mirror of
https://github.com/leonvanzyl/autocoder.git
synced 2026-01-30 14:22:04 +00:00
When all features pass, the orchestrator continued spawning testing agents for 10+ minutes, wasting tokens on unnecessary regression tests. Added a check for get_all_complete() to prevent this. Fixes: leonvanzyl/autocoder#66 Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
1244 lines
52 KiB
Python
1244 lines
52 KiB
Python
"""
|
|
Parallel Orchestrator
|
|
=====================
|
|
|
|
Unified orchestrator that handles all agent lifecycle:
|
|
- Initialization: Creates features from app_spec if needed
|
|
- Coding agents: Implement features one at a time
|
|
- Testing agents: Regression test passing features (optional)
|
|
|
|
Uses dependency-aware scheduling to ensure features are only started when their
|
|
dependencies are satisfied.
|
|
|
|
Usage:
|
|
# Entry point (always uses orchestrator)
|
|
python autonomous_agent_demo.py --project-dir my-app --concurrency 3
|
|
|
|
# Direct orchestrator usage
|
|
python parallel_orchestrator.py --project-dir my-app --max-concurrency 3
|
|
"""
|
|
|
|
import asyncio
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
import threading
|
|
from datetime import datetime, timezone
|
|
from pathlib import Path
|
|
from typing import Callable, Literal
|
|
|
|
from api.database import Feature, create_database
|
|
from api.dependency_resolver import are_dependencies_satisfied, compute_scheduling_scores
|
|
from progress import has_features
|
|
from server.utils.process_utils import kill_process_tree
|
|
|
|
# Root directory of autocoder (where this script and autonomous_agent_demo.py live)
|
|
AUTOCODER_ROOT = Path(__file__).parent.resolve()
|
|
|
|
# Debug log file path
|
|
DEBUG_LOG_FILE = AUTOCODER_ROOT / "orchestrator_debug.log"
|
|
|
|
|
|
class DebugLogger:
|
|
"""Thread-safe debug logger that writes to a file."""
|
|
|
|
def __init__(self, log_file: Path = DEBUG_LOG_FILE):
|
|
self.log_file = log_file
|
|
self._lock = threading.Lock()
|
|
self._session_started = False
|
|
# DON'T clear on import - only mark session start when run_loop begins
|
|
|
|
def start_session(self):
|
|
"""Mark the start of a new orchestrator session. Clears previous logs."""
|
|
with self._lock:
|
|
self._session_started = True
|
|
with open(self.log_file, "w") as f:
|
|
f.write(f"=== Orchestrator Debug Log Started: {datetime.now().isoformat()} ===\n")
|
|
f.write(f"=== PID: {os.getpid()} ===\n\n")
|
|
|
|
def log(self, category: str, message: str, **kwargs):
|
|
"""Write a timestamped log entry."""
|
|
timestamp = datetime.now().strftime("%H:%M:%S.%f")[:-3]
|
|
with self._lock:
|
|
with open(self.log_file, "a") as f:
|
|
f.write(f"[{timestamp}] [{category}] {message}\n")
|
|
for key, value in kwargs.items():
|
|
f.write(f" {key}: {value}\n")
|
|
f.write("\n")
|
|
|
|
def section(self, title: str):
|
|
"""Write a section header."""
|
|
with self._lock:
|
|
with open(self.log_file, "a") as f:
|
|
f.write(f"\n{'='*60}\n")
|
|
f.write(f" {title}\n")
|
|
f.write(f"{'='*60}\n\n")
|
|
|
|
|
|
# Global debug logger instance
|
|
debug_log = DebugLogger()
|
|
|
|
|
|
def _dump_database_state(session, label: str = ""):
|
|
"""Helper to dump full database state to debug log."""
|
|
from api.database import Feature
|
|
all_features = session.query(Feature).all()
|
|
|
|
passing = [f for f in all_features if f.passes]
|
|
in_progress = [f for f in all_features if f.in_progress and not f.passes]
|
|
pending = [f for f in all_features if not f.passes and not f.in_progress]
|
|
|
|
debug_log.log("DB_DUMP", f"Full database state {label}",
|
|
total_features=len(all_features),
|
|
passing_count=len(passing),
|
|
passing_ids=[f.id for f in passing],
|
|
in_progress_count=len(in_progress),
|
|
in_progress_ids=[f.id for f in in_progress],
|
|
pending_count=len(pending),
|
|
pending_ids=[f.id for f in pending[:10]]) # First 10 pending only
|
|
|
|
# =============================================================================
|
|
# Process Limits
|
|
# =============================================================================
|
|
# These constants bound the number of concurrent agent processes to prevent
|
|
# resource exhaustion (memory, CPU, API rate limits).
|
|
#
|
|
# MAX_PARALLEL_AGENTS: Max concurrent coding agents (each is a Claude session)
|
|
# MAX_TOTAL_AGENTS: Hard limit on total child processes (coding + testing)
|
|
#
|
|
# Expected process count during normal operation:
|
|
# - 1 orchestrator process (this script)
|
|
# - Up to MAX_PARALLEL_AGENTS coding agents
|
|
# - Up to max_concurrency testing agents
|
|
# - Total never exceeds MAX_TOTAL_AGENTS + 1 (including orchestrator)
|
|
#
|
|
# Stress test verification:
|
|
# 1. Note baseline: tasklist | findstr python | find /c /v ""
|
|
# 2. Run: python autonomous_agent_demo.py --project-dir test --parallel --max-concurrency 5
|
|
# 3. During run: count should never exceed baseline + 11 (1 orchestrator + 10 agents)
|
|
# 4. After stop: should return to baseline
|
|
# =============================================================================
|
|
MAX_PARALLEL_AGENTS = 5
|
|
MAX_TOTAL_AGENTS = 10
|
|
DEFAULT_CONCURRENCY = 3
|
|
POLL_INTERVAL = 5 # seconds between checking for ready features
|
|
MAX_FEATURE_RETRIES = 3 # Maximum times to retry a failed feature
|
|
INITIALIZER_TIMEOUT = 1800 # 30 minutes timeout for initializer
|
|
|
|
|
|
class ParallelOrchestrator:
|
|
"""Orchestrates parallel execution of independent features.
|
|
|
|
Process bounds:
|
|
- Up to MAX_PARALLEL_AGENTS (5) coding agents concurrently
|
|
- Up to max_concurrency testing agents concurrently
|
|
- Hard limit of MAX_TOTAL_AGENTS (10) total child processes
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
project_dir: Path,
|
|
max_concurrency: int = DEFAULT_CONCURRENCY,
|
|
model: str = None,
|
|
yolo_mode: bool = False,
|
|
testing_agent_ratio: int = 1,
|
|
on_output: Callable[[int, str], None] = None,
|
|
on_status: Callable[[int, str], None] = None,
|
|
):
|
|
"""Initialize the orchestrator.
