mirror of
https://github.com/leonvanzyl/autocoder.git
synced 2026-02-02 15:23:37 +00:00
feat: add multi-feature batching for coding agents
Enable the orchestrator to assign 1-3 features per coding agent subprocess, selected via dependency chain extension + same-category fill. This reduces cold-start overhead and leverages shared context across related features. Orchestrator (parallel_orchestrator.py): - Add batch tracking: _batch_features and _feature_to_primary data structures - Add build_feature_batches() with dependency chain + category fill algorithm - Add start_feature_batch() and _spawn_coding_agent_batch() methods - Update _on_agent_complete() for batch cleanup across all features - Update stop_feature() with _feature_to_primary lookup - Update get_ready_features() to exclude all batch feature IDs - Update main loop to build batches then spawn per available slot CLI and agent layer: - Add --feature-ids (comma-separated) and --batch-size CLI args - Add feature_ids parameter to run_autonomous_agent() with batch prompt selection - Add get_batch_feature_prompt() with sequential workflow instructions WebSocket layer (server/websocket.py): - Add BATCH_CODING_AGENT_START_PATTERN and BATCH_FEATURES_COMPLETE_PATTERN - Add _handle_batch_agent_start() and _handle_batch_agent_complete() methods - Add featureIds field to all agent_update messages - Track current_feature_id updates as agent moves through batch Frontend (React UI): - Add featureIds to ActiveAgent and WSAgentUpdateMessage types - Update KanbanColumn and DependencyGraph agent-feature maps for batch - Update AgentCard to show "Batch: #X, #Y, #Z" with active feature highlight - Add "Features per Agent" segmented control (1-3) in SettingsModal Settings integration (full stack): - Add batch_size to schemas, settings router, agent router, process manager - Default batch_size=3, user-configurable 1-3 via settings UI - batch_size=1 is functionally identical to pre-batching behavior Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -399,6 +399,7 @@ class SettingsResponse(BaseModel):
|
||||
ollama_mode: bool = False # True if Ollama API is configured via .env
|
||||
testing_agent_ratio: int = 1 # Regression testing agents (0-3)
|
||||
playwright_headless: bool = True
|
||||
batch_size: int = 3 # Features per coding agent batch (1-3)
|
||||
|
||||
|
||||
class ModelsResponse(BaseModel):
|
||||
@@ -413,6 +414,7 @@ class SettingsUpdate(BaseModel):
|
||||
model: str | None = None
|
||||
testing_agent_ratio: int | None = None # 0-3
|
||||
playwright_headless: bool | None = None
|
||||
batch_size: int | None = None # Features per agent batch (1-3)
|
||||
|
||||
@field_validator('model')
|
||||
@classmethod
|
||||
@@ -428,6 +430,13 @@ class SettingsUpdate(BaseModel):
|
||||
raise ValueError("testing_agent_ratio must be between 0 and 3")
|
||||
return v
|
||||
|
||||
@field_validator('batch_size')
|
||||
@classmethod
|
||||
def validate_batch_size(cls, v: int | None) -> int | None:
|
||||
if v is not None and (v < 1 or v > 3):
|
||||
raise ValueError("batch_size must be between 1 and 3")
|
||||
return v
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Dev Server Schemas
|
||||
|
||||
Reference in New Issue
Block a user