mirror of
https://github.com/hiyouga/LlamaFactory.git
synced 2026-02-01 08:13:38 +00:00
* add liger kernel to qwen2_5 vl * fix patch * fix patch Former-commit-id: 828776d155986166498dfc907194f64436571106
105 lines
4.0 KiB
Python
105 lines
4.0 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
from typing import TYPE_CHECKING
|
|
|
|
from ...extras import logging
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PretrainedConfig
|
|
|
|
from ...hparams import ModelArguments
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
def apply_liger_kernel_to_qwen2_5_vl(
|
|
rope: bool = True,
|
|
cross_entropy: bool = False,
|
|
fused_linear_cross_entropy: bool = True,
|
|
rms_norm: bool = True,
|
|
swiglu: bool = True,
|
|
) -> None:
|
|
from liger_kernel.transformers import LigerCrossEntropyLoss, LigerRMSNorm, LigerSwiGLUMLP
|
|
from liger_kernel.transformers.model.qwen2_vl import lce_forward as qwen2_vl_lce_forward
|
|
from liger_kernel.transformers.qwen2vl_mrope import liger_multimodal_rotary_pos_emb
|
|
from transformers.models.qwen2_5_vl import modeling_qwen2_5_vl
|
|
|
|
def get_dtype(self: "modeling_qwen2_5_vl.Qwen2_5_VisionTransformerPretrainedModel"):
|
|
return self.dtype
|
|
|
|
modeling_qwen2_5_vl.Qwen2_5_VisionTransformerPretrainedModel.get_dtype = get_dtype
|
|
|
|
if rope:
|
|
modeling_qwen2_5_vl.apply_multimodal_rotary_pos_emb = liger_multimodal_rotary_pos_emb
|
|
|
|
if rms_norm:
|
|
modeling_qwen2_5_vl.Qwen2RMSNorm = LigerRMSNorm
|
|
|
|
if cross_entropy:
|
|
modeling_qwen2_5_vl.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
|
|
if fused_linear_cross_entropy:
|
|
modeling_qwen2_5_vl.Qwen2_5_VLForConditionalGeneration.forward = qwen2_vl_lce_forward
|
|
|
|
if swiglu:
|
|
modeling_qwen2_5_vl.Qwen2MLP = LigerSwiGLUMLP
|
|
|
|
|
|
def apply_liger_kernel(
|
|
config: "PretrainedConfig",
|
|
model_args: "ModelArguments",
|
|
is_trainable: bool,
|
|
require_logits: bool,
|
|
) -> None:
|
|
if not is_trainable or not model_args.enable_liger_kernel:
|
|
return
|
|
|
|
model_type = getattr(config, "model_type", None)
|
|
if model_type == "gemma":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_gemma as apply_liger_kernel
|
|
elif model_type == "gemma2":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_gemma2 as apply_liger_kernel
|
|
elif model_type == "llama":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_llama as apply_liger_kernel
|
|
elif model_type == "mistral":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_mistral as apply_liger_kernel
|
|
elif model_type == "mixtral":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_mixtral as apply_liger_kernel
|
|
elif model_type == "mllama":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_mllama as apply_liger_kernel
|
|
elif model_type == "phi3":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_phi3 as apply_liger_kernel
|
|
elif model_type == "qwen2":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_qwen2 as apply_liger_kernel
|
|
elif model_type == "qwen2_vl":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_qwen2_vl as apply_liger_kernel
|
|
elif model_type == "qwen2_5_vl":
|
|
apply_liger_kernel = apply_liger_kernel_to_qwen2_5_vl
|
|
else:
|
|
logger.warning_rank0("Current model does not support liger kernel.")
|
|
return
|
|
|
|
if require_logits and "fused_linear_cross_entropy" in inspect.signature(apply_liger_kernel).parameters:
|
|
logger.info_rank0("Current training stage does not support chunked cross entropy.")
|
|
kwargs = {"fused_linear_cross_entropy": False, "cross_entropy": True}
|
|
else:
|
|
kwargs = {}
|
|
|
|
apply_liger_kernel(**kwargs)
|
|
logger.info_rank0("Liger kernel has been applied to the model.")
|