|
|
|
|
Args:
|
|
project_dir: Path to the project directory
|
|
max_concurrency: Maximum number of concurrent coding agents (1-5).
|
|
Also caps testing agents at the same limit.
|
|
model: Claude model to use (or None for default)
|
|
yolo_mode: Whether to run in YOLO mode (skip testing agents entirely)
|
|
testing_agent_ratio: Number of regression testing agents to maintain (0-3).
|
|
0 = disabled, 1-3 = maintain that many testing agents running independently.
|
|
on_output: Callback for agent output (feature_id, line)
|
|
on_status: Callback for agent status changes (feature_id, status)
|
|
"""
|
|
self.project_dir = project_dir
|
|
self.max_concurrency = min(max(max_concurrency, 1), MAX_PARALLEL_AGENTS)
|
|
self.model = model
|
|
self.yolo_mode = yolo_mode
|
|
self.testing_agent_ratio = min(max(testing_agent_ratio, 0), 3) # Clamp 0-3
|
|
self.on_output = on_output
|
|
self.on_status = on_status
|
|
|
|
# Thread-safe state
|
|
self._lock = threading.Lock()
|
|
# Coding agents: feature_id -> process
|
|
self.running_coding_agents: dict[int, subprocess.Popen] = {}
|
|
# Testing agents: feature_id -> process (feature being tested)
|
|
self.running_testing_agents: dict[int, subprocess.Popen] = {}
|
|
# Legacy alias for backward compatibility
|
|
self.running_agents = self.running_coding_agents
|
|
self.abort_events: dict[int, threading.Event] = {}
|
|
self.is_running = False
|
|
|
|
# Track feature failures to prevent infinite retry loops
|
|
self._failure_counts: dict[int, int] = {}
|
|
|
|
# Session tracking for logging/debugging
|
|
self.session_start_time: datetime = None
|
|
|
|
# Event signaled when any agent completes, allowing the main loop to wake
|
|
# immediately instead of waiting for the full POLL_INTERVAL timeout.
|
|
# This reduces latency when spawning the next feature after completion.
|
|
self._agent_completed_event: asyncio.Event = None # Created in run_loop
|
|
self._event_loop: asyncio.AbstractEventLoop = None # Stored for thread-safe signaling
|
|
|
|
# Database session for this orchestrator
|
|
self._engine, self._session_maker = create_database(project_dir)
|
|
|
|
def get_session(self):
|
|
"""Get a new database session."""
|
|
return self._session_maker()
|
|
|
|
def _get_random_passing_feature(self) -> int | None:
|
|
"""Get a random passing feature for regression testing (no claim needed).
|
|
|
|
Testing agents can test the same feature concurrently - it doesn't matter.
|
|
This simplifies the architecture by removing unnecessary coordination.
|
|
|
|
Returns the feature ID if available, None if no passing features exist.
|
|
"""
|
|
from sqlalchemy.sql.expression import func
|
|
|
|
session = self.get_session()
|
|
try:
|
|
# Find a passing feature that's not currently being coded
|
|
# Multiple testing agents can test the same feature - that's fine
|
|
feature = (
|
|
session.query(Feature)
|
|
.filter(Feature.passes == True)
|
|
.filter(Feature.in_progress == False) # Don't test while coding
|
|
.order_by(func.random())
|
|
.first()
|
|
)
|
|
return feature.id if feature else None
|
|
finally:
|
|
session.close()
|
|
|
|
def get_resumable_features(self) -> list[dict]:
|
|
"""Get features that were left in_progress from a previous session.
|
|
|
|
These are features where in_progress=True but passes=False, and they're
|
|
not currently being worked on by this orchestrator. This handles the case
|
|
where a previous session was interrupted before completing the feature.
|
|
"""
|
|
session = self.get_session()
|
|
try:
|
|
# Force fresh read from database to avoid stale cached data
|
|
# This is critical when agent subprocesses have committed changes
|
|
session.expire_all()
|
|
|
|
# Find features that are in_progress but not complete
|
|
stale = session.query(Feature).filter(
|
|
Feature.in_progress == True,
|
|
Feature.passes == False
|
|
).all()
|
|
|
|
resumable = []
|
|
for f in stale:
|
|
# Skip if already running in this orchestrator instance
|
|
with self._lock:
|
|
if f.id in self.running_coding_agents:
|
|
continue
|
|
# Skip if feature has failed too many times
|
|
if self._failure_counts.get(f.id, 0) >= MAX_FEATURE_RETRIES:
|
|
continue
|
|
resumable.append(f.to_dict())
|
|
|
|
# Sort by scheduling score (higher = first), then priority, then id
|
|
all_dicts = [f.to_dict() for f in session.query(Feature).all()]
|
|
scores = compute_scheduling_scores(all_dicts)
|
|
resumable.sort(key=lambda f: (-scores.get(f["id"], 0), f["priority"], f["id"]))
|
|
return resumable
|
|
finally:
|
|
session.close()
|
|
|
|
def get_ready_features(self) -> list[dict]:
|
|
"""Get features with satisfied dependencies, not already running."""
|
|
session = self.get_session()
|
|
try:
|
|
# Force fresh read from database to avoid stale cached data
|
|
# This is critical when agent subprocesses have committed changes
|
|
session.expire_all()
|
|
|
|
all_features = session.query(Feature).all()
|
|
all_dicts = [f.to_dict() for f in all_features]
|
|
|
|
# Pre-compute passing_ids once to avoid O(n^2) in the loop
|
|
passing_ids = {f.id for f in all_features if f.passes}
|
|
|
|
ready = []
|
|
skipped_reasons = {"passes": 0, "in_progress": 0, "running": 0, "failed": 0, "deps": 0}
|
|
for f in all_features:
|
|
if f.passes:
|
|
skipped_reasons["passes"] += 1
|
|
continue
|
|
if f.in_progress:
|
|
skipped_reasons["in_progress"] += 1
|
|
continue
|
|
# Skip if already running in this orchestrator
|
|
with self._lock:
|
|
if f.id in self.running_coding_agents:
|
|
skipped_reasons["running"] += 1
|
|
continue
|
|
# Skip if feature has failed too many times
|
|
if self._failure_counts.get(f.id, 0) >= MAX_FEATURE_RETRIES:
|
|
skipped_reasons["failed"] += 1
|
|
continue
|
|
# Check dependencies (pass pre-computed passing_ids)
|
|
if are_dependencies_satisfied(f.to_dict(), all_dicts, passing_ids):
|
|
ready.append(f.to_dict())
|
|
else:
|
|
skipped_reasons["deps"] += 1
|
|
|
|
# Sort by scheduling score (higher = first), then priority, then id
|
|
scores = compute_scheduling_scores(all_dicts)
|
|
ready.sort(key=lambda f: (-scores.get(f["id"], 0), f["priority"], f["id"]))
|
|
|
|
# Debug logging
|
|
passing = sum(1 for f in all_features if f.passes)
|
|
in_progress = sum(1 for f in all_features if f.in_progress and not f.passes)
|
|
print(
|
|
f"[DEBUG] get_ready_features: {len(ready)} ready, "
|
|
f"{passing} passing, {in_progress} in_progress, {len(all_features)} total",
|
|
flush=True
|
|
)
|
|
print(
|
|
f"[DEBUG] Skipped: {skipped_reasons['passes']} passing, {skipped_reasons['in_progress']} in_progress, "
|
|
f"{skipped_reasons['running']} running, {skipped_reasons['failed']} failed, {skipped_reasons['deps']} blocked by deps",
|
|
flush=True
|
|
)
|
|
|
|
# Log to debug file (but not every call to avoid spam)
|
|
debug_log.log("READY", "get_ready_features() called",
|
|
ready_count=len(ready),
|
|
ready_ids=[f['id'] for f in ready[:5]], # First 5 only
|
|
passing=passing,
|
|
in_progress=in_progress,
|
|
total=len(all_features),
|
|
skipped=skipped_reasons)
|
|
|
|
return ready
|
|
finally:
|
|
session.close()
|
|
|
|
def get_all_complete(self) -> bool:
|
|
"""Check if all features are complete or permanently failed.
|
|
|
|
Returns False if there are no features (initialization needed).
|
|
"""
|
|
session = self.get_session()
|
|
try:
|
|
# Force fresh read from database to avoid stale cached data
|
|
# This is critical when agent subprocesses have committed changes
|
|
session.expire_all()
|
|
|
|
all_features = session.query(Feature).all()
|
|
|
|
# No features = NOT complete, need initialization
|
|
if len(all_features) == 0:
|
|
return False
|
|
|
|
passing_count = 0
|
|
failed_count = 0
|
|
pending_count = 0
|
|
for f in all_features:
|
|
if f.passes:
|
|
passing_count += 1
|
|
continue # Completed successfully
|
|
if self._failure_counts.get(f.id, 0) >= MAX_FEATURE_RETRIES:
|
|
failed_count += 1
|
|
continue # Permanently failed, count as "done"
|
|
pending_count += 1
|
|
|
|
total = len(all_features)
|
|
is_complete = pending_count == 0
|
|
print(
|
|
f"[DEBUG] get_all_complete: {passing_count}/{total} passing, "
|
|
f"{failed_count} failed, {pending_count} pending -> {is_complete}",
|
|
flush=True
|
|
)
|
|
return is_complete
|
|
finally:
|
|
session.close()
|
|
|
|
def get_passing_count(self) -> int:
|
|
"""Get the number of passing features."""
|
|
session = self.get_session()
|
|
try:
|
|
session.expire_all()
|
|
return session.query(Feature).filter(Feature.passes == True).count()
|
|
finally:
|
|
session.close()
|
|
|
|
def _maintain_testing_agents(self) -> None:
|
|
"""Maintain the desired count of testing agents independently.
|
|
|
|
This runs every loop iteration and spawns testing agents as needed to maintain
|
|
the configured testing_agent_ratio. Testing agents run independently from
|
|
coding agents and continuously re-test passing features to catch regressions.
|
|
|
|
Multiple testing agents can test the same feature concurrently - this is
|
|
intentional and simplifies the architecture by removing claim coordination.
|
|
|
|
Stops spawning when:
|
|
- YOLO mode is enabled
|
|
- testing_agent_ratio is 0
|
|
- No passing features exist yet
|
|
"""
|
|
# Skip if testing is disabled
|
|
if self.yolo_mode or self.testing_agent_ratio == 0:
|
|
return
|
|
|
|
# No testing until there are passing features
|
|
passing_count = self.get_passing_count()
|
|
if passing_count == 0:
|
|
return
|
|
|
|
# Don't spawn testing agents if all features are already complete
|
|
if self.get_all_complete():
|
|
return
|
|
|
|
# Spawn testing agents one at a time, re-checking limits each time
|
|
# This avoids TOCTOU race by holding lock during the decision
|
|
while True:
|
|
# Check limits and decide whether to spawn (atomically)
|
|
with self._lock:
|
|
current_testing = len(self.running_testing_agents)
|
|
desired = self.testing_agent_ratio
|
|
total_agents = len(self.running_coding_agents) + current_testing
|
|
|
|
# Check if we need more testing agents
|
|
if current_testing >= desired:
|
|
return # Already at desired count
|
|
|
|
# Check hard limit on total agents
|
|
if total_agents >= MAX_TOTAL_AGENTS:
|
|
return # At max total agents
|
|
|
|
# We're going to spawn - log while still holding lock
|
|
spawn_index = current_testing + 1
|
|
debug_log.log("TESTING", f"Spawning testing agent ({spawn_index}/{desired})",
|
|
passing_count=passing_count)
|
|
|
|
# Spawn outside lock (I/O bound operation)
|
|
print(f"[DEBUG] Spawning testing agent ({spawn_index}/{desired})", flush=True)
|
|
self._spawn_testing_agent()
|
|
|
|
def start_feature(self, feature_id: int, resume: bool = False) -> tuple[bool, str]:
|
|
"""Start a single coding agent for a feature.
|
|
|
|
Args:
|
|
feature_id: ID of the feature to start
|
|
resume: If True, resume a feature that's already in_progress from a previous session
|
|
|
|
Returns:
|
|
Tuple of (success, message)
|
|
"""
|
|
with self._lock:
|
|
if feature_id in self.running_coding_agents:
|
|
return False, "Feature already running"
|
|
if len(self.running_coding_agents) >= self.max_concurrency:
|
|
return False, "At max concurrency"
|
|
# Enforce hard limit on total agents (coding + testing)
|
|
total_agents = len(self.running_coding_agents) + len(self.running_testing_agents)
|
|
if total_agents >= MAX_TOTAL_AGENTS:
|
|
return False, f"At max total agents ({total_agents}/{MAX_TOTAL_AGENTS})"
|
|
|
|
# Mark as in_progress in database (or verify it's resumable)
|
|
session = self.get_session()
|
|
try:
|
|
feature = session.query(Feature).filter(Feature.id == feature_id).first()
|
|
if not feature:
|
|
return False, "Feature not found"
|
|
if feature.passes:
|
|
return False, "Feature already complete"
|
|
|
|
if resume:
|
|
# Resuming: feature should already be in_progress
|
|
if not feature.in_progress:
|
|
return False, "Feature not in progress, cannot resume"
|
|
else:
|
|
# Starting fresh: feature should not be in_progress
|
|
if feature.in_progress:
|
|
return False, "Feature already in progress"
|
|
feature.in_progress = True
|
|
session.commit()
|
|
finally:
|
|
session.close()
|
|
|
|
# Start coding agent subprocess
|
|
success, message = self._spawn_coding_agent(feature_id)
|
|
if not success:
|
|
return False, message
|
|
|
|
# NOTE: Testing agents are now maintained independently via _maintain_testing_agents()
|
|
# called in the main loop, rather than being spawned when coding agents start.
|
|
|
|
return True, f"Started feature {feature_id}"
|
|
|
|
def _spawn_coding_agent(self, feature_id: int) -> tuple[bool, str]:
|
|
"""Spawn a coding agent subprocess for a specific feature."""
|
|
# Create abort event
|
|
abort_event = threading.Event()
|
|
|
|
# Start subprocess for this feature
|
|
cmd = [
|
|
sys.executable,
|
|
"-u", # Force unbuffered stdout/stderr
|
|
str(AUTOCODER_ROOT / "autonomous_agent_demo.py"),
|
|
"--project-dir", str(self.project_dir),
|
|
"--max-iterations", "1",
|
|
"--agent-type", "coding",
|
|
"--feature-id", str(feature_id),
|
|
]
|
|
if self.model:
|
|
cmd.extend(["--model", self.model])
|
|
if self.yolo_mode:
|
|
cmd.append("--yolo")
|
|
|
|
try:
|
|
proc = subprocess.Popen(
|
|
cmd,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.STDOUT,
|
|
text=True,
|
|
cwd=str(AUTOCODER_ROOT),
|
|
env={**os.environ, "PYTHONUNBUFFERED": "1"},
|
|
)
|
|
except Exception as e:
|
|
# Reset in_progress on failure
|
|
session = self.get_session()
|
|
try:
|
|
feature = session.query(Feature).filter(Feature.id == feature_id).first()
|
|
if feature:
|
|
feature.in_progress = False
|
|
session.commit()
|
|
finally:
|
|
session.close()
|
|
return False, f"Failed to start agent: {e}"
|
|
|
|
with self._lock:
|
|
self.running_coding_agents[feature_id] = proc
|
|
self.abort_events[feature_id] = abort_event
|
|
|
|
# Start output reader thread
|
|
threading.Thread(
|
|
target=self._read_output,
|
|
args=(feature_id, proc, abort_event, "coding"),
|
|
daemon=True
|
|
).start()
|
|
|
|
if self.on_status:
|
|
self.on_status(feature_id, "running")
|
|
|
|
print(f"Started coding agent for feature #{feature_id}", flush=True)
|
|
return True, f"Started feature {feature_id}"
|
|
|
|
def _spawn_testing_agent(self) -> tuple[bool, str]:
|
|
"""Spawn a testing agent subprocess for regression testing.
|
|
|
|
Picks a random passing feature to test. Multiple testing agents can test
|
|
the same feature concurrently - this is intentional and simplifies the
|
|
architecture by removing claim coordination.
|
|
"""
|
|
# Check limits first (under lock)
|
|
with self._lock:
|
|
current_testing_count = len(self.running_testing_agents)
|
|
if current_testing_count >= self.max_concurrency:
|
|
debug_log.log("TESTING", f"Skipped spawn - at max testing agents ({current_testing_count}/{self.max_concurrency})")
|
|
return False, f"At max testing agents ({current_testing_count})"
|
|
total_agents = len(self.running_coding_agents) + len(self.running_testing_agents)
|
|
if total_agents >= MAX_TOTAL_AGENTS:
|
|
debug_log.log("TESTING", f"Skipped spawn - at max total agents ({total_agents}/{MAX_TOTAL_AGENTS})")
|
|
return False, f"At max total agents ({total_agents})"
|
|
|
|
# Pick a random passing feature (no claim needed - concurrent testing is fine)
|
|
feature_id = self._get_random_passing_feature()
|
|
if feature_id is None:
|
|
debug_log.log("TESTING", "No features available for testing")
|
|
return False, "No features available for testing"
|
|
|
|
debug_log.log("TESTING", f"Selected feature #{feature_id} for testing")
|
|
|
|
# Spawn the testing agent
|
|
with self._lock:
|
|
# Re-check limits in case another thread spawned while we were selecting
|
|
current_testing_count = len(self.running_testing_agents)
|
|
if current_testing_count >= self.max_concurrency:
|
|
return False, f"At max testing agents ({current_testing_count})"
|
|
|
|
cmd = [
|
|
sys.executable,
|
|
"-u",
|
|
str(AUTOCODER_ROOT / "autonomous_agent_demo.py"),
|
|
"--project-dir", str(self.project_dir),
|
|
"--max-iterations", "1",
|
|
"--agent-type", "testing",
|
|
"--testing-feature-id", str(feature_id),
|
|
]
|
|
if self.model:
|
|
cmd.extend(["--model", self.model])
|
|
|
|
try:
|
|
proc = subprocess.Popen(
|
|
cmd,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.STDOUT,
|
|
text=True,
|
|
cwd=str(AUTOCODER_ROOT),
|
|
env={**os.environ, "PYTHONUNBUFFERED": "1"},
|
|
)
|
|
except Exception as e:
|
|
debug_log.log("TESTING", f"FAILED to spawn testing agent: {e}")
|
|
return False, f"Failed to start testing agent: {e}"
|
|
|
|
# Register process with feature ID (same pattern as coding agents)
|
|
self.running_testing_agents[feature_id] = proc
|
|
testing_count = len(self.running_testing_agents)
|
|
|
|
# Start output reader thread with feature ID (same as coding agents)
|
|
threading.Thread(
|
|
target=self._read_output,
|
|
args=(feature_id, proc, threading.Event(), "testing"),
|
|
daemon=True
|
|
).start()
|
|
|
|
print(f"Started testing agent for feature #{feature_id} (PID {proc.pid})", flush=True)
|
|
debug_log.log("TESTING", f"Successfully spawned testing agent for feature #{feature_id}",
|
|
pid=proc.pid,
|
|
feature_id=feature_id,
|
|
total_testing_agents=testing_count)
|
|
return True, f"Started testing agent for feature #{feature_id}"
|
|
|
|
async def _run_initializer(self) -> bool:
|
|
"""Run initializer agent as blocking subprocess.
|
|
|
|
Returns True if initialization succeeded (features were created).
|
|
"""
|
|
debug_log.section("INITIALIZER PHASE")
|
|
debug_log.log("INIT", "Starting initializer subprocess",
|
|
project_dir=str(self.project_dir))
|
|
|
|
cmd = [
|
|
sys.executable, "-u",
|
|
str(AUTOCODER_ROOT / "autonomous_agent_demo.py"),
|
|
"--project-dir", str(self.project_dir),
|
|
"--agent-type", "initializer",
|
|
"--max-iterations", "1",
|
|
]
|
|
if self.model:
|
|
cmd.extend(["--model", self.model])
|
|
|
|
print("Running initializer agent...", flush=True)
|
|
|
|
proc = subprocess.Popen(
|
|
cmd,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.STDOUT,
|
|
text=True,
|
|
cwd=str(AUTOCODER_ROOT),
|
|
env={**os.environ, "PYTHONUNBUFFERED": "1"},
|
|
)
|
|
|
|
debug_log.log("INIT", "Initializer subprocess started", pid=proc.pid)
|
|
|
|
# Stream output with timeout
|
|
loop = asyncio.get_running_loop()
|
|
try:
|
|
async def stream_output():
|
|
while True:
|
|
line = await loop.run_in_executor(None, proc.stdout.readline)
|
|
if not line:
|
|
break
|
|
print(line.rstrip(), flush=True)
|
|
if self.on_output:
|
|
self.on_output(0, line.rstrip()) # Use 0 as feature_id for initializer
|
|
proc.wait()
|
|
|
|
await asyncio.wait_for(stream_output(), timeout=INITIALIZER_TIMEOUT)
|
|
|
|
except asyncio.TimeoutError:
|
|
print(f"ERROR: Initializer timed out after {INITIALIZER_TIMEOUT // 60} minutes", flush=True)
|
|
debug_log.log("INIT", "TIMEOUT - Initializer exceeded time limit",
|
|
timeout_minutes=INITIALIZER_TIMEOUT // 60)
|
|
result = kill_process_tree(proc)
|
|
debug_log.log("INIT", "Killed timed-out initializer process tree",
|
|
status=result.status, children_found=result.children_found)
|
|
return False
|
|
|
|
debug_log.log("INIT", "Initializer subprocess completed",
|
|
return_code=proc.returncode,
|
|
success=proc.returncode == 0)
|
|
|
|
if proc.returncode != 0:
|
|
print(f"ERROR: Initializer failed with exit code {proc.returncode}", flush=True)
|
|
return False
|
|
|
|
return True
|
|
|
|
def _read_output(
|
|
self,
|
|
feature_id: int | None,
|
|
proc: subprocess.Popen,
|
|
abort: threading.Event,
|
|
agent_type: Literal["coding", "testing"] = "coding",
|
|
):
|
|
"""Read output from subprocess and emit events."""
|
|
try:
|
|
for line in proc.stdout:
|
|
if abort.is_set():
|
|
break
|
|
line = line.rstrip()
|
|
if self.on_output:
|
|
self.on_output(feature_id or 0, line)
|
|
else:
|
|
# Both coding and testing agents now use [Feature #X] format
|
|
print(f"[Feature #{feature_id}] {line}", flush=True)
|
|
proc.wait()
|
|
finally:
|
|
self._on_agent_complete(feature_id, proc.returncode, agent_type, proc)
|
|
|
|
def _signal_agent_completed(self):
|
|
"""Signal that an agent has completed, waking the main loop.
|
|
|
|
This method is safe to call from any thread. It schedules the event.set()
|
|
call to run on the event loop thread to avoid cross-thread issues with
|
|
asyncio.Event.
|
|
"""
|
|
if self._agent_completed_event is not None and self._event_loop is not None:
|
|
try:
|
|
# Use the stored event loop reference to schedule the set() call
|
|
# This is necessary because asyncio.Event is not thread-safe and
|
|
# asyncio.get_event_loop() fails in threads without an event loop
|
|
if self._event_loop.is_running():
|
|
self._event_loop.call_soon_threadsafe(self._agent_completed_event.set)
|
|
else:
|
|
# Fallback: set directly if loop isn't running (shouldn't happen during normal operation)
|
|
self._agent_completed_event.set()
|
|
except RuntimeError:
|
|
# Event loop closed, ignore (orchestrator may be shutting down)
|
|
pass
|
|
|
|
async def _wait_for_agent_completion(self, timeout: float = POLL_INTERVAL):
|
|
"""Wait for an agent to complete or until timeout expires.
|
|
|
|
This replaces fixed `asyncio.sleep(POLL_INTERVAL)` calls with event-based
|
|
waiting. When an agent completes, _signal_agent_completed() sets the event,
|
|
causing this method to return immediately. If no agent completes within
|
|
the timeout, we return anyway to check for ready features.
|
|
|
|
Args:
|
|
timeout: Maximum seconds to wait (default: POLL_INTERVAL)
|
|
"""
|
|
if self._agent_completed_event is None:
|
|
# Fallback if event not initialized (shouldn't happen in normal operation)
|
|
await asyncio.sleep(timeout)
|
|
return
|
|
|
|
try:
|
|
await asyncio.wait_for(self._agent_completed_event.wait(), timeout=timeout)
|
|
# Event was set - an agent completed. Clear it for the next wait cycle.
|
|
self._agent_completed_event.clear()
|
|
debug_log.log("EVENT", "Woke up immediately - agent completed")
|
|
except asyncio.TimeoutError:
|
|
# Timeout reached without agent completion - this is normal, just check anyway
|
|
pass
|
|
|
|
def _on_agent_complete(
|
|
self,
|
|
feature_id: int | None,
|
|
return_code: int,
|
|
agent_type: Literal["coding", "testing"],
|
|
proc: subprocess.Popen,
|
|
):
|
|
"""Handle agent completion.
|
|
|
|
For coding agents:
|
|
- ALWAYS clears in_progress when agent exits, regardless of success/failure.
|
|
- This prevents features from getting stuck if an agent crashes or is killed.
|
|
- The agent marks features as passing BEFORE clearing in_progress, so this
|
|
is safe.
|
|
|
|
For testing agents:
|
|
- Remove from running dict (no claim to release - concurrent testing is allowed).
|
|
"""
|
|
if agent_type == "testing":
|
|
with self._lock:
|
|
# Remove from dict by finding the feature_id for this proc
|
|
for fid, p in list(self.running_testing_agents.items()):
|
|
if p is proc:
|
|
del self.running_testing_agents[fid]
|
|
break
|
|
|
|
status = "completed" if return_code == 0 else "failed"
|
|
print(f"Feature #{feature_id} testing {status}", flush=True)
|
|
debug_log.log("COMPLETE", f"Testing agent for feature #{feature_id} finished",
|
|
pid=proc.pid,
|
|
feature_id=feature_id,
|
|
status=status)
|
|
# Signal main loop that an agent slot is available
|
|
self._signal_agent_completed()
|
|
return
|
|
|
|
# Coding agent completion
|
|
debug_log.log("COMPLETE", f"Coding agent for feature #{feature_id} finished",
|
|
return_code=return_code,
|
|
status="success" if return_code == 0 else "failed")
|
|
|
|
with self._lock:
|
|
self.running_coding_agents.pop(feature_id, None)
|
|
self.abort_events.pop(feature_id, None)
|
|
|
|
# Refresh session cache to see subprocess commits
|
|
# The coding agent runs as a subprocess and commits changes (e.g., passes=True).
|
|
# Using session.expire_all() is lighter weight than engine.dispose() for SQLite WAL mode
|
|
# and is sufficient to invalidate cached data and force fresh reads.
|
|
# engine.dispose() is only called on orchestrator shutdown, not on every agent completion.
|
|
session = self.get_session()
|
|
try:
|
|
session.expire_all()
|
|
feature = session.query(Feature).filter(Feature.id == feature_id).first()
|
|
feature_passes = feature.passes if feature else None
|
|
feature_in_progress = feature.in_progress if feature else None
|
|
debug_log.log("DB", f"Feature #{feature_id} state after session.expire_all()",
|
|
passes=feature_passes,
|
|
in_progress=feature_in_progress)
|
|
if feature and feature.in_progress and not feature.passes:
|
|
feature.in_progress = False
|
|
session.commit()
|
|
debug_log.log("DB", f"Cleared in_progress for feature #{feature_id} (agent failed)")
|
|
finally:
|
|
session.close()
|
|
|
|
# Track failures to prevent infinite retry loops
|
|
if return_code != 0:
|
|
with self._lock:
|
|
self._failure_counts[feature_id] = self._failure_counts.get(feature_id, 0) + 1
|
|
failure_count = self._failure_counts[feature_id]
|
|
if failure_count >= MAX_FEATURE_RETRIES:
|
|
print(f"Feature #{feature_id} has failed {failure_count} times, will not retry", flush=True)
|
|
debug_log.log("COMPLETE", f"Feature #{feature_id} exceeded max retries",
|
|
failure_count=failure_count)
|
|
|
|
status = "completed" if return_code == 0 else "failed"
|
|
if self.on_status:
|
|
self.on_status(feature_id, status)
|
|
# CRITICAL: This print triggers the WebSocket to emit agent_update with state='error' or 'success'
|
|
print(f"Feature #{feature_id} {status}", flush=True)
|
|
|
|
# Signal main loop that an agent slot is available
|
|
self._signal_agent_completed()
|
|
|
|
# NOTE: Testing agents are now spawned in start_feature() when coding agents START,
|
|
# not here when they complete. This ensures 1:1 ratio and proper termination.
|
|
|
|
def stop_feature(self, feature_id: int) -> tuple[bool, str]:
|
|
"""Stop a running coding agent and all its child processes."""
|
|
with self._lock:
|
|
if feature_id not in self.running_coding_agents:
|
|
return False, "Feature not running"
|
|
|
|
abort = self.abort_events.get(feature_id)
|
|
proc = self.running_coding_agents.get(feature_id)
|
|
|
|
if abort:
|
|
abort.set()
|
|
if proc:
|
|
# Kill entire process tree to avoid orphaned children (e.g., browser instances)
|
|
result = kill_process_tree(proc, timeout=5.0)
|
|
debug_log.log("STOP", f"Killed feature {feature_id} process tree",
|
|
status=result.status, children_found=result.children_found,
|
|
children_terminated=result.children_terminated, children_killed=result.children_killed)
|
|
|
|
return True, f"Stopped feature {feature_id}"
|
|
|
|
def stop_all(self) -> None:
|
|
"""Stop all running agents (coding and testing)."""
|
|
self.is_running = False
|
|
|
|
# Stop coding agents
|
|
with self._lock:
|
|
feature_ids = list(self.running_coding_agents.keys())
|
|
|
|
for fid in feature_ids:
|
|
self.stop_feature(fid)
|
|
|
|
# Stop testing agents (no claim to release - concurrent testing is allowed)
|
|
with self._lock:
|
|
testing_items = list(self.running_testing_agents.items())
|
|
|
|
for feature_id, proc in testing_items:
|
|
result = kill_process_tree(proc, timeout=5.0)
|
|
debug_log.log("STOP", f"Killed testing agent for feature #{feature_id} (PID {proc.pid})",
|
|
status=result.status, children_found=result.children_found,
|
|
children_terminated=result.children_terminated, children_killed=result.children_killed)
|
|
|
|
async def run_loop(self):
|
|
"""Main orchestration loop."""
|
|
self.is_running = True
|
|
|
|
# Initialize the agent completion event for this run
|
|
# Must be created in the async context where it will be used
|
|
self._agent_completed_event = asyncio.Event()
|
|
# Store the event loop reference for thread-safe signaling from output reader threads
|
|
self._event_loop = asyncio.get_running_loop()
|
|
|
|
# Track session start for regression testing (UTC for consistency with last_tested_at)
|
|
self.session_start_time = datetime.now(timezone.utc)
|
|
|
|
# Start debug logging session FIRST (clears previous logs)
|
|
# Must happen before any debug_log.log() calls
|
|
debug_log.start_session()
|
|
|
|
# Log startup to debug file
|
|
debug_log.section("ORCHESTRATOR STARTUP")
|
|
debug_log.log("STARTUP", "Orchestrator run_loop starting",
|
|
project_dir=str(self.project_dir),
|
|
max_concurrency=self.max_concurrency,
|
|
yolo_mode=self.yolo_mode,
|
|
testing_agent_ratio=self.testing_agent_ratio,
|
|
session_start_time=self.session_start_time.isoformat())
|
|
|
|
print("=" * 70, flush=True)
|
|
print(" UNIFIED ORCHESTRATOR SETTINGS", flush=True)
|
|
print("=" * 70, flush=True)
|
|
print(f"Project: {self.project_dir}", flush=True)
|
|
print(f"Max concurrency: {self.max_concurrency} coding agents", flush=True)
|
|
print(f"YOLO mode: {self.yolo_mode}", flush=True)
|
|
print(f"Regression agents: {self.testing_agent_ratio} (maintained independently)", flush=True)
|
|
print("=" * 70, flush=True)
|
|
print(flush=True)
|
|
|
|
# Phase 1: Check if initialization needed
|
|
if not has_features(self.project_dir):
|
|
print("=" * 70, flush=True)
|
|
print(" INITIALIZATION PHASE", flush=True)
|
|
print("=" * 70, flush=True)
|
|
print("No features found - running initializer agent first...", flush=True)
|
|
print("NOTE: This may take 10-20+ minutes to generate features.", flush=True)
|
|
print(flush=True)
|
|
|
|
success = await self._run_initializer()
|
|
|
|
if not success or not has_features(self.project_dir):
|
|
print("ERROR: Initializer did not create features. Exiting.", flush=True)
|
|
return
|
|
|
|
print(flush=True)
|
|
print("=" * 70, flush=True)
|
|
print(" INITIALIZATION COMPLETE - Starting feature loop", flush=True)
|
|
print("=" * 70, flush=True)
|
|
print(flush=True)
|
|
|
|
# CRITICAL: Recreate database connection after initializer subprocess commits
|
|
# The initializer runs as a subprocess and commits to the database file.
|
|
# SQLAlchemy may have stale connections or cached state. Disposing the old
|
|
# engine and creating a fresh engine/session_maker ensures we see all the
|
|
# newly created features.
|
|
debug_log.section("INITIALIZATION COMPLETE")
|
|
debug_log.log("INIT", "Disposing old database engine and creating fresh connection")
|
|
print("[DEBUG] Recreating database connection after initialization...", flush=True)
|
|
if self._engine is not None:
|
|
self._engine.dispose()
|
|
self._engine, self._session_maker = create_database(self.project_dir)
|
|
|
|
# Debug: Show state immediately after initialization
|
|
print("[DEBUG] Post-initialization state check:", flush=True)
|
|
print(f"[DEBUG] max_concurrency={self.max_concurrency}", flush=True)
|
|
print(f"[DEBUG] yolo_mode={self.yolo_mode}", flush=True)
|
|
print(f"[DEBUG] testing_agent_ratio={self.testing_agent_ratio}", flush=True)
|
|
|
|
# Verify features were created and are visible
|
|
session = self.get_session()
|
|
try:
|
|
feature_count = session.query(Feature).count()
|
|
all_features = session.query(Feature).all()
|
|
feature_names = [f"{f.id}: {f.name}" for f in all_features[:10]]
|
|
print(f"[DEBUG] features in database={feature_count}", flush=True)
|
|
debug_log.log("INIT", "Post-initialization database state",
|
|
max_concurrency=self.max_concurrency,
|
|
yolo_mode=self.yolo_mode,
|
|
testing_agent_ratio=self.testing_agent_ratio,
|
|
feature_count=feature_count,
|
|
first_10_features=feature_names)
|
|
finally:
|
|
session.close()
|
|
|
|
# Phase 2: Feature loop
|
|
# Check for features to resume from previous session
|
|
resumable = self.get_resumable_features()
|
|
if resumable:
|
|
print(f"Found {len(resumable)} feature(s) to resume from previous session:", flush=True)
|
|
for f in resumable:
|
|
print(f" - Feature #{f['id']}: {f['name']}", flush=True)
|
|
print(flush=True)
|
|
|
|
debug_log.section("FEATURE LOOP STARTING")
|
|
loop_iteration = 0
|
|
while self.is_running:
|
|
loop_iteration += 1
|
|
if loop_iteration <= 3:
|
|
print(f"[DEBUG] === Loop iteration {loop_iteration} ===", flush=True)
|
|
|
|
# Log every iteration to debug file (first 10, then every 5th)
|
|
if loop_iteration <= 10 or loop_iteration % 5 == 0:
|
|
with self._lock:
|
|
running_ids = list(self.running_coding_agents.keys())
|
|
testing_count = len(self.running_testing_agents)
|
|
debug_log.log("LOOP", f"Iteration {loop_iteration}",
|
|
running_coding_agents=running_ids,
|
|
running_testing_agents=testing_count,
|
|
max_concurrency=self.max_concurrency)
|
|
|
|
# Full database dump every 5 iterations
|
|
if loop_iteration == 1 or loop_iteration % 5 == 0:
|
|
session = self.get_session()
|
|
try:
|
|
_dump_database_state(session, f"(iteration {loop_iteration})")
|
|
finally:
|
|
session.close()
|
|
|
|
try:
|
|
# Check if all complete
|
|
if self.get_all_complete():
|
|
print("\nAll features complete!", flush=True)
|
|
break
|
|
|
|
# Maintain testing agents independently (runs every iteration)
|
|
self._maintain_testing_agents()
|
|
|
|
# Check capacity
|
|
with self._lock:
|
|
current = len(self.running_coding_agents)
|
|
current_testing = len(self.running_testing_agents)
|
|
running_ids = list(self.running_coding_agents.keys())
|
|
|
|
debug_log.log("CAPACITY", "Checking capacity",
|
|
current_coding=current,
|
|
current_testing=current_testing,
|
|
running_coding_ids=running_ids,
|
|
max_concurrency=self.max_concurrency,
|
|
at_capacity=(current >= self.max_concurrency))
|
|
|
|
if current >= self.max_concurrency:
|
|
debug_log.log("CAPACITY", "At max capacity, waiting for agent completion...")
