Files
LlamaFactory/src/llamafactory/v1/accelerator/interface.py
Copilot eceec8ab69 [deps] goodbye python 3.9 (#9677)
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: hiyouga <16256802+hiyouga@users.noreply.github.com>
Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
2025-12-27 02:50:44 +08:00

250 lines
9.0 KiB
Python

# Copyright 2025 Bytedance Ltd. and the LlamaFactory team.
#
# This code is inspired by the Bytedance's VeOmni library.
# https://github.com/ByteDance-Seed/VeOmni/blob/v0.1.4/veomni/distributed/parallel_state.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A unified interface for model parallelism and data parallelism.
Supports model parallelism types:
- mp_replicate: Replicate model across multiple devices.
- mp_shard: Shard model across multiple devices.
And data parallelism types:
- dp: Data parallelism.
- cp: Context parallelism.
"""
from dataclasses import dataclass
from datetime import timedelta
from enum import Enum
from typing import Any, Optional
from torch.distributed import barrier, destroy_process_group, init_process_group
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from ..utils.types import DistributedConfig, ProcessGroup, Tensor, TensorLike
from . import helper
class Dim(str, Enum):
"""Dimension names."""
MP_REPLICATE = "mp_replicate"
MP_SHARD = "mp_shard"
DP = "dp"
CP = "cp"
@dataclass
class DistributedStrategy:
"""Distributed strategy."""
mp_replicate_size: int = 1
"""Model parallel replicate size, default to 1."""
mp_shard_size: int | None = None
"""Model parallel shard size, default to world_size // mp_replicate_size."""
dp_size: int | None = None
"""Data parallel size, default to world_size // cp_size."""
cp_size: int = 1
"""Context parallel size, default to 1."""
def __post_init__(self) -> None:
if not helper.is_distributed():
self.mp_shard_size = 1
elif self.mp_shard_size is None:
self.mp_shard_size = helper.get_world_size() // self.mp_replicate_size
elif self.mp_replicate_size * self.mp_shard_size != helper.get_world_size():
raise ValueError(
f"mp_replicate_size * mp_shard_size must equal to world_size, "
f"got {self.mp_replicate_size} * {self.mp_shard_size} != {helper.get_world_size()}."
)
if not helper.is_distributed():
self.dp_size = 1
elif self.dp_size is None:
self.dp_size = helper.get_world_size() // self.cp_size
elif self.dp_size * self.cp_size != helper.get_world_size():
raise ValueError(
f"dp_size * cp_size must equal to world_size, "
f"got {self.dp_size} * {self.cp_size} != {helper.get_world_size()}."
)
@property
def model_mesh_shape(self) -> tuple[int, int]:
"""Model parallel mesh shape."""
return (self.mp_replicate_size, self.mp_shard_size)
@property
def model_mesh_dim_names(self) -> tuple[str, str]:
"""Model parallel mesh dimension names."""
return (Dim.MP_REPLICATE.value, Dim.MP_SHARD.value)
@property
def data_mesh_shape(self) -> tuple[int, int]:
"""Data parallel mesh shape."""
return (self.dp_size, self.cp_size)
@property
def data_mesh_dim_names(self) -> tuple[str, str]:
"""Data parallel mesh dimension names."""
return (Dim.DP.value, Dim.CP.value)
class DistributedInterface:
"""Distributed interface."""
_instance: Optional["DistributedInterface"] = None
_initialized: bool = False
def __new__(cls, *args: Any, **kwargs: Any) -> "DistributedInterface":
"""Singleton pattern."""
