Files
LlamaFactory/src/llamafactory/model/model_utils/moe.py
Kingsley 22be45c78c [misc] fix omni thinker load (#9552)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-11-30 09:36:36 +08:00

248 lines
9.3 KiB
Python

# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Union
import torch
from torch import nn
from torch.nn import functional as F
from transformers.integrations import is_deepspeed_zero3_enabled
from ...extras.misc import check_version
from ...extras.packages import is_transformers_version_greater_than
if TYPE_CHECKING:
from torch import nn
from transformers import PretrainedConfig, PreTrainedModel
from ...hparams import ModelArguments
if is_transformers_version_greater_than("4.57.0"):
from transformers.models.qwen3_omni_moe import modeling_qwen3_omni_moe
def _set_z3_leaf_modules(model: "PreTrainedModel", leaf_modules: list[Union["nn.Module", str]]) -> None:
check_version("deepspeed>=0.13.0")
from deepspeed.utils import set_z3_leaf_modules # type: ignore
set_z3_leaf_modules(model, leaf_modules)
def add_z3_leaf_module(model: "PreTrainedModel") -> None:
r"""Set module as a leaf module to skip partitioning in deepspeed zero3."""
if not is_deepspeed_zero3_enabled():
return
model_type = getattr(model.config, "model_type", None)
text_config = getattr(model.config, "text_config", None)
text_model_type = getattr(text_config, "model_type", None)
if model_type == "dbrx":
from transformers.models.dbrx.modeling_dbrx import DbrxFFN
_set_z3_leaf_modules(model, [DbrxFFN])
if model_type == "deepseek_v2":
# deepseek v2 uses custom code
_set_z3_leaf_modules(model, ["DeepseekV2MoE"])
if model_type == "deepseek_v3" or model_type == "kimi_vl":
# deepseek v3 and kimi vl use custom code
_set_z3_leaf_modules(model, ["DeepseekV3MoE"])
if model_type == "ernie4_5_moe":
from transformers.models.ernie4_5_moe.modeling_ernie4_5_moe import Ernie4_5_MoeSparseMoeBlock
_set_z3_leaf_modules(model, [Ernie4_5_MoeSparseMoeBlock])
if model_type == "granitemoe":
from transformers.models.granitemoe.modeling_granitemoe import GraniteMoeMoE
_set_z3_leaf_modules(model, [GraniteMoeMoE])
if model_type == "glm4_moe":
from transformers.models.glm4_moe.modeling_glm4_moe import Glm4MoeMoE
_set_z3_leaf_modules(model, [Glm4MoeMoE])
if model_type == "glm4v_moe":
from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeTextMoE
_set_z3_leaf_modules(model, [Glm4vMoeTextMoE])
if model_type == "jamba":
from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock
_set_z3_leaf_modules(model, [JambaSparseMoeBlock])
if model_type == "jetmoe":
from transformers.models.jetmoe.modeling_jetmoe import JetMoeMoA, JetMoeMoE
_set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE])
if model_type == "llama4":
from transformers.models.llama4.modeling_llama4 import Llama4TextMoe
_set_z3_leaf_modules(model, [Llama4TextMoe])
if model_type == "mixtral":
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
_set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
if model_type == "olmoe":
from transformers.models.olmoe.modeling_olmoe import OlmoeSparseMoeBlock
_set_z3_leaf_modules(model, [OlmoeSparseMoeBlock])
if model_type == "phimoe":
from transformers.models.phimoe.modeling_phimoe import PhimoeSparseMoeBlock
_set_z3_leaf_modules(model, [PhimoeSparseMoeBlock])
if model_type == "qwen2_moe":
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock])
if model_type == "qwen3_moe" or text_model_type == "qwen3_moe": # internvl 3.5
from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen3MoeSparseMoeBlock])
if model_type == "qwen3_vl_moe":
from transformers.models.qwen3_vl_moe.modeling_qwen3_vl_moe import Qwen3VLMoeTextSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen3VLMoeTextSparseMoeBlock])
if model_type in ("qwen3_omni_moe", "qwen3_omni_moe_thinker"):
from transformers.models.qwen3_omni_moe.modeling_qwen3_omni_moe import Qwen3OmniMoeThinkerTextSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen3OmniMoeThinkerTextSparseMoeBlock])
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
if not is_trainable or not model_args.moe_aux_loss_coef:
return
model_type = getattr(config, "model_type", None)
text_config = getattr(config, "text_config", None) # for multimodal model
if model_type in [
"dbrx",
"ernie4_5_moe",
"granitemoe",
"jamba",
"jetmoe",
"llama4",
"mixtral",
"olmoe",
"phimoe",
"qwen2_moe",
"qwen3_moe",
]:
setattr(config, "output_router_logits", True)
if text_config and getattr(text_config, "model_type", None) in [
"glm4v_moe_text", # glmv4_5
"qwen3_moe", # internvl_3_5
]:
setattr(text_config, "output_router_logits", True)
if model_type in [
"ernie4_5_moe",
"granitemoe",
"jamba",
"llama4",
"mixtral",
"olmoe",
"phimoe",
"qwen2_moe",
"qwen3_moe",
]:
setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef)
elif text_config and getattr(text_config, "model_type", None) in ["qwen3_moe"]:
setattr(text_config, "router_aux_loss_coef", model_args.moe_aux_loss_coef)
elif model_type == "deepseek":
setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef)
elif model_type == "jetmoe":
setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef)
class Qwen3OmniMoeThinkerTextSparseMoeBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.norm_topk_prob = config.norm_topk_prob
# gating
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
self.experts = nn.ModuleList(
[
modeling_qwen3_omni_moe.Qwen3OmniMoeThinkerTextMLP(
config, intermediate_size=config.moe_intermediate_size
)
for _ in range(self.num_experts)
]
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
# Calculate the routing weights for all experts
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
# Retain the weight of the top_k and reset the rest of the expert rights to 0 (instead of retaining only top_k experts)
top_k_weights, top_k_indices = torch.topk(routing_weights, self.top_k, dim=-1)
# Initialize the all-zero weight matrix (same shape as all experts)
full_routing_weights = torch.zeros_like(routing_weights)
# Only the weight of top_k experts is retained, and the weight of the rest of the experts remains at 0
full_routing_weights.scatter_(1, top_k_indices, top_k_weights)
# Normalized top_k weights (keep the original logic consistent)
if self.norm_topk_prob:
# Calculate the sum of the weights top_k each row (for normalization)
top_k_sum = full_routing_weights.sum(dim=-1, keepdim=True)
# Avoid dividing by zero
top_k_sum = torch.clamp(top_k_sum, min=1e-9)
full_routing_weights /= top_k_sum
# Convert back to the input data type
full_routing_weights = full_routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# Go through all the experts (not just the selected ones)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
# Get the weight of the current expert (inactive expert has a weight of 0 here)
expert_weights = full_routing_weights[:, expert_idx, None] # shape: (batch*seq, 1)
# All samples participate in the calculations of the current expert, the weight may be equal to 0
current_hidden_states = expert_layer(hidden_states) * expert_weights
# Add-up to all expert outputs (experts with a weight of 0 do not affect the result)
final_hidden_states += current_hidden_states
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits