ): Promise { logger.info(`Executing ${steps.length} pipeline step(s) for feature ${featureId}`); // Load context files once with feature context for smart memory selection const contextResult = await loadContextFiles({ projectPath, fsModule: secureFs as Parameters[0]['fsModule'], taskContext: { title: feature.title ?? '', description: feature.description ?? '', }, }); const contextFilesPrompt = filterClaudeMdFromContext(contextResult, autoLoadClaudeMd); // Load previous agent output for context continuity const featureDir = getFeatureDir(projectPath, featureId); const contextPath = path.join(featureDir, 'agent-output.md'); let previousContext = ''; try { previousContext = (await secureFs.readFile(contextPath, 'utf-8')) as string; } catch { // No previous context } for (let i = 0; i < steps.length; i++) { const step = steps[i]; const pipelineStatus = `pipeline_${step.id}`; // Update feature status to current pipeline step await this.updateFeatureStatus(projectPath, featureId, pipelineStatus); this.emitAutoModeEvent('auto_mode_progress', { featureId, content: `Starting pipeline step ${i + 1}/${steps.length}: ${step.name}`, projectPath, }); this.emitAutoModeEvent('pipeline_step_started', { featureId, stepId: step.id, stepName: step.name, stepIndex: i, totalSteps: steps.length, projectPath, }); // Build prompt for this pipeline step const prompt = this.buildPipelineStepPrompt(step, feature, previousContext); // Get model from feature const model = resolveModelString(feature.model, DEFAULT_MODELS.claude); // Run the agent for this pipeline step await this.runAgent( workDir, featureId, prompt, abortController, projectPath, undefined, // no images for pipeline steps model, { projectPath, planningMode: 'skip', // Pipeline steps don't need planning requirePlanApproval: false, previousContent: previousContext, systemPrompt: contextFilesPrompt || undefined, autoLoadClaudeMd, thinkingLevel: feature.thinkingLevel, } ); // Load updated context for next step try { previousContext = (await secureFs.readFile(contextPath, 'utf-8')) as string; } catch { // No context update } this.emitAutoModeEvent('pipeline_step_complete', { featureId, stepId: step.id, stepName: step.name, stepIndex: i, totalSteps: steps.length, projectPath, }); logger.info( `Pipeline step ${i + 1}/${steps.length} (${step.name}) completed for feature ${featureId}` ); } logger.info(`All pipeline steps completed for feature ${featureId}`); } /** * Build the prompt for a pipeline step */ private buildPipelineStepPrompt( step: PipelineStep, feature: Feature, previousContext: string ): string { let prompt = `## Pipeline Step: ${step.name} This is an automated pipeline step following the initial feature implementation. ### Feature Context ${this.buildFeaturePrompt(feature)} `; if (previousContext) { prompt += `### Previous Work The following is the output from the previous work on this feature: ${previousContext} `; } prompt += `### Pipeline Step Instructions ${step.instructions} ### Task Complete the pipeline step instructions above. Review the previous work and apply the required changes or actions.`; return prompt; } /** * Stop a specific feature */ async stopFeature(featureId: string): Promise { const running = this.runningFeatures.get(featureId); if (!running) { return false; } // Cancel any pending plan approval for this feature this.cancelPlanApproval(featureId); running.abortController.abort(); // Remove from running features immediately to allow resume // The abort signal will still propagate to stop any ongoing execution this.runningFeatures.delete(featureId); return true; } /** * Resume a feature (continues from saved context) */ async resumeFeature(projectPath: string, featureId: string, useWorktrees = false): Promise { if (this.runningFeatures.has(featureId)) { throw new Error('already running'); } // Check if context exists in .automaker directory const featureDir = getFeatureDir(projectPath, featureId); const contextPath = path.join(featureDir, 'agent-output.md'); let hasContext = false; try { await secureFs.access(contextPath); hasContext = true; } catch { // No context } if (hasContext) { // Load previous context and continue const context = (await secureFs.readFile(contextPath, 'utf-8')) as string; return this.executeFeatureWithContext(projectPath, featureId, context, useWorktrees); } // No context, start fresh - executeFeature will handle adding to runningFeatures // Remove the temporary entry we added this.runningFeatures.delete(featureId); return this.executeFeature(projectPath, featureId, useWorktrees, false); } /** * Follow up on a feature with additional instructions */ async followUpFeature( projectPath: string, featureId: string, prompt: string, imagePaths?: string[], useWorktrees = true ): Promise { // Validate project path early for fast failure validateWorkingDirectory(projectPath); if (this.runningFeatures.has(featureId)) { throw new Error(`Feature ${featureId} is already running`); } const abortController = new AbortController(); // Load feature info for context FIRST to get branchName const feature = await this.loadFeature(projectPath, featureId); // Derive workDir from feature.branchName // If no branchName, derive from feature ID: feature/{featureId} let workDir = path.resolve(projectPath); let worktreePath: string | null = null; const branchName = feature?.branchName || `feature/${featureId}`; if (useWorktrees && branchName) { // Try to find existing worktree for this branch worktreePath = await this.findExistingWorktreeForBranch(projectPath, branchName); if (worktreePath) { workDir = worktreePath; logger.info(`Follow-up using worktree for branch "${branchName}": ${workDir}`); } } // Load previous agent output if it exists const featureDir = getFeatureDir(projectPath, featureId); const contextPath = path.join(featureDir, 'agent-output.md'); let previousContext = ''; try { previousContext = (await secureFs.readFile(contextPath, 'utf-8')) as string; } catch { // No previous context } // Load autoLoadClaudeMd setting to determine context loading strategy const autoLoadClaudeMd = await getAutoLoadClaudeMdSetting( projectPath, this.settingsService, '[AutoMode]' ); // Load project context files (CLAUDE.md, CODE_QUALITY.md, etc.) - passed as system prompt const contextResult = await loadContextFiles({ projectPath, fsModule: secureFs as Parameters[0]['fsModule'], taskContext: { title: feature?.title ?? prompt.substring(0, 200), description: feature?.description ?? prompt, }, }); // When autoLoadClaudeMd is enabled, filter out CLAUDE.md to avoid duplication // (SDK handles CLAUDE.md via settingSources), but keep other context files like CODE_QUALITY.md const contextFilesPrompt = filterClaudeMdFromContext(contextResult, autoLoadClaudeMd); // Build complete prompt with feature info, previous context, and follow-up instructions let fullPrompt = `## Follow-up on Feature Implementation ${feature ? this.buildFeaturePrompt(feature) : `**Feature ID:** ${featureId}`} `; if (previousContext) { fullPrompt += ` ## Previous Agent Work The following is the output from the previous implementation attempt: ${previousContext} `; } fullPrompt += ` ## Follow-up Instructions ${prompt} ## Task Address the follow-up instructions above. Review the previous work and make the requested changes or fixes.`; // Get model from feature and determine provider early for tracking const model = resolveModelString(feature?.model, DEFAULT_MODELS.claude); const provider = ProviderFactory.getProviderNameForModel(model); logger.info(`Follow-up for feature ${featureId} using model: ${model}, provider: ${provider}`); this.runningFeatures.set(featureId, { featureId, projectPath, worktreePath, branchName, abortController, isAutoMode: false, startTime: Date.now(), model, provider, }); this.emitAutoModeEvent('auto_mode_feature_start', { featureId, projectPath, feature: feature || { id: featureId, title: 'Follow-up', description: prompt.substring(0, 100), }, model, provider, }); try { // Update feature status to in_progress await this.updateFeatureStatus(projectPath, featureId, 'in_progress'); // Copy follow-up images to feature folder const copiedImagePaths: string[] = []; if (imagePaths && imagePaths.length > 0) { const featureDirForImages = getFeatureDir(projectPath, featureId); const featureImagesDir = path.join(featureDirForImages, 'images'); await secureFs.mkdir(featureImagesDir, { recursive: true }); for (const imagePath of imagePaths) { try { // Get the filename from the path const filename = path.basename(imagePath); const destPath = path.join(featureImagesDir, filename); // Copy the image await secureFs.copyFile(imagePath, destPath); // Store the absolute path (external storage uses absolute paths) copiedImagePaths.push(destPath); } catch (error) { logger.error(`Failed to copy follow-up image ${imagePath}:`, error); } } } // Update feature object with new follow-up images BEFORE building prompt if (copiedImagePaths.length > 0 && feature) { const currentImagePaths = feature.imagePaths || []; const newImagePaths = copiedImagePaths.map((p) => ({ path: p, filename: path.basename(p), mimeType: 'image/png', // Default, could be improved })); feature.imagePaths = [...currentImagePaths, ...newImagePaths]; } // Combine original feature images with new follow-up images const allImagePaths: string[] = []; // Add all images from feature (now includes both original and new) if (feature?.imagePaths) { const allPaths = feature.imagePaths.map((img) => typeof img === 'string' ? img : img.path ); allImagePaths.push(...allPaths); } // Save updated feature.json with new images if (copiedImagePaths.length > 0 && feature) { const featureDirForSave = getFeatureDir(projectPath, featureId); const featurePath = path.join(featureDirForSave, 'feature.json'); try { await secureFs.writeFile(featurePath, JSON.stringify(feature, null, 2)); } catch (error) { logger.error(`Failed to save feature.json:`, error); } } // Use fullPrompt (already built above) with model and all images // Note: Follow-ups skip planning mode - they continue from previous work // Pass previousContext so the history is preserved in the output file // Context files are passed as system prompt for higher priority await this.runAgent( workDir, featureId, fullPrompt, abortController, projectPath, allImagePaths.length > 0 ? allImagePaths : imagePaths, model, { projectPath, planningMode: 'skip', // Follow-ups don't require approval previousContent: previousContext || undefined, systemPrompt: contextFilesPrompt || undefined, autoLoadClaudeMd, thinkingLevel: feature?.thinkingLevel, } ); // Determine final status based on testing mode: // - skipTests=false (automated testing): go directly to 'verified' (no manual verify needed) // - skipTests=true (manual verification): go to 'waiting_approval' for manual review const finalStatus = feature?.skipTests ? 'waiting_approval' : 'verified'; await this.updateFeatureStatus(projectPath, featureId, finalStatus); // Record success to reset consecutive failure tracking this.recordSuccess(); this.emitAutoModeEvent('auto_mode_feature_complete', { featureId, passes: true, message: `Follow-up completed successfully${finalStatus === 'verified' ? ' - auto-verified' : ''}`, projectPath, model, provider, }); } catch (error) { const errorInfo = classifyError(error); if (!errorInfo.isCancellation) { this.emitAutoModeEvent('auto_mode_error', { featureId, error: errorInfo.message, errorType: errorInfo.type, projectPath, }); // Track this failure and check if we should pause auto mode const shouldPause = this.trackFailureAndCheckPause({ type: errorInfo.type, message: errorInfo.message, }); if (shouldPause) { this.signalShouldPause({ type: errorInfo.type, message: errorInfo.message, }); } } } finally { this.runningFeatures.delete(featureId); } } /** * Verify a feature's implementation */ async verifyFeature(projectPath: string, featureId: string): Promise { // Worktrees are in project dir const worktreePath = path.join(projectPath, '.worktrees', featureId); let workDir = projectPath; try { await secureFs.access(worktreePath); workDir = worktreePath; } catch { // No worktree } // Run verification - check if tests pass, build works, etc. const verificationChecks = [ { cmd: 'npm run lint', name: 'Lint' }, { cmd: 'npm run typecheck', name: 'Type check' }, { cmd: 'npm test', name: 'Tests' }, { cmd: 'npm run build', name: 'Build' }, ]; let allPassed = true; const results: Array<{ check: string; passed: boolean; output?: string }> = []; for (const check of verificationChecks) { try { const { stdout, stderr } = await execAsync(check.cmd, { cwd: workDir, timeout: 120000, }); results.push({ check: check.name, passed: true, output: stdout || stderr, }); } catch (error) { allPassed = false; results.push({ check: check.name, passed: false, output: (error as Error).message, }); break; // Stop on first failure } } this.emitAutoModeEvent('auto_mode_feature_complete', { featureId, passes: allPassed, message: allPassed ? 'All verification checks passed' : `Verification failed: ${results.find((r) => !r.passed)?.check || 'Unknown'}`, }); return allPassed; } /** * Commit feature changes * @param projectPath - The main project path * @param featureId - The feature ID to commit * @param providedWorktreePath - Optional: the worktree path where the feature's changes are located */ async commitFeature( projectPath: string, featureId: string, providedWorktreePath?: string ): Promise { let workDir = projectPath; // Use the provided worktree path if given if (providedWorktreePath) { try { await secureFs.access(providedWorktreePath); workDir = providedWorktreePath; logger.info(`Committing in provided worktree: ${workDir}`); } catch { logger.info( `Provided worktree path doesn't exist: ${providedWorktreePath}, using project path` ); } } else { // Fallback: try to find worktree at legacy location const legacyWorktreePath = path.join(projectPath, '.worktrees', featureId); try { await secureFs.access(legacyWorktreePath); workDir = legacyWorktreePath; logger.info(`Committing in legacy worktree: ${workDir}`); } catch { logger.info(`No worktree found, committing in project path: ${workDir}`); } } try { // Check for changes const { stdout: status } = await execAsync('git status --porcelain', { cwd: workDir, }); if (!status.trim()) { return null; // No changes } // Load feature for commit message const feature = await this.loadFeature(projectPath, featureId); const commitMessage = feature ? `feat: ${this.extractTitleFromDescription( feature.description )}\n\nImplemented by Automaker auto-mode` : `feat: Feature ${featureId}`; // Stage and commit await execAsync('git add -A', { cwd: workDir }); await execAsync(`git commit -m "${commitMessage.replace(/"/g, '\\"')}"`, { cwd: workDir, }); // Get commit hash const { stdout: hash } = await execAsync('git rev-parse HEAD', { cwd: workDir, }); this.emitAutoModeEvent('auto_mode_feature_complete', { featureId, passes: true, message: `Changes committed: ${hash.trim().substring(0, 8)}`, }); return hash.trim(); } catch (error) { logger.error(`Commit failed for ${featureId}:`, error); return null; } } /** * Check if context exists for a feature */ async contextExists(projectPath: string, featureId: string): Promise { // Context is stored in .automaker directory const featureDir = getFeatureDir(projectPath, featureId); const contextPath = path.join(featureDir, 'agent-output.md'); try { await secureFs.access(contextPath); return true; } catch { return false; } } /** * Analyze project to gather context */ async analyzeProject(projectPath: string): Promise { const abortController = new AbortController(); const analysisFeatureId = `analysis-${Date.now()}`; this.emitAutoModeEvent('auto_mode_feature_start', { featureId: analysisFeatureId, projectPath, feature: { id: analysisFeatureId, title: 'Project Analysis', description: 'Analyzing project structure', }, }); const prompt = `Analyze this project and provide a summary of: 1. Project structure and architecture 2. Main technologies and frameworks used 3. Key components and their responsibilities 4. Build and test commands 5. Any existing conventions or patterns Format your response as a structured markdown document.`; try { // Get model from phase settings const settings = await this.settingsService?.getGlobalSettings(); const phaseModelEntry = settings?.phaseModels?.projectAnalysisModel || DEFAULT_PHASE_MODELS.projectAnalysisModel; const { model: analysisModel, thinkingLevel: analysisThinkingLevel } = resolvePhaseModel(phaseModelEntry); logger.info('Using model for project analysis:', analysisModel); const provider = ProviderFactory.getProviderForModel(analysisModel); // Load autoLoadClaudeMd setting const autoLoadClaudeMd = await getAutoLoadClaudeMdSetting( projectPath, this.settingsService, '[AutoMode]' ); // Use createCustomOptions for centralized SDK configuration with CLAUDE.md support const sdkOptions = createCustomOptions({ cwd: projectPath, model: analysisModel, maxTurns: 5, allowedTools: ['Read', 'Glob', 'Grep'], abortController, autoLoadClaudeMd, thinkingLevel: analysisThinkingLevel, }); const options: ExecuteOptions = { prompt, model: sdkOptions.model ?? analysisModel, cwd: sdkOptions.cwd ?? projectPath, maxTurns: sdkOptions.maxTurns, allowedTools: sdkOptions.allowedTools as string[], abortController, settingSources: sdkOptions.settingSources, thinkingLevel: analysisThinkingLevel, // Pass thinking level }; const stream = provider.executeQuery(options); let analysisResult = ''; for await (const msg of stream) { if (msg.type === 'assistant' && msg.message?.content) { for (const block of msg.message.content) { if (block.type === 'text') { analysisResult = block.text || ''; this.emitAutoModeEvent('auto_mode_progress', { featureId: analysisFeatureId, content: block.text, projectPath, }); } } } else if (msg.type === 'result' && msg.subtype === 'success') { analysisResult = msg.result || analysisResult; } } // Save analysis to .automaker directory const automakerDir = getAutomakerDir(projectPath); const analysisPath = path.join(automakerDir, 'project-analysis.md'); await secureFs.mkdir(automakerDir, { recursive: true }); await secureFs.writeFile(analysisPath, analysisResult); this.emitAutoModeEvent('auto_mode_feature_complete', { featureId: analysisFeatureId, passes: true, message: 'Project analysis completed', projectPath, }); } catch (error) { const errorInfo = classifyError(error); this.emitAutoModeEvent('auto_mode_error', { featureId: analysisFeatureId, error: errorInfo.message, errorType: errorInfo.type, projectPath, }); } } /** * Get current status */ getStatus(): { isRunning: boolean; runningFeatures: string[]; runningCount: number; } { return { isRunning: this.runningFeatures.size > 0, runningFeatures: Array.from(this.runningFeatures.keys()), runningCount: this.runningFeatures.size, }; } /** * Get detailed info about all running agents */ async getRunningAgents(): Promise< Array<{ featureId: string; projectPath: string; projectName: string; isAutoMode: boolean; model?: string; provider?: ModelProvider; title?: string; description?: string; }> > { const agents = await Promise.all( Array.from(this.runningFeatures.values()).map(async (rf) => { // Try to fetch feature data to get title and description let title: string | undefined; let description: string | undefined; try { const feature = await this.featureLoader.get(rf.projectPath, rf.featureId); if (feature) { title = feature.title; description = feature.description; } } catch (error) { // Silently ignore errors - title/description are optional } return { featureId: rf.featureId, projectPath: rf.projectPath, projectName: path.basename(rf.projectPath), isAutoMode: rf.isAutoMode, model: rf.model, provider: rf.provider, title, description, }; }) ); return agents; } /** * Wait for plan approval from the user. * Returns a promise that resolves when the user approves/rejects the plan. * Times out after 30 minutes to prevent indefinite memory retention. */ waitForPlanApproval( featureId: string, projectPath: string ): Promise<{ approved: boolean; editedPlan?: string; feedback?: string }> { const APPROVAL_TIMEOUT_MS = 30 * 60 * 1000; // 30 minutes logger.info(`Registering pending approval for feature ${featureId}`); logger.info( `Current pending approvals: ${Array.from(this.pendingApprovals.keys()).join(', ') || 'none'}` ); return new Promise((resolve, reject) => { // Set up timeout to prevent indefinite waiting and memory leaks const timeoutId = setTimeout(() => { const pending = this.pendingApprovals.get(featureId); if (pending) { logger.warn(`Plan approval for feature ${featureId} timed out after 30 minutes`); this.pendingApprovals.delete(featureId); reject( new Error('Plan approval timed out after 30 minutes - feature execution cancelled') ); } }, APPROVAL_TIMEOUT_MS); // Wrap resolve/reject to clear timeout when approval is resolved const wrappedResolve = (result: { approved: boolean; editedPlan?: string; feedback?: string; }) => { clearTimeout(timeoutId); resolve(result); }; const wrappedReject = (error: Error) => { clearTimeout(timeoutId); reject(error); }; this.pendingApprovals.set(featureId, { resolve: wrappedResolve, reject: wrappedReject, featureId, projectPath, }); logger.info(`Pending approval registered for feature ${featureId} (timeout: 30 minutes)`); }); } /** * Resolve a pending plan approval. * Called when the user approves or rejects the plan via API. */ async resolvePlanApproval( featureId: string, approved: boolean, editedPlan?: string, feedback?: string, projectPathFromClient?: string ): Promise<{ success: boolean; error?: string }> { logger.info(`resolvePlanApproval called for feature ${featureId}, approved=${approved}`); logger.info( `Current pending approvals: ${Array.from(this.pendingApprovals.keys()).join(', ') || 'none'}` ); const pending = this.pendingApprovals.get(featureId); if (!pending) { logger.info(`No pending approval in Map for feature ${featureId}`); // RECOVERY: If no pending approval but we have projectPath from client, // check if feature's planSpec.status is 'generated' and handle recovery if (projectPathFromClient) { logger.info(`Attempting recovery with projectPath: ${projectPathFromClient}`); const feature = await this.loadFeature(projectPathFromClient, featureId); if (feature?.planSpec?.status === 'generated') { logger.info(`Feature ${featureId} has planSpec.status='generated', performing recovery`); if (approved) { // Update planSpec to approved await this.updateFeaturePlanSpec(projectPathFromClient, featureId, { status: 'approved', approvedAt: new Date().toISOString(), reviewedByUser: true, content: editedPlan || feature.planSpec.content, }); // Build continuation prompt and re-run the feature const planContent = editedPlan || feature.planSpec.content || ''; let continuationPrompt = `The plan/specification has been approved. `; if (feedback) { continuationPrompt += `\n\nUser feedback: ${feedback}\n\n`; } continuationPrompt += `Now proceed with the implementation as specified in the plan:\n\n${planContent}\n\nImplement the feature now.`; logger.info(`Starting recovery execution for feature ${featureId}`); // Start feature execution with the continuation prompt (async, don't await) // Pass undefined for providedWorktreePath, use options for continuation prompt this.executeFeature(projectPathFromClient, featureId, true, false, undefined, { continuationPrompt, }).catch((error) => { logger.error(`Recovery execution failed for feature ${featureId}:`, error); }); return { success: true }; } else { // Rejected - update status and emit event await this.updateFeaturePlanSpec(projectPathFromClient, featureId, { status: 'rejected', reviewedByUser: true, }); await this.updateFeatureStatus(projectPathFromClient, featureId, 'backlog'); this.emitAutoModeEvent('plan_rejected', { featureId, projectPath: projectPathFromClient, feedback, }); return { success: true }; } } } logger.info( `ERROR: No pending approval found for feature ${featureId} and recovery not possible` ); return { success: false, error: `No pending approval for feature ${featureId}`, }; } logger.info(`Found pending approval for feature ${featureId}, proceeding...`); const { projectPath } = pending; // Update feature's planSpec status await this.updateFeaturePlanSpec(projectPath, featureId, { status: approved ? 'approved' : 'rejected', approvedAt: approved ? new Date().toISOString() : undefined, reviewedByUser: true, content: editedPlan, // Update content if user provided an edited version }); // If rejected with feedback, we can store it for the user to see if (!approved && feedback) { // Emit event so client knows the rejection reason this.emitAutoModeEvent('plan_rejected', { featureId, projectPath, feedback, }); } // Resolve the promise with all data including feedback pending.resolve({ approved, editedPlan, feedback }); this.pendingApprovals.delete(featureId); return { success: true }; } /** * Cancel a pending plan approval (e.g., when feature is stopped). */ cancelPlanApproval(featureId: string): void { logger.info(`cancelPlanApproval called for feature ${featureId}`); logger.info( `Current pending approvals: ${Array.from(this.pendingApprovals.keys()).join(', ') || 'none'}` ); const pending = this.pendingApprovals.get(featureId); if (pending) { logger.info(`Found and cancelling pending approval for feature ${featureId}`); pending.reject(new Error('Plan approval cancelled - feature was stopped')); this.pendingApprovals.delete(featureId); } else { logger.info(`No pending approval to cancel for feature ${featureId}`); } } /** * Check if a feature has a pending plan approval. */ hasPendingApproval(featureId: string): boolean { return this.pendingApprovals.has(featureId); } // Private helpers /** * Find an existing worktree for a given branch by checking git worktree list */ private async findExistingWorktreeForBranch( projectPath: string, branchName: string ): Promise { try { const { stdout } = await execAsync('git worktree list --porcelain', { cwd: projectPath, }); const lines = stdout.split('\n'); let currentPath: string | null = null; let currentBranch: string | null = null; for (const line of lines) { if (line.startsWith('worktree ')) { currentPath = line.slice(9); } else if (line.startsWith('branch ')) { currentBranch = line.slice(7).replace('refs/heads/', ''); } else if (line === '' && currentPath && currentBranch) { // End of a worktree entry if (currentBranch === branchName) { // Resolve to absolute path - git may return relative paths // On Windows, this is critical for cwd to work correctly // On all platforms, absolute paths ensure consistent behavior const resolvedPath = path.isAbsolute(currentPath) ? path.resolve(currentPath) : path.resolve(projectPath, currentPath); return resolvedPath; } currentPath = null; currentBranch = null; } } // Check the last entry (if file doesn't end with newline) if (currentPath && currentBranch && currentBranch === branchName) { // Resolve to absolute path for cross-platform compatibility const resolvedPath = path.isAbsolute(currentPath) ? path.resolve(currentPath) : path.resolve(projectPath, currentPath); return resolvedPath; } return null; } catch { return null; } } private async loadFeature(projectPath: string, featureId: string): Promise { // Features are stored in .automaker directory const featureDir = getFeatureDir(projectPath, featureId); const featurePath = path.join(featureDir, 'feature.json'); try { const data = (await secureFs.readFile(featurePath, 'utf-8')) as string; return JSON.parse(data); } catch { return null; } } private async updateFeatureStatus( projectPath: string, featureId: string, status: string ): Promise { // Features are stored in .automaker directory const featureDir = getFeatureDir(projectPath, featureId); const featurePath = path.join(featureDir, 'feature.json'); try { const data = (await secureFs.readFile(featurePath, 'utf-8')) as string; const feature = JSON.parse(data); feature.status = status; feature.updatedAt = new Date().toISOString(); // Set justFinishedAt timestamp when moving to waiting_approval (agent just completed) // Badge will show for 2 minutes after this timestamp if (status === 'waiting_approval') { feature.justFinishedAt = new Date().toISOString(); } else { // Clear the timestamp when moving to other statuses feature.justFinishedAt = undefined; } await secureFs.writeFile(featurePath, JSON.stringify(feature, null, 2)); } catch { // Feature file may not exist } } /** * Update the planSpec of a feature */ private async updateFeaturePlanSpec( projectPath: string, featureId: string, updates: Partial ): Promise { const featurePath = path.join(projectPath, '.automaker', 'features', featureId, 'feature.json'); try { const data = (await secureFs.readFile(featurePath, 'utf-8')) as string; const feature = JSON.parse(data); // Initialize planSpec if it doesn't exist if (!feature.planSpec) { feature.planSpec = { status: 'pending', version: 1, reviewedByUser: false, }; } // Apply updates Object.assign(feature.planSpec, updates); // If content is being updated and it's a new version, increment version if (updates.content && updates.content !== feature.planSpec.content) { feature.planSpec.version = (feature.planSpec.version || 0) + 1; } feature.updatedAt = new Date().toISOString(); await secureFs.writeFile(featurePath, JSON.stringify(feature, null, 2)); } catch (error) { logger.error(`Failed to update planSpec for ${featureId}:`, error); } } private async loadPendingFeatures(projectPath: string): Promise { // Features are stored in .automaker directory const featuresDir = getFeaturesDir(projectPath); try { const entries = await secureFs.readdir(featuresDir, { withFileTypes: true, }); const allFeatures: Feature[] = []; const pendingFeatures: Feature[] = []; // Load all features (for dependency checking) for (const entry of entries) { if (entry.isDirectory()) { const featurePath = path.join(featuresDir, entry.name, 'feature.json'); try { const data = (await secureFs.readFile(featurePath, 'utf-8')) as string; const feature = JSON.parse(data); allFeatures.push(feature); // Track pending features separately if ( feature.status === 'pending' || feature.status === 'ready' || feature.status === 'backlog' ) { pendingFeatures.push(feature); } } catch { // Skip invalid features } } } // Apply dependency-aware ordering const { orderedFeatures } = resolveDependencies(pendingFeatures); // Get skipVerificationInAutoMode setting const settings = await this.settingsService?.getGlobalSettings(); const skipVerification = settings?.skipVerificationInAutoMode ?? false; // Filter to only features with satisfied dependencies const readyFeatures = orderedFeatures.filter((feature: Feature) => areDependenciesSatisfied(feature, allFeatures, { skipVerification }) ); return readyFeatures; } catch { return []; } } /** * Extract a title from feature description (first line or truncated) */ private extractTitleFromDescription(description: string): string { if (!description || !description.trim()) { return 'Untitled Feature'; } // Get first line, or first 60 characters if no newline const firstLine = description.split('\n')[0].trim(); if (firstLine.length <= 60) { return firstLine; } // Truncate to 60 characters and add ellipsis return firstLine.substring(0, 57) + '...'; } /** * Get the planning prompt prefix based on feature's planning mode */ private async getPlanningPromptPrefix(feature: Feature): Promise { const mode = feature.planningMode || 'skip'; if (mode === 'skip') { return ''; // No planning phase } // Load prompts from settings (no caching - allows hot reload of custom prompts) const prompts = await getPromptCustomization(this.settingsService, '[AutoMode]'); const planningPrompts: Record = { lite: prompts.autoMode.planningLite, lite_with_approval: prompts.autoMode.planningLiteWithApproval, spec: prompts.autoMode.planningSpec, full: prompts.autoMode.planningFull, }; // For lite mode, use the approval variant if requirePlanApproval is true let promptKey: string = mode; if (mode === 'lite' && feature.requirePlanApproval === true) { promptKey = 'lite_with_approval'; } const planningPrompt = planningPrompts[promptKey]; if (!planningPrompt) { return ''; } return planningPrompt + '\n\n---\n\n## Feature Request\n\n'; } private buildFeaturePrompt(feature: Feature): string { const title = this.extractTitleFromDescription(feature.description); let prompt = `## Feature Implementation Task **Feature ID:** ${feature.id} **Title:** ${title} **Description:** ${feature.description} `; if (feature.spec) { prompt += ` **Specification:** ${feature.spec} `; } // Add images note (like old implementation) if (feature.imagePaths && feature.imagePaths.length > 0) { const imagesList = feature.imagePaths .map((img, idx) => { const path = typeof img === 'string' ? img : img.path; const filename = typeof img === 'string' ? path.split('/').pop() : img.filename || path.split('/').pop(); const mimeType = typeof img === 'string' ? 'image/*' : img.mimeType || 'image/*'; return ` ${idx + 1}. ${filename} (${mimeType})\n Path: ${path}`; }) .join('\n'); prompt += ` **šŸ“Ž Context Images Attached:** The user has attached ${feature.imagePaths.length} image(s) for context. These images are provided both visually (in the initial message) and as files you can read: ${imagesList} You can use the Read tool to view these images at any time during implementation. Review them carefully before implementing. `; } // Add verification instructions based on testing mode if (feature.skipTests) { // Manual verification - just implement the feature prompt += ` ## Instructions Implement this feature by: 1. First, explore the codebase to understand the existing structure 2. Plan your implementation approach 3. Write the necessary code changes 4. Ensure the code follows existing patterns and conventions When done, wrap your final summary in tags like this: ## Summary: [Feature Title] ### Changes Implemented - [List of changes made] ### Files Modified - [List of files] ### Notes for Developer - [Any important notes] This helps parse your summary correctly in the output logs.`; } else { // Automated testing - implement and verify with Playwright prompt += ` ## Instructions Implement this feature by: 1. First, explore the codebase to understand the existing structure 2. Plan your implementation approach 3. Write the necessary code changes 4. Ensure the code follows existing patterns and conventions ## Verification with Playwright (REQUIRED) After implementing the feature, you MUST verify it works correctly using Playwright: 1. **Create a temporary Playwright test** to verify the feature works as expected 2. **Run the test** to confirm the feature is working 3. **Delete the test file** after verification - this is a temporary verification test, not a permanent test suite addition Example verification workflow: \`\`\`bash # Create a simple verification test npx playwright test my-verification-test.spec.ts # After successful verification, delete the test rm my-verification-test.spec.ts \`\`\` The test should verify the core functionality of the feature. If the test fails, fix the implementation and re-test. When done, wrap your final summary in tags like this: ## Summary: [Feature Title] ### Changes Implemented - [List of changes made] ### Files Modified - [List of files] ### Verification Status - [Describe how the feature was verified with Playwright] ### Notes for Developer - [Any important notes] This helps parse your summary correctly in the output logs.`; } return prompt; } private async runAgent( workDir: string, featureId: string, prompt: string, abortController: AbortController, projectPath: string, imagePaths?: string[], model?: string, options?: { projectPath?: string; planningMode?: PlanningMode; requirePlanApproval?: boolean; previousContent?: string; systemPrompt?: string; autoLoadClaudeMd?: boolean; thinkingLevel?: ThinkingLevel; } ): Promise { const finalProjectPath = options?.projectPath || projectPath; const planningMode = options?.planningMode || 'skip'; const previousContent = options?.previousContent; // Validate vision support before processing images const effectiveModel = model || 'claude-sonnet-4-20250514'; if (imagePaths && imagePaths.length > 0) { const supportsVision = ProviderFactory.modelSupportsVision(effectiveModel); if (!supportsVision) { throw new Error( `This model (${effectiveModel}) does not support image input. ` + `Please switch to a model that supports vision (like Claude models), or remove the images and try again.` ); } } // Check if this planning mode can generate a spec/plan that needs approval // - spec and full always generate specs // - lite only generates approval-ready content when requirePlanApproval is true const planningModeRequiresApproval = planningMode === 'spec' || planningMode === 'full' || (planningMode === 'lite' && options?.requirePlanApproval === true); const requiresApproval = planningModeRequiresApproval && options?.requirePlanApproval === true; // CI/CD Mock Mode: Return early with mock response when AUTOMAKER_MOCK_AGENT is set // This prevents actual API calls during automated testing if (process.env.AUTOMAKER_MOCK_AGENT === 'true') { logger.info(`MOCK MODE: Skipping real agent execution for feature ${featureId}`); // Simulate some work being done await this.sleep(500); // Emit mock progress events to simulate agent activity this.emitAutoModeEvent('auto_mode_progress', { featureId, content: 'Mock agent: Analyzing the codebase...', }); await this.sleep(300); this.emitAutoModeEvent('auto_mode_progress', { featureId, content: 'Mock agent: Implementing the feature...', }); await this.sleep(300); // Create a mock file with "yellow" content as requested in the test const mockFilePath = path.join(workDir, 'yellow.txt'); await secureFs.writeFile(mockFilePath, 'yellow'); this.emitAutoModeEvent('auto_mode_progress', { featureId, content: "Mock agent: Created yellow.txt file with content 'yellow'", }); await this.sleep(200); // Save mock agent output const featureDirForOutput = getFeatureDir(projectPath, featureId); const outputPath = path.join(featureDirForOutput, 'agent-output.md'); const mockOutput = `# Mock Agent Output ## Summary This is a mock agent response for CI/CD testing. ## Changes Made - Created \`yellow.txt\` with content "yellow" ## Notes This mock response was generated because AUTOMAKER_MOCK_AGENT=true was set. `; await secureFs.mkdir(path.dirname(outputPath), { recursive: true }); await secureFs.writeFile(outputPath, mockOutput); logger.info(`MOCK MODE: Completed mock execution for feature ${featureId}`); return; } // Load autoLoadClaudeMd setting (project setting takes precedence over global) // Use provided value if available, otherwise load from settings const autoLoadClaudeMd = options?.autoLoadClaudeMd !== undefined ? options.autoLoadClaudeMd : await getAutoLoadClaudeMdSetting(finalProjectPath, this.settingsService, '[AutoMode]'); // Load MCP servers from settings (global setting only) const mcpServers = await getMCPServersFromSettings(this.settingsService, '[AutoMode]'); // Load MCP permission settings (global setting only) // Build SDK options using centralized configuration for feature implementation const sdkOptions = createAutoModeOptions({ cwd: workDir, model: model, abortController, autoLoadClaudeMd, mcpServers: Object.keys(mcpServers).length > 0 ? mcpServers : undefined, thinkingLevel: options?.thinkingLevel, }); // Extract model, maxTurns, and allowedTools from SDK options const finalModel = sdkOptions.model!; const maxTurns = sdkOptions.maxTurns; const allowedTools = sdkOptions.allowedTools as string[] | undefined; logger.info( `runAgent called for feature ${featureId} with model: ${finalModel}, planningMode: ${planningMode}, requiresApproval: ${requiresApproval}` ); // Get provider for this model const provider = ProviderFactory.getProviderForModel(finalModel); // Strip provider prefix - providers should receive bare model IDs const bareModel = stripProviderPrefix(finalModel); logger.info( `Using provider "${provider.getName()}" for model "${finalModel}" (bare: ${bareModel})` ); // Build prompt content with images using utility const { content: promptContent } = await buildPromptWithImages( prompt, imagePaths, workDir, false // don't duplicate paths in text ); // Debug: Log if system prompt is provided if (options?.systemPrompt) { logger.info( `System prompt provided (${options.systemPrompt.length} chars), first 200 chars:\n${options.systemPrompt.substring(0, 200)}...` ); } const executeOptions: ExecuteOptions = { prompt: promptContent, model: bareModel, maxTurns: maxTurns, cwd: workDir, allowedTools: allowedTools, abortController, systemPrompt: sdkOptions.systemPrompt, settingSources: sdkOptions.settingSources, mcpServers: Object.keys(mcpServers).length > 0 ? mcpServers : undefined, // Pass MCP servers configuration thinkingLevel: options?.thinkingLevel, // Pass thinking level for extended thinking }; // Execute via provider logger.info(`Starting stream for feature ${featureId}...`); const stream = provider.executeQuery(executeOptions); logger.info(`Stream created, starting to iterate...`); // Initialize with previous content if this is a follow-up, with a separator let responseText = previousContent ? `${previousContent}\n\n---\n\n## Follow-up Session\n\n` : ''; let specDetected = false; // Agent output goes to .automaker directory // Note: We use projectPath here, not workDir, because workDir might be a worktree path const featureDirForOutput = getFeatureDir(projectPath, featureId); const outputPath = path.join(featureDirForOutput, 'agent-output.md'); const rawOutputPath = path.join(featureDirForOutput, 'raw-output.jsonl'); // Raw output logging is configurable via environment variable // Set AUTOMAKER_DEBUG_RAW_OUTPUT=true to enable raw stream event logging const enableRawOutput = process.env.AUTOMAKER_DEBUG_RAW_OUTPUT === 'true' || process.env.AUTOMAKER_DEBUG_RAW_OUTPUT === '1'; // Incremental file writing state let writeTimeout: ReturnType | null = null; const WRITE_DEBOUNCE_MS = 500; // Batch writes every 500ms // Raw output accumulator for debugging (NDJSON format) let rawOutputLines: string[] = []; let rawWriteTimeout: ReturnType | null = null; // Helper to append raw stream event for debugging (only when enabled) const appendRawEvent = (event: unknown): void => { if (!enableRawOutput) return; try { const timestamp = new Date().toISOString(); const rawLine = JSON.stringify({ timestamp, event }, null, 4); // Pretty print for readability rawOutputLines.push(rawLine); // Debounced write of raw output if (rawWriteTimeout) { clearTimeout(rawWriteTimeout); } rawWriteTimeout = setTimeout(async () => { try { await secureFs.mkdir(path.dirname(rawOutputPath), { recursive: true }); await secureFs.appendFile(rawOutputPath, rawOutputLines.join('\n') + '\n'); rawOutputLines = []; // Clear after writing } catch (error) { logger.error(`Failed to write raw output for ${featureId}:`, error); } }, WRITE_DEBOUNCE_MS); } catch { // Ignore serialization errors } }; // Helper to write current responseText to file const writeToFile = async (): Promise => { try { await secureFs.mkdir(path.dirname(outputPath), { recursive: true }); await secureFs.writeFile(outputPath, responseText); } catch (error) { // Log but don't crash - file write errors shouldn't stop execution logger.error(`Failed to write agent output for ${featureId}:`, error); } }; // Debounced write - schedules a write after WRITE_DEBOUNCE_MS const scheduleWrite = (): void => { if (writeTimeout) { clearTimeout(writeTimeout); } writeTimeout = setTimeout(() => { writeToFile(); }, WRITE_DEBOUNCE_MS); }; // Heartbeat logging so "silent" model calls are visible. // Some runs can take a while before the first streamed message arrives. const streamStartTime = Date.now(); let receivedAnyStreamMessage = false; const STREAM_HEARTBEAT_MS = 15_000; const streamHeartbeat = setInterval(() => { if (receivedAnyStreamMessage) return; const elapsedSeconds = Math.round((Date.now() - streamStartTime) / 1000); logger.info( `Waiting for first model response for feature ${featureId} (${elapsedSeconds}s elapsed)...` ); }, STREAM_HEARTBEAT_MS); // Wrap stream processing in try/finally to ensure timeout cleanup on any error/abort try { streamLoop: for await (const msg of stream) { receivedAnyStreamMessage = true; // Log raw stream event for debugging appendRawEvent(msg); logger.info(`Stream message received:`, msg.type, msg.subtype || ''); if (msg.type === 'assistant' && msg.message?.content) { for (const block of msg.message.content) { if (block.type === 'text') { const newText = block.text || ''; // Skip empty text if (!newText) continue; // Note: Cursor-specific dedup (duplicate blocks, accumulated text) is now // handled in CursorProvider.deduplicateTextBlocks() for cleaner separation // Only add separator when we're at a natural paragraph break: // - Previous text ends with sentence terminator AND new text starts a new thought // - Don't add separators mid-word or mid-sentence (for streaming providers like Cursor) if (responseText.length > 0 && newText.length > 0) { const lastChar = responseText.slice(-1); const endsWithSentence = /[.!?:]\s*$/.test(responseText); const endsWithNewline = /\n\s*$/.test(responseText); const startsNewParagraph = /^[\n#\-*>]/.test(newText); // Add paragraph break only at natural boundaries if ( !endsWithNewline && (endsWithSentence || startsNewParagraph) && !/[a-zA-Z0-9]/.test(lastChar) // Not mid-word ) { responseText += '\n\n'; } } responseText += newText; // Check for authentication errors in the response if ( block.text && (block.text.includes('Invalid API key') || block.text.includes('authentication_failed') || block.text.includes('Fix external API key')) ) { throw new Error( 'Authentication failed: Invalid or expired API key. ' + "Please check your ANTHROPIC_API_KEY, or run 'claude login' to re-authenticate." ); } // Schedule incremental file write (debounced) scheduleWrite(); // Check for [SPEC_GENERATED] marker in planning modes (spec or full) if ( planningModeRequiresApproval && !specDetected && responseText.includes('[SPEC_GENERATED]') ) { specDetected = true; // Extract plan content (everything before the marker) const markerIndex = responseText.indexOf('[SPEC_GENERATED]'); const planContent = responseText.substring(0, markerIndex).trim(); // Parse tasks from the generated spec (for spec and full modes) // Use let since we may need to update this after plan revision let parsedTasks = parseTasksFromSpec(planContent); const tasksTotal = parsedTasks.length; logger.info(`Parsed ${tasksTotal} tasks from spec for feature ${featureId}`); if (parsedTasks.length > 0) { logger.info(`Tasks: ${parsedTasks.map((t) => t.id).join(', ')}`); } // Update planSpec status to 'generated' and save content with parsed tasks await this.updateFeaturePlanSpec(projectPath, featureId, { status: 'generated', content: planContent, version: 1, generatedAt: new Date().toISOString(), reviewedByUser: false, tasks: parsedTasks, tasksTotal, tasksCompleted: 0, }); let approvedPlanContent = planContent; let userFeedback: string | undefined; let currentPlanContent = planContent; let planVersion = 1; // Only pause for approval if requirePlanApproval is true if (requiresApproval) { // ======================================== // PLAN REVISION LOOP // Keep regenerating plan until user approves // ======================================== let planApproved = false; while (!planApproved) { logger.info( `Spec v${planVersion} generated for feature ${featureId}, waiting for approval` ); // CRITICAL: Register pending approval BEFORE emitting event const approvalPromise = this.waitForPlanApproval(featureId, projectPath); // Emit plan_approval_required event this.emitAutoModeEvent('plan_approval_required', { featureId, projectPath, planContent: currentPlanContent, planningMode, planVersion, }); // Wait for user response try { const approvalResult = await approvalPromise; if (approvalResult.approved) { // User approved the plan logger.info(`Plan v${planVersion} approved for feature ${featureId}`); planApproved = true; // If user provided edits, use the edited version if (approvalResult.editedPlan) { approvedPlanContent = approvalResult.editedPlan; await this.updateFeaturePlanSpec(projectPath, featureId, { content: approvalResult.editedPlan, }); } else { approvedPlanContent = currentPlanContent; } // Capture any additional feedback for implementation userFeedback = approvalResult.feedback; // Emit approval event this.emitAutoModeEvent('plan_approved', { featureId, projectPath, hasEdits: !!approvalResult.editedPlan, planVersion, }); } else { // User rejected - check if they provided feedback for revision const hasFeedback = approvalResult.feedback && approvalResult.feedback.trim().length > 0; const hasEdits = approvalResult.editedPlan && approvalResult.editedPlan.trim().length > 0; if (!hasFeedback && !hasEdits) { // No feedback or edits = explicit cancel logger.info( `Plan rejected without feedback for feature ${featureId}, cancelling` ); throw new Error('Plan cancelled by user'); } // User wants revisions - regenerate the plan logger.info( `Plan v${planVersion} rejected with feedback for feature ${featureId}, regenerating...` ); planVersion++; // Emit revision event this.emitAutoModeEvent('plan_revision_requested', { featureId, projectPath, feedback: approvalResult.feedback, hasEdits: !!hasEdits, planVersion, }); // Build revision prompt let revisionPrompt = `The user has requested revisions to the plan/specification. ## Previous Plan (v${planVersion - 1}) ${hasEdits ? approvalResult.editedPlan : currentPlanContent} ## User Feedback ${approvalResult.feedback || 'Please revise the plan based on the edits above.'} ## Instructions Please regenerate the specification incorporating the user's feedback. Keep the same format with the \`\`\`tasks block for task definitions. After generating the revised spec, output: "[SPEC_GENERATED] Please review the revised specification above." `; // Update status to regenerating await this.updateFeaturePlanSpec(projectPath, featureId, { status: 'generating', version: planVersion, }); // Make revision call const revisionStream = provider.executeQuery({ prompt: revisionPrompt, model: bareModel, maxTurns: maxTurns || 100, cwd: workDir, allowedTools: allowedTools, abortController, mcpServers: Object.keys(mcpServers).length > 0 ? mcpServers : undefined, }); let revisionText = ''; for await (const msg of revisionStream) { if (msg.type === 'assistant' && msg.message?.content) { for (const block of msg.message.content) { if (block.type === 'text') { revisionText += block.text || ''; this.emitAutoModeEvent('auto_mode_progress', { featureId, content: block.text, }); } } } else if (msg.type === 'error') { throw new Error(msg.error || 'Error during plan revision'); } else if (msg.type === 'result' && msg.subtype === 'success') { revisionText += msg.result || ''; } } // Extract new plan content const markerIndex = revisionText.indexOf('[SPEC_GENERATED]'); if (markerIndex > 0) { currentPlanContent = revisionText.substring(0, markerIndex).trim(); } else { currentPlanContent = revisionText.trim(); } // Re-parse tasks from revised plan const revisedTasks = parseTasksFromSpec(currentPlanContent); logger.info(`Revised plan has ${revisedTasks.length} tasks`); // Update planSpec with revised content await this.updateFeaturePlanSpec(projectPath, featureId, { status: 'generated', content: currentPlanContent, version: planVersion, tasks: revisedTasks, tasksTotal: revisedTasks.length, tasksCompleted: 0, }); // Update parsedTasks for implementation parsedTasks = revisedTasks; responseText += revisionText; } } catch (error) { if ((error as Error).message.includes('cancelled')) { throw error; } throw new Error(`Plan approval failed: ${(error as Error).message}`); } } } else { // Auto-approve: requirePlanApproval is false, just continue without pausing logger.info( `Spec generated for feature ${featureId}, auto-approving (requirePlanApproval=false)` ); // Emit info event for frontend this.emitAutoModeEvent('plan_auto_approved', { featureId, projectPath, planContent, planningMode, }); approvedPlanContent = planContent; } // CRITICAL: After approval, we need to make a second call to continue implementation // The agent is waiting for "approved" - we need to send it and continue logger.info( `Making continuation call after plan approval for feature ${featureId}` ); // Update planSpec status to approved (handles both manual and auto-approval paths) await this.updateFeaturePlanSpec(projectPath, featureId, { status: 'approved', approvedAt: new Date().toISOString(), reviewedByUser: requiresApproval, }); // ======================================== // MULTI-AGENT TASK EXECUTION // Each task gets its own focused agent call // ======================================== if (parsedTasks.length > 0) { logger.info( `Starting multi-agent execution: ${parsedTasks.length} tasks for feature ${featureId}` ); // Execute each task with a separate agent for (let taskIndex = 0; taskIndex < parsedTasks.length; taskIndex++) { const task = parsedTasks[taskIndex]; // Check for abort if (abortController.signal.aborted) { throw new Error('Feature execution aborted'); } // Emit task started logger.info(`Starting task ${task.id}: ${task.description}`); this.emitAutoModeEvent('auto_mode_task_started', { featureId, projectPath, taskId: task.id, taskDescription: task.description, taskIndex, tasksTotal: parsedTasks.length, }); // Update planSpec with current task await this.updateFeaturePlanSpec(projectPath, featureId, { currentTaskId: task.id, }); // Build focused prompt for this specific task const taskPrompt = this.buildTaskPrompt( task, parsedTasks, taskIndex, approvedPlanContent, userFeedback ); // Execute task with dedicated agent const taskStream = provider.executeQuery({ prompt: taskPrompt, model: bareModel, maxTurns: Math.min(maxTurns || 100, 50), // Limit turns per task cwd: workDir, allowedTools: allowedTools, abortController, mcpServers: Object.keys(mcpServers).length > 0 ? mcpServers : undefined, }); let taskOutput = ''; // Process task stream for await (const msg of taskStream) { if (msg.type === 'assistant' && msg.message?.content) { for (const block of msg.message.content) { if (block.type === 'text') { taskOutput += block.text || ''; responseText += block.text || ''; this.emitAutoModeEvent('auto_mode_progress', { featureId, content: block.text, }); } else if (block.type === 'tool_use') { this.emitAutoModeEvent('auto_mode_tool', { featureId, tool: block.name, input: block.input, }); } } } else if (msg.type === 'error') { throw new Error(msg.error || `Error during task ${task.id}`); } else if (msg.type === 'result' && msg.subtype === 'success') { taskOutput += msg.result || ''; responseText += msg.result || ''; } } // Emit task completed logger.info(`Task ${task.id} completed for feature ${featureId}`); this.emitAutoModeEvent('auto_mode_task_complete', { featureId, projectPath, taskId: task.id, tasksCompleted: taskIndex + 1, tasksTotal: parsedTasks.length, }); // Update planSpec with progress await this.updateFeaturePlanSpec(projectPath, featureId, { tasksCompleted: taskIndex + 1, }); // Check for phase completion (group tasks by phase) if (task.phase) { const nextTask = parsedTasks[taskIndex + 1]; if (!nextTask || nextTask.phase !