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self, config: DistributedConfig | None = None) -> None:
if self._initialized:
return
self._is_distributed = helper.is_distributed()
self._rank = helper.get_rank()
self._world_size = helper.get_world_size()
self._local_rank = helper.get_local_rank()
self._local_world_size = helper.get_local_world_size()
self.current_accelerator = helper.get_current_accelerator()
self.device_count = helper.get_device_count()
if config is None:
self.strategy = DistributedStrategy()
timeout = 18000
else:
self.strategy = DistributedStrategy(
mp_replicate_size=config.get("mp_replicate_size", 1),
mp_shard_size=config.get("mp_shard_size", None),
dp_size=config.get("dp_size", None),
cp_size=config.get("cp_size", 1),
)
timeout = config.get("timeout", 18000)
if self._is_distributed:
helper.set_device()
init_process_group(timeout=timedelta(seconds=timeout))
self.model_device_mesh = init_device_mesh(
device_type=self.current_accelerator.type,
mesh_shape=self.strategy.model_mesh_shape,
mesh_dim_names=self.strategy.model_mesh_dim_names,
)
self.data_device_mesh = init_device_mesh(
device_type=self.current_accelerator.type,
mesh_shape=self.strategy.data_mesh_shape,
mesh_dim_names=self.strategy.data_mesh_dim_names,
)
else:
self.model_device_mesh = None
self.data_device_mesh = None
self._initialized = True
def __str__(self) -> str:
return (
f"DistributedInterface(strategy={self.strategy}), is_distributed={self._is_distributed}, "
f"current_accelerator={self.current_accelerator}, rank={self._rank}, world_size={self._world_size}, "
f"model_device_mesh={self.model_device_mesh}, data_device_mesh={self.data_device_mesh}"
)
def get_device_mesh(self, dim: Dim | None = None) -> DeviceMesh | None:
"""Get device mesh for specified dimension."""
if dim is None:
raise ValueError("dim must be specified.")
elif self.model_device_mesh is None:
return None
elif dim in self.strategy.data_mesh_dim_names:
return self.data_device_mesh[dim.value]
else:
return self.model_device_mesh[dim.value]
def get_group(self, dim: Dim | None = None) -> Optional[ProcessGroup]:
"""Get process group for specified dimension."""
if self.model_device_mesh is None or dim is None:
return None
else:
return self.get_device_mesh(dim).get_group()
def get_rank(self, dim: Dim | None = None) -> int:
"""Get parallel rank for specified dimension."""
if self.model_device_mesh is None:
return 0
elif dim is None:
return self._rank
else:
return self.get_device_mesh(dim).get_local_rank()
def get_world_size(self, dim: Dim | None = None) -> int:
"""Get parallel size for specified dimension."""
if self.model_device_mesh is None:
return 1
elif dim is None:
return self._world_size
else:
return self.get_device_mesh(dim).size()
def get_local_rank(self) -> int:
"""Get parallel local rank."""
return self._local_rank
def get_local_world_size(self) -> int:
"""Get parallel local world size."""
return self._local_world_size
def all_gather(self, data: Tensor, dim: Dim | None = Dim.DP) -> Tensor:
"""Gather tensor across specified parallel group."""
if self.model_device_mesh is not None:
return helper.operate_tensorlike(helper.all_gather, data, group=self.get_group(dim))
else:
return data
def all_reduce(
self, data: TensorLike, op: helper.ReduceOp = helper.ReduceOp.MEAN, dim: Dim | None = Dim.DP
) -> TensorLike:
"""Reduce tensor across specified parallel group."""
if self.model_device_mesh is not None:
return helper.operate_tensorlike(helper.all_reduce, data, op=op, group=self.get_group(dim))
else:
return data
def broadcast(self, data: TensorLike, src: int = 0, dim: Dim | None = Dim.DP) -> TensorLike:
"""Broadcast tensor across specified parallel group."""
if self.model_device_mesh is not None:
return helper.operate_tensorlike(helper.broadcast, data, src=src, group=self.get_group(dim))
else:
return data
def sync(self) -> None:
"""Synchronize all processes."""
helper.synchronize()
def barrier(self) -> None:
"""Barrier all processes."""
barrier()
def destroy(self) -> None:
"""Destroy all processes."""
destroy_process_group()
if __name__ == "__main__":
print(DistributedInterface(DistributedStrategy()))