|
|
await self._wait_for_agent_completion()
|
|
continue
|
|
|
|
# Priority 1: Resume features from previous session
|
|
resumable = self.get_resumable_features()
|
|
if resumable:
|
|
slots = self.max_concurrency - current
|
|
for feature in resumable[:slots]:
|
|
print(f"Resuming feature #{feature['id']}: {feature['name']}", flush=True)
|
|
self.start_feature(feature["id"], resume=True)
|
|
await asyncio.sleep(2)
|
|
continue
|
|
|
|
# Priority 2: Start new ready features
|
|
ready = self.get_ready_features()
|
|
if not ready:
|
|
# Wait for running features to complete
|
|
if current > 0:
|
|
await self._wait_for_agent_completion()
|
|
continue
|
|
else:
|
|
# No ready features and nothing running
|
|
# Force a fresh database check before declaring blocked
|
|
# This handles the case where subprocess commits weren't visible yet
|
|
session = self.get_session()
|
|
try:
|
|
session.expire_all()
|
|
finally:
|
|
session.close()
|
|
|
|
# Recheck if all features are now complete
|
|
if self.get_all_complete():
|
|
print("\nAll features complete!", flush=True)
|
|
break
|
|
|
|
# Still have pending features but all are blocked by dependencies
|
|
print("No ready features available. All remaining features may be blocked by dependencies.", flush=True)
|
|
await self._wait_for_agent_completion(timeout=POLL_INTERVAL * 2)
|
|
continue
|
|
|
|
# Start features up to capacity
|
|
slots = self.max_concurrency - current
|
|
print(f"[DEBUG] Spawning loop: {len(ready)} ready, {slots} slots available, max_concurrency={self.max_concurrency}", flush=True)
|
|
print(f"[DEBUG] Will attempt to start {min(len(ready), slots)} features", flush=True)
|
|
features_to_start = ready[:slots]
|
|
print(f"[DEBUG] Features to start: {[f['id'] for f in features_to_start]}", flush=True)
|
|
|
|
debug_log.log("SPAWN", "Starting features batch",
|
|
ready_count=len(ready),
|
|
slots_available=slots,
|
|
features_to_start=[f['id'] for f in features_to_start])
|
|
|
|
for i, feature in enumerate(features_to_start):
|
|
print(f"[DEBUG] Starting feature {i+1}/{len(features_to_start)}: #{feature['id']} - {feature['name']}", flush=True)
|
|
success, msg = self.start_feature(feature["id"])
|
|
if not success:
|
|
print(f"[DEBUG] Failed to start feature #{feature['id']}: {msg}", flush=True)
|
|
debug_log.log("SPAWN", f"FAILED to start feature #{feature['id']}",
|
|
feature_name=feature['name'],
|
|
error=msg)
|
|
else:
|
|
print(f"[DEBUG] Successfully started feature #{feature['id']}", flush=True)
|
|
with self._lock:
|
|
running_count = len(self.running_coding_agents)
|
|
print(f"[DEBUG] Running coding agents after start: {running_count}", flush=True)
|
|
debug_log.log("SPAWN", f"Successfully started feature #{feature['id']}",
|
|
feature_name=feature['name'],
|
|
running_coding_agents=running_count)
|
|
|
|
await asyncio.sleep(2) # Brief pause between starts
|
|
|
|
except Exception as e:
|
|
print(f"Orchestrator error: {e}", flush=True)
|
|
await self._wait_for_agent_completion()
|
|
|
|
# Wait for remaining agents to complete
|
|
print("Waiting for running agents to complete...", flush=True)
|
|
while True:
|
|
with self._lock:
|
|
coding_done = len(self.running_coding_agents) == 0
|
|
testing_done = len(self.running_testing_agents) == 0
|
|
if coding_done and testing_done:
|
|
break
|
|
# Use short timeout since we're just waiting for final agents to finish
|
|
await self._wait_for_agent_completion(timeout=1.0)
|
|
|
|
print("Orchestrator finished.", flush=True)
|
|
|
|
def get_status(self) -> dict:
|
|
"""Get current orchestrator status."""
|
|
with self._lock:
|
|
return {
|
|
"running_features": list(self.running_coding_agents.keys()),
|
|
"coding_agent_count": len(self.running_coding_agents),
|
|
"testing_agent_count": len(self.running_testing_agents),
|
|
"count": len(self.running_coding_agents), # Legacy compatibility
|
|
"max_concurrency": self.max_concurrency,
|
|
"testing_agent_ratio": self.testing_agent_ratio,
|
|
"is_running": self.is_running,
|
|
"yolo_mode": self.yolo_mode,
|
|
}
|
|
|
|
|
|
async def run_parallel_orchestrator(
|
|
project_dir: Path,
|
|
max_concurrency: int = DEFAULT_CONCURRENCY,
|
|
model: str = None,
|
|
yolo_mode: bool = False,
|
|
testing_agent_ratio: int = 1,
|
|
) -> None:
|
|
"""Run the unified orchestrator.
|
|
|
|
Args:
|
|
project_dir: Path to the project directory
|
|
max_concurrency: Maximum number of concurrent coding agents
|
|
model: Claude model to use
|
|
yolo_mode: Whether to run in YOLO mode (skip testing agents)
|
|
testing_agent_ratio: Number of regression agents to maintain (0-3)
|
|
"""
|
|
print(f"[ORCHESTRATOR] run_parallel_orchestrator called with max_concurrency={max_concurrency}", flush=True)
|
|
orchestrator = ParallelOrchestrator(
|
|
project_dir=project_dir,
|
|
max_concurrency=max_concurrency,
|
|
model=model,
|
|
yolo_mode=yolo_mode,
|
|
testing_agent_ratio=testing_agent_ratio,
|
|
)
|
|
|
|
try:
|
|
await orchestrator.run_loop()
|
|
except KeyboardInterrupt:
|
|
print("\n\nInterrupted by user. Stopping agents...", flush=True)
|
|
orchestrator.stop_all()
|
|
|
|
|
|
def main():
|
|
"""Main entry point for parallel orchestration."""
|
|
import argparse
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
from registry import DEFAULT_MODEL, get_project_path
|
|
|
|
load_dotenv()
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description="Parallel Feature Orchestrator - Run multiple agent instances",
|
|
)
|
|
parser.add_argument(
|
|
"--project-dir",
|
|
type=str,
|
|
required=True,
|
|
help="Project directory path (absolute) or registered project name",
|
|
)
|
|
parser.add_argument(
|
|
"--max-concurrency",
|
|
"-p",
|
|
type=int,
|
|
default=DEFAULT_CONCURRENCY,
|
|
help=f"Maximum concurrent agents (1-{MAX_PARALLEL_AGENTS}, default: {DEFAULT_CONCURRENCY})",
|
|
)
|
|
parser.add_argument(
|
|
"--model",
|
|
type=str,
|
|
default=DEFAULT_MODEL,
|
|
help=f"Claude model to use (default: {DEFAULT_MODEL})",
|
|
)
|
|
parser.add_argument(
|
|
"--yolo",
|
|
action="store_true",
|
|
default=False,
|
|
help="Enable YOLO mode: rapid prototyping without browser testing",
|
|
)
|
|
parser.add_argument(
|
|
"--testing-agent-ratio",
|
|
type=int,
|
|
default=1,
|
|
help="Number of regression testing agents (0-3, default: 1). Set to 0 to disable testing agents.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Resolve project directory
|
|
project_dir_input = args.project_dir
|
|
project_dir = Path(project_dir_input)
|
|
|
|
if project_dir.is_absolute():
|
|
if not project_dir.exists():
|
|
print(f"Error: Project directory does not exist: {project_dir}", flush=True)
|
|
sys.exit(1)
|
|
else:
|
|
registered_path = get_project_path(project_dir_input)
|
|
if registered_path:
|
|
project_dir = registered_path
|
|
else:
|
|
print(f"Error: Project '{project_dir_input}' not found in registry", flush=True)
|
|
sys.exit(1)
|
|
|
|
try:
|
|
asyncio.run(run_parallel_orchestrator(
|
|
project_dir=project_dir,
|
|
max_concurrency=args.max_concurrency,
|
|
model=args.model,
|
|
yolo_mode=args.yolo,
|
|
testing_agent_ratio=args.testing_agent_ratio,
|
|
))
|
|
except KeyboardInterrupt:
|
|
print("\n\nInterrupted by user", flush=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|