== task.phase) { // Phase changed, emit phase complete const phaseMatch = task.phase.match(/Phase\s*(\d+)/i); if (phaseMatch) { this.emitAutoModeEvent('auto_mode_phase_complete', { featureId, projectPath, phaseNumber: parseInt(phaseMatch[1], 10), }); } } } } logger.info(`All ${parsedTasks.length} tasks completed for feature ${featureId}`); } else { // No parsed tasks - fall back to single-agent execution logger.info( `No parsed tasks, using single-agent execution for feature ${featureId}` ); const continuationPrompt = `The plan/specification has been approved. Now implement it. ${userFeedback ? `\n## User Feedback\n${userFeedback}\n` : ''} ## Approved Plan ${approvedPlanContent} ## Instructions Implement all the changes described in the plan above.`; const continuationStream = provider.executeQuery({ prompt: continuationPrompt, model: bareModel, maxTurns: maxTurns, cwd: workDir, allowedTools: allowedTools, abortController, mcpServers: Object.keys(mcpServers).length > 0 ? mcpServers : undefined, }); for await (const msg of continuationStream) { if (msg.type === 'assistant' && msg.message?.content) { for (const block of msg.message.content) { if (block.type === 'text') { responseText += block.text || ''; this.emitAutoModeEvent('auto_mode_progress', { featureId, content: block.text, }); } else if (block.type === 'tool_use') { this.emitAutoModeEvent('auto_mode_tool', { featureId, tool: block.name, input: block.input, }); } } } else if (msg.type === 'error') { throw new Error(msg.error || 'Unknown error during implementation'); } else if (msg.type === 'result' && msg.subtype === 'success') { responseText += msg.result || ''; } } } logger.info(`Implementation completed for feature ${featureId}`); // Exit the original stream loop since continuation is done break streamLoop; } // Only emit progress for non-marker text (marker was already handled above) if (!specDetected) { logger.info( `Emitting progress event for ${featureId}, content length: ${block.text?.length || 0}` ); this.emitAutoModeEvent('auto_mode_progress', { featureId, content: block.text, }); } } else if (block.type === 'tool_use') { // Emit event for real-time UI this.emitAutoModeEvent('auto_mode_tool', { featureId, tool: block.name, input: block.input, }); // Also add to file output for persistence if (responseText.length > 0 && !responseText.endsWith('\n')) { responseText += '\n'; } responseText += `\nšŸ”§ Tool: ${block.name}\n`; if (block.input) { responseText += `Input: ${JSON.stringify(block.input, null, 2)}\n`; } scheduleWrite(); } } } else if (msg.type === 'error') { // Handle error messages throw new Error(msg.error || 'Unknown error'); } else if (msg.type === 'result' && msg.subtype === 'success') { // Don't replace responseText - the accumulated content is the full history // The msg.result is just a summary which would lose all tool use details // Just ensure final write happens scheduleWrite(); } } // Final write - ensure all accumulated content is saved (on success path) await writeToFile(); // Flush remaining raw output (only if enabled, on success path) if (enableRawOutput && rawOutputLines.length > 0) { try { await secureFs.mkdir(path.dirname(rawOutputPath), { recursive: true }); await secureFs.appendFile(rawOutputPath, rawOutputLines.join('\n') + '\n'); } catch (error) { logger.error(`Failed to write final raw output for ${featureId}:`, error); } } } finally { clearInterval(streamHeartbeat); // ALWAYS clear pending timeouts to prevent memory leaks // This runs on success, error, or abort if (writeTimeout) { clearTimeout(writeTimeout); writeTimeout = null; } if (rawWriteTimeout) { clearTimeout(rawWriteTimeout); rawWriteTimeout = null; } } } private async executeFeatureWithContext( projectPath: string, featureId: string, context: string, useWorktrees: boolean ): Promise { const feature = await this.loadFeature(projectPath, featureId); if (!feature) { throw new Error(`Feature ${featureId} not found`); } const prompt = `## Continuing Feature Implementation ${this.buildFeaturePrompt(feature)} ## Previous Context The following is the output from a previous implementation attempt. Continue from where you left off: ${context} ## Instructions Review the previous work and continue the implementation. If the feature appears complete, verify it works correctly.`; return this.executeFeature(projectPath, featureId, useWorktrees, false, undefined, { continuationPrompt: prompt, }); } /** * Build a focused prompt for executing a single task. * Each task gets minimal context to keep the agent focused. */ private buildTaskPrompt( task: ParsedTask, allTasks: ParsedTask[], taskIndex: number, planContent: string, userFeedback?: string ): string { const completedTasks = allTasks.slice(0, taskIndex); const remainingTasks = allTasks.slice(taskIndex + 1); let prompt = `# Task Execution: ${task.id} You are executing a specific task as part of a larger feature implementation. ## Your Current Task **Task ID:** ${task.id} **Description:** ${task.description} ${task.filePath ? `**Primary File:** ${task.filePath}` : ''} ${task.phase ? `**Phase:** ${task.phase}` : ''} ## Context `; // Show what's already done if (completedTasks.length > 0) { prompt += `### Already Completed (${completedTasks.length} tasks) ${completedTasks.map((t) => `- [x] ${t.id}: ${t.description}`).join('\n')} `; } // Show remaining tasks if (remainingTasks.length > 0) { prompt += `### Coming Up Next (${remainingTasks.length} tasks remaining) ${remainingTasks .slice(0, 3) .map((t) => `- [ ] ${t.id}: ${t.description}`) .join('\n')} ${remainingTasks.length > 3 ? `... and ${remainingTasks.length - 3} more tasks` : ''} `; } // Add user feedback if any if (userFeedback) { prompt += `### User Feedback ${userFeedback} `; } // Add relevant excerpt from plan (just the task-related part to save context) prompt += `### Reference: Full Plan
${planContent}
## Instructions 1. Focus ONLY on completing task ${task.id}: "${task.description}" 2. Do not work on other tasks 3. Use the existing codebase patterns 4. When done, summarize what you implemented Begin implementing task ${task.id} now.`; return prompt; } /** * Emit an auto-mode event wrapped in the correct format for the client. * All auto-mode events are sent as type "auto-mode:event" with the actual * event type and data in the payload. */ private emitAutoModeEvent(eventType: string, data: Record): void { // Wrap the event in auto-mode:event format expected by the client this.events.emit('auto-mode:event', { type: eventType, ...data, }); } private sleep(ms: number, signal?: AbortSignal): Promise { return new Promise((resolve, reject) => { const timeout = setTimeout(resolve, ms); // If signal is provided and already aborted, reject immediately if (signal?.aborted) { clearTimeout(timeout); reject(new Error('Aborted')); return; } // Listen for abort signal if (signal) { signal.addEventListener( 'abort', () => { clearTimeout(timeout); reject(new Error('Aborted')); }, { once: true } ); } }); } // ============================================================================ // Execution State Persistence - For recovery after server restart // ============================================================================ /** * Save execution state to disk for recovery after server restart */ private async saveExecutionState(projectPath: string): Promise { try { await ensureAutomakerDir(projectPath); const statePath = getExecutionStatePath(projectPath); const state: ExecutionState = { version: 1, autoLoopWasRunning: this.autoLoopRunning, maxConcurrency: this.config?.maxConcurrency ?? 3, projectPath, runningFeatureIds: Array.from(this.runningFeatures.keys()), savedAt: new Date().toISOString(), }; await secureFs.writeFile(statePath, JSON.stringify(state, null, 2), 'utf-8'); logger.info(`Saved execution state: ${state.runningFeatureIds.length} running features`); } catch (error) { logger.error('Failed to save execution state:', error); } } /** * Load execution state from disk */ private async loadExecutionState(projectPath: string): Promise { try { const statePath = getExecutionStatePath(projectPath); const content = (await secureFs.readFile(statePath, 'utf-8')) as string; const state = JSON.parse(content) as ExecutionState; return state; } catch (error) { if ((error as NodeJS.ErrnoException).code !== 'ENOENT') { logger.error('Failed to load execution state:', error); } return DEFAULT_EXECUTION_STATE; } } /** * Clear execution state (called on successful shutdown or when auto-loop stops) */ private async clearExecutionState(projectPath: string): Promise { try { const statePath = getExecutionStatePath(projectPath); await secureFs.unlink(statePath); logger.info('Cleared execution state'); } catch (error) { if ((error as NodeJS.ErrnoException).code !