refactor: optimize token usage, deduplicate code, fix bugs across agents

Token reduction (~40% per session, ~2.3M fewer tokens per 200-feature project):
- Agent-type-specific tool lists: coding 9, testing 5, init 5 (was 19 for all)
- Right-sized max_turns: coding 300, testing 100 (was 1000 for all)
- Trimmed coding prompt template (~150 lines removed)
- Streamlined testing prompt with batch support
- YOLO mode now strips browser testing instructions from prompt
- Added Grep, WebFetch, WebSearch to expand project session

Performance improvements:
- Rate limit retries start at ~15s with jitter (was fixed 60s)
- Post-spawn delay reduced to 0.5s (was 2s)
- Orchestrator consolidated to 1 DB query per loop (was 5-7)
- Testing agents batch 3 features per session (was 1)
- Smart context compaction preserves critical state, discards noise

Bug fixes:
- Removed ghost feature_release_testing MCP tool (wasted tokens every test session)
- Forward all 9 Vertex AI env vars to chat sessions (was missing 3)
- Fix DetachedInstanceError risk in test batch ORM access
- Prevent duplicate testing of same features in parallel mode

Code deduplication:
- _get_project_path(): 9 copies -> 1 shared utility (project_helpers.py)
- validate_project_name(): 9 copies -> 2 variants in 1 file (validation.py)
- ROOT_DIR: 10 copies -> 1 definition (chat_constants.py)
- API_ENV_VARS: 4 copies -> 1 source of truth (env_constants.py)

Security hardening:
- Unified sensitive directory blocklist (14 dirs, was two divergent lists)
- Cached get_blocked_paths() for O(1) directory listing checks
- Terminal security warning when ALLOW_REMOTE=1 exposes WebSocket
- 20 new security tests for EXTRA_READ_PATHS blocking
- Extracted _validate_command_list() and _validate_pkill_processes() helpers

Type safety:
- 87 mypy errors -> 0 across 58 source files
- Installed types-PyYAML for proper yaml stub types
- Fixed SQLAlchemy Column[T] coercions across all routers

Dead code removed:
- 13 files deleted (~2,679 lines): unused UI components, debug logs, outdated docs
- 7 unused npm packages removed (Radix UI components with 0 imports)
- AgentAvatar.tsx reduced from 615 -> 119 lines (SVGs extracted to mascotData.tsx)

New CLI options:
- --testing-batch-size (1-5) for parallel mode test batching
- --testing-feature-ids for direct multi-feature testing

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
Auto
2026-02-01 13:16:24 +02:00
parent dc5bcc4ae9
commit 94e0b05cb1
57 changed files with 1974 additions and 4300 deletions

View File

@@ -13,49 +13,19 @@ import shutil
import threading
from datetime import datetime
from pathlib import Path
from typing import AsyncGenerator, Optional
from typing import Any, AsyncGenerator, Optional
from claude_agent_sdk import ClaudeAgentOptions, ClaudeSDKClient
from dotenv import load_dotenv
from ..schemas import ImageAttachment
from .chat_constants import API_ENV_VARS, ROOT_DIR, make_multimodal_message
# Load environment variables from .env file if present
load_dotenv()
logger = logging.getLogger(__name__)
# Environment variables to pass through to Claude CLI for API configuration
API_ENV_VARS = [
"ANTHROPIC_BASE_URL",
"ANTHROPIC_AUTH_TOKEN",
"API_TIMEOUT_MS",
"ANTHROPIC_DEFAULT_SONNET_MODEL",
"ANTHROPIC_DEFAULT_OPUS_MODEL",
"ANTHROPIC_DEFAULT_HAIKU_MODEL",
]
async def _make_multimodal_message(content_blocks: list[dict]) -> AsyncGenerator[dict, None]:
"""
Create an async generator that yields a properly formatted multimodal message.
The Claude Agent SDK's query() method accepts either:
- A string (simple text)
- An AsyncIterable[dict] (for custom message formats)
This function wraps content blocks in the expected message format.
"""
yield {
"type": "user",
"message": {"role": "user", "content": content_blocks},
"parent_tool_use_id": None,
"session_id": "default",
}
# Root directory of the project
ROOT_DIR = Path(__file__).parent.parent.parent
class SpecChatSession:
"""
@@ -170,7 +140,12 @@ class SpecChatSession:
system_cli = shutil.which("claude")
# Build environment overrides for API configuration
sdk_env = {var: os.getenv(var) for var in API_ENV_VARS if os.getenv(var)}
# Filter to only include vars that are actually set (non-None)
sdk_env: dict[str, str] = {}
for var in API_ENV_VARS:
value = os.getenv(var)
if value:
sdk_env[var] = value
# Determine model from environment or use default
# This allows using alternative APIs (e.g., GLM via z.ai) that may not support Claude model names
@@ -292,7 +267,7 @@ class SpecChatSession:
# Build the message content
if attachments and len(attachments) > 0:
# Multimodal message: build content blocks array
content_blocks = []
content_blocks: list[dict[str, Any]] = []
# Add text block if there's text
if message:
@@ -311,7 +286,7 @@ class SpecChatSession:
# Send multimodal content to Claude using async generator format
# The SDK's query() accepts AsyncIterable[dict] for custom message formats
await self.client.query(_make_multimodal_message(content_blocks))
await self.client.query(make_multimodal_message(content_blocks))
logger.info(f"Sent multimodal message with {len(attachments)} image(s)")
else:
# Text-only message: use string format
@@ -320,7 +295,7 @@ class SpecChatSession:
current_text = ""
# Track pending writes for BOTH required files
pending_writes = {
pending_writes: dict[str, dict[str, Any] | None] = {
"app_spec": None, # {"tool_id": ..., "path": ...}
"initializer": None, # {"tool_id": ..., "path": ...}
}
@@ -395,7 +370,8 @@ class SpecChatSession:
logger.warning(f"Tool error: {content}")
# Clear any pending writes that failed
for key in pending_writes:
if pending_writes[key] and tool_use_id == pending_writes[key].get("tool_id"):
pending_write = pending_writes[key]
if pending_write is not None and tool_use_id == pending_write.get("tool_id"):
logger.error(f"{key} write failed: {content}")
pending_writes[key] = None
else: