mirror of
https://github.com/hiyouga/LlamaFactory.git
synced 2026-01-30 06:12:04 +00:00
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com> Co-authored-by: hiyouga <16256802+hiyouga@users.noreply.github.com> Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
250 lines
9.0 KiB
Python
250 lines
9.0 KiB
Python
# Copyright 2025 Bytedance Ltd. and the LlamaFactory team.
|
|
#
|
|
# This code is inspired by the Bytedance's VeOmni library.
|
|
# https://github.com/ByteDance-Seed/VeOmni/blob/v0.1.4/veomni/distributed/parallel_state.py
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""A unified interface for model parallelism and data parallelism.
|
|
|
|
Supports model parallelism types:
|
|
- mp_replicate: Replicate model across multiple devices.
|
|
- mp_shard: Shard model across multiple devices.
|
|
|
|
And data parallelism types:
|
|
- dp: Data parallelism.
|
|
- cp: Context parallelism.
|
|
"""
|
|
|
|
from dataclasses import dataclass
|
|
from datetime import timedelta
|
|
from enum import Enum
|
|
from typing import Any, Optional
|
|
|
|
from torch.distributed import barrier, destroy_process_group, init_process_group
|
|
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
|
|
|
|
from ..utils.types import DistributedConfig, ProcessGroup, Tensor, TensorLike
|
|
from . import helper
|
|
|
|
|
|
class Dim(str, Enum):
|
|
"""Dimension names."""
|
|
|
|
MP_REPLICATE = "mp_replicate"
|
|
MP_SHARD = "mp_shard"
|
|
DP = "dp"
|
|
CP = "cp"
|
|
|
|
|
|
@dataclass
|
|
class DistributedStrategy:
|
|
"""Distributed strategy."""
|
|
|
|
mp_replicate_size: int = 1
|
|
"""Model parallel replicate size, default to 1."""
|
|
mp_shard_size: int | None = None
|
|
"""Model parallel shard size, default to world_size // mp_replicate_size."""
|
|
dp_size: int | None = None
|
|
"""Data parallel size, default to world_size // cp_size."""
|
|
cp_size: int = 1
|
|
"""Context parallel size, default to 1."""
|
|
|
|
def __post_init__(self) -> None:
|
|
if not helper.is_distributed():
|
|
self.mp_shard_size = 1
|
|
elif self.mp_shard_size is None:
|
|
self.mp_shard_size = helper.get_world_size() // self.mp_replicate_size
|
|
elif self.mp_replicate_size * self.mp_shard_size != helper.get_world_size():
|
|
raise ValueError(
|
|
f"mp_replicate_size * mp_shard_size must equal to world_size, "
|
|
f"got {self.mp_replicate_size} * {self.mp_shard_size} != {helper.get_world_size()}."
|
|
)
|
|
|
|
if not helper.is_distributed():
|
|
self.dp_size = 1
|
|
elif self.dp_size is None:
|
|
self.dp_size = helper.get_world_size() // self.cp_size
|
|
elif self.dp_size * self.cp_size != helper.get_world_size():
|
|
raise ValueError(
|
|
f"dp_size * cp_size must equal to world_size, "
|
|
f"got {self.dp_size} * {self.cp_size} != {helper.get_world_size()}."
|
|
)
|
|
|
|
@property
|
|
def model_mesh_shape(self) -> tuple[int, int]:
|
|
"""Model parallel mesh shape."""
|
|
return (self.mp_replicate_size, self.mp_shard_size)
|
|
|
|
@property
|
|
def model_mesh_dim_names(self) -> tuple[str, str]:
|
|
"""Model parallel mesh dimension names."""
|
|
return (Dim.MP_REPLICATE.value, Dim.MP_SHARD.value)
|
|
|
|
@property
|
|
def data_mesh_shape(self) -> tuple[int, int]:
|
|
"""Data parallel mesh shape."""
|
|
return (self.dp_size, self.cp_size)
|
|
|
|
@property
|
|
def data_mesh_dim_names(self) -> tuple[str, str]:
|
|
"""Data parallel mesh dimension names."""
|
|
return (Dim.DP.value, Dim.CP.value)
|
|
|
|
|
|
class DistributedInterface:
|
|
"""Distributed interface."""
|
|
|
|
_instance: Optional["DistributedInterface"] = None
|
|
_initialized: bool = False
|
|
|
|
def __new__(cls, *args: Any, **kwargs: Any) -> "DistributedInterface":
|
|
"""Singleton pattern."""
|
|
if cls._instance is None:
|
|
cls._instance = super().__new__(cls)
|
|
|
|
return cls._instance
|
|
|
|
def __init__(self, config: DistributedConfig | None = None) -> None:
|
|
if self._initialized:
|
|
return
|
|
|
|
self._is_distributed = helper.is_distributed()
|
|
self._rank = helper.get_rank()
|
|
self._world_size = helper.get_world_size()
|
|
self._local_rank = helper.get_local_rank()
|
|
self._local_world_size = helper.get_local_world_size()
|
|
self.current_accelerator = helper.get_current_accelerator()
|
|
self.device_count = helper.get_device_count()
|
|
|
|
if config is None:
|
|
self.strategy = DistributedStrategy()
|
|
timeout = 18000
|
|
else:
|
|
self.strategy = DistributedStrategy(
|
|
mp_replicate_size=config.get("mp_replicate_size", 1),
|
|
mp_shard_size=config.get("mp_shard_size", None),
|
|
dp_size=config.get("dp_size", None),
|
|
cp_size=config.get("cp_size", 1),
|
|
)
|
|
timeout = config.get("timeout", 18000)
|
|
|
|
if self._is_distributed:
|
|
helper.set_device()
|
|
init_process_group(timeout=timedelta(seconds=timeout))
|
|
self.model_device_mesh = init_device_mesh(
|
|
device_type=self.current_accelerator.type,
|
|
mesh_shape=self.strategy.model_mesh_shape,
|
|
mesh_dim_names=self.strategy.model_mesh_dim_names,
|
|
)
|
|
self.data_device_mesh = init_device_mesh(
|
|
device_type=self.current_accelerator.type,
|
|
mesh_shape=self.strategy.data_mesh_shape,
|
|
mesh_dim_names=self.strategy.data_mesh_dim_names,
|
|
)
|
|
else:
|
|
self.model_device_mesh = None
|
|
self.data_device_mesh = None
|
|
|
|
self._initialized = True
|
|
|
|
def __str__(self) -> str:
|
|
return (
|
|
f"DistributedInterface(strategy={self.strategy}), is_distributed={self._is_distributed}, "
|
|
f"current_accelerator={self.current_accelerator}, rank={self._rank}, world_size={self._world_size}, "
|
|
f"model_device_mesh={self.model_device_mesh}, data_device_mesh={self.data_device_mesh}"
|
|
)
|
|
|
|
def get_device_mesh(self, dim: Dim | None = None) -> DeviceMesh | None:
|
|
"""Get device mesh for specified dimension."""
|
|
if dim is None:
|
|
raise ValueError("dim must be specified.")
|
|
elif self.model_device_mesh is None:
|
|
return None
|
|
elif dim in self.strategy.data_mesh_dim_names:
|
|
return self.data_device_mesh[dim.value]
|
|
else:
|
|
return self.model_device_mesh[dim.value]
|
|
|
|
def get_group(self, dim: Dim | None = None) -> Optional[ProcessGroup]:
|
|
"""Get process group for specified dimension."""
|
|
if self.model_device_mesh is None or dim is None:
|
|
return None
|
|
else:
|
|
return self.get_device_mesh(dim).get_group()
|
|
|
|
def get_rank(self, dim: Dim | None = None) -> int:
|
|
"""Get parallel rank for specified dimension."""
|
|
if self.model_device_mesh is None:
|
|
return 0
|
|
elif dim is None:
|
|
return self._rank
|
|
else:
|
|
return self.get_device_mesh(dim).get_local_rank()
|
|
|
|
def get_world_size(self, dim: Dim | None = None) -> int:
|
|
"""Get parallel size for specified dimension."""
|
|
if self.model_device_mesh is None:
|
|
return 1
|
|
elif dim is None:
|
|
return self._world_size
|
|
else:
|
|
return self.get_device_mesh(dim).size()
|
|
|
|
def get_local_rank(self) -> int:
|
|
"""Get parallel local rank."""
|
|
return self._local_rank
|
|
|
|
def get_local_world_size(self) -> int:
|
|
"""Get parallel local world size."""
|
|
return self._local_world_size
|
|
|
|
def all_gather(self, data: Tensor, dim: Dim | None = Dim.DP) -> Tensor:
|
|
"""Gather tensor across specified parallel group."""
|
|
if self.model_device_mesh is not None:
|
|
return helper.operate_tensorlike(helper.all_gather, data, group=self.get_group(dim))
|
|
else:
|
|
return data
|
|
|
|
def all_reduce(
|
|
self, data: TensorLike, op: helper.ReduceOp = helper.ReduceOp.MEAN, dim: Dim | None = Dim.DP
|
|
) -> TensorLike:
|
|
"""Reduce tensor across specified parallel group."""
|
|
if self.model_device_mesh is not None:
|
|
return helper.operate_tensorlike(helper.all_reduce, data, op=op, group=self.get_group(dim))
|
|
else:
|
|
return data
|
|
|
|
def broadcast(self, data: TensorLike, src: int = 0, dim: Dim | None = Dim.DP) -> TensorLike:
|
|
"""Broadcast tensor across specified parallel group."""
|
|
if self.model_device_mesh is not None:
|
|
return helper.operate_tensorlike(helper.broadcast, data, src=src, group=self.get_group(dim))
|
|
else:
|
|
return data
|
|
|
|
def sync(self) -> None:
|
|
"""Synchronize all processes."""
|
|
helper.synchronize()
|
|
|
|
def barrier(self) -> None:
|
|
"""Barrier all processes."""
|
|
barrier()
|
|
|
|
def destroy(self) -> None:
|
|
"""Destroy all processes."""
|
|
destroy_process_group()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print(DistributedInterface(DistributedStrategy()))
|