== 'ENOENT') { logger.error('Failed to clear execution state:', error); } } } /** * Check for and resume interrupted features after server restart * This should be called during server initialization */ async resumeInterruptedFeatures(projectPath: string): Promise { logger.info('Checking for interrupted features to resume...'); // Load all features and find those that were interrupted const featuresDir = getFeaturesDir(projectPath); try { const entries = await secureFs.readdir(featuresDir, { withFileTypes: true }); const interruptedFeatures: Feature[] = []; for (const entry of entries) { if (entry.isDirectory()) { const featurePath = path.join(featuresDir, entry.name, 'feature.json'); try { const data = (await secureFs.readFile(featurePath, 'utf-8')) as string; const feature = JSON.parse(data) as Feature; // Check if feature was interrupted (in_progress or pipeline_*) if ( feature.status === 'in_progress' || (feature.status && feature.status.startsWith('pipeline_')) ) { // Verify it has existing context (agent-output.md) const featureDir = getFeatureDir(projectPath, feature.id); const contextPath = path.join(featureDir, 'agent-output.md'); try { await secureFs.access(contextPath); interruptedFeatures.push(feature); logger.info( `Found interrupted feature: ${feature.id} (${feature.title}) - status: ${feature.status}` ); } catch { // No context file, skip this feature - it will be restarted fresh logger.info(`Interrupted feature ${feature.id} has no context, will restart fresh`); } } } catch { // Skip invalid features } } } if (interruptedFeatures.length === 0) { logger.info('No interrupted features found'); return; } logger.info(`Found ${interruptedFeatures.length} interrupted feature(s) to resume`); // Emit event to notify UI this.emitAutoModeEvent('auto_mode_resuming_features', { message: `Resuming ${interruptedFeatures.length} interrupted feature(s) after server restart`, projectPath, featureIds: interruptedFeatures.map((f) => f.id), features: interruptedFeatures.map((f) => ({ id: f.id, title: f.title, status: f.status, })), }); // Resume each interrupted feature for (const feature of interruptedFeatures) { try { logger.info(`Resuming feature: ${feature.id} (${feature.title})`); // Use resumeFeature which will detect the existing context and continue await this.resumeFeature(projectPath, feature.id, true); } catch (error) { logger.error(`Failed to resume feature ${feature.id}:`, error); // Continue with other features } } } catch (error) { if ((error as NodeJS.ErrnoException).code === 'ENOENT') { logger.info('No features directory found, nothing to resume'); } else { logger.error('Error checking for interrupted features:', error); } } } /** * Extract and record learnings from a completed feature * Uses a quick Claude call to identify important decisions and patterns */ private async recordLearningsFromFeature( projectPath: string, feature: Feature, agentOutput: string ): Promise { if (!agentOutput || agentOutput.length < 100) { // Not enough output to extract learnings from console.log( `[AutoMode] Skipping learning extraction - output too short (${agentOutput?.length || 0} chars)` ); return; } console.log( `[AutoMode] Extracting learnings from feature "${feature.title}" (${agentOutput.length} chars)` ); // Limit output to avoid token limits const truncatedOutput = agentOutput.length > 10000 ? agentOutput.slice(-10000) : agentOutput; const userPrompt = `You are an Architecture Decision Record (ADR) extractor. Analyze this implementation and return ONLY JSON with learnings. No explanations. Feature: "${feature.title}" Implementation log: ${truncatedOutput} Extract MEANINGFUL learnings - not obvious things. For each, capture: - DECISIONS: Why this approach vs alternatives? What would break if changed? - GOTCHAS: What was unexpected? What's the root cause? How to avoid? - PATTERNS: Why this pattern? What problem does it solve? Trade-offs? JSON format ONLY (no markdown, no text): {"learnings": [{ "category": "architecture|api|ui|database|auth|testing|performance|security|gotchas", "type": "decision|gotcha|pattern", "content": "What was done/learned", "context": "Problem being solved or situation faced", "why": "Reasoning - why this approach", "rejected": "Alternative considered and why rejected", "tradeoffs": "What became easier/harder", "breaking": "What breaks if this is changed/removed" }]} IMPORTANT: Only include NON-OBVIOUS learnings with real reasoning. Skip trivial patterns. If nothing notable: {"learnings": []}`; try { // Import query dynamically to avoid circular dependencies const { query } = await import('@anthropic-ai/claude-agent-sdk'); // Get model from phase settings const settings = await this.settingsService?.getGlobalSettings(); const phaseModelEntry = settings?.phaseModels?.memoryExtractionModel || DEFAULT_PHASE_MODELS.memoryExtractionModel; const { model } = resolvePhaseModel(phaseModelEntry); const stream = query({ prompt: userPrompt, options: { model, maxTurns: 1, allowedTools: [], permissionMode: 'acceptEdits', systemPrompt: 'You are a JSON extraction assistant. You MUST respond with ONLY valid JSON, no explanations, no markdown, no other text. Extract learnings from the provided implementation context and return them as JSON.', }, }); // Extract text from stream let responseText = ''; for await (const msg of stream) { if (msg.type === 'assistant' && msg.message?.content) { for (const block of msg.message.content) { if (block.type === 'text' && block.text) { responseText += block.text; } } } else if (msg.type === 'result' && msg.subtype === 'success') { responseText = msg.result || responseText; } } console.log(`[AutoMode] Learning extraction response: ${responseText.length} chars`); console.log(`[AutoMode] Response preview: ${responseText.substring(0, 300)}`); // Parse the response - handle JSON in markdown code blocks or raw let jsonStr: string | null = null; // First try to find JSON in markdown code blocks const codeBlockMatch = responseText.match(/```(?:json)?\s*(\{[\s\S]*?\})\s*```/); if (codeBlockMatch) { console.log('[AutoMode] Found JSON in code block'); jsonStr = codeBlockMatch[1]; } else { // Fall back to finding balanced braces containing "learnings" // Use a more precise approach: find the opening brace before "learnings" const learningsIndex = responseText.indexOf('"learnings"'); if (learningsIndex !== -1) { // Find the opening brace before "learnings" let braceStart = responseText.lastIndexOf('{', learningsIndex); if (braceStart !== -1) { // Find matching closing brace let braceCount = 0; let braceEnd = -1; for (let i = braceStart; i < responseText.length; i++) { if (responseText[i] === '{') braceCount++; if (responseText[i] === '}') braceCount--; if (braceCount === 0) { braceEnd = i; break; } } if (braceEnd !== -1) { jsonStr = responseText.substring(braceStart, braceEnd + 1); } } } } if (!jsonStr) { console.log('[AutoMode] Could not extract JSON from response'); return; } console.log(`[AutoMode] Extracted JSON: ${jsonStr.substring(0, 200)}`); let parsed: { learnings?: unknown[] }; try { parsed = JSON.parse(jsonStr); } catch { console.warn('[AutoMode] Failed to parse learnings JSON:', jsonStr.substring(0, 200)); return; } if (!parsed.learnings || !Array.isArray(parsed.learnings)) { console.log('[AutoMode] No learnings array in parsed response'); return; } console.log(`[AutoMode] Found ${parsed.learnings.length} potential learnings`); // Valid learning types const validTypes = new Set(['decision', 'learning', 'pattern', 'gotcha']); // Record each learning for (const item of parsed.learnings) { // Validate required fields with proper type narrowing if (!item || typeof item !== 'object') continue; const learning = item as Record; if ( !learning.category || typeof learning.category !== 'string' || !learning.content || typeof learning.content !== 'string' || !learning.content.trim() ) { continue; } // Validate and normalize type const typeStr = typeof learning.type === 'string' ? learning.type : 'learning'; const learningType = validTypes.has(typeStr) ? (typeStr as 'decision' | 'learning' | 'pattern' | 'gotcha') : 'learning'; console.log( `[AutoMode] Appending learning: category=${learning.category}, type=${learningType}` ); await appendLearning( projectPath, { category: learning.category, type: learningType, content: learning.content.trim(), context: typeof learning.context === 'string' ? learning.context : undefined, why: typeof learning.why === 'string' ? learning.why : undefined, rejected: typeof learning.rejected === 'string' ? learning.rejected : undefined, tradeoffs: typeof learning.tradeoffs === 'string' ? learning.tradeoffs : undefined, breaking: typeof learning.breaking === 'string' ? learning.breaking : undefined, }, secureFs as Parameters[2] ); } const validLearnings = parsed.learnings.filter( (l) => l && typeof l === 'object' && (l as Record).content ); if (validLearnings.length > 0) { console.log( `[AutoMode] Recorded ${parsed.learnings.length} learning(s) from feature ${feature.id}` ); } } catch (error) { console.warn(`[AutoMode] Failed to extract learnings from feature ${feature.id}:`, error); } } }