from types import MethodType from typing import TYPE_CHECKING, Dict, Optional from transformers import Trainer from ...extras.logging import get_logger from ..utils import create_custom_optimzer, create_custom_scheduler if TYPE_CHECKING: import torch from transformers import ProcessorMixin from ...hparams import FinetuningArguments logger = get_logger(__name__) class CustomTrainer(Trainer): r""" Inherits Trainer for custom optimizer. """ def __init__( self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs ) -> None: super().__init__(**kwargs) self.finetuning_args = finetuning_args self.processor = processor if finetuning_args.use_badam: from badam import clip_grad_norm_for_sparse_tensor self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator) def create_optimizer(self) -> "torch.optim.Optimizer": if self.optimizer is None: self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args) return super().create_optimizer() def create_scheduler( self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None ) -> "torch.optim.lr_scheduler.LRScheduler": create_custom_scheduler(self.args, num_training_steps, optimizer) return super().create_scheduler(num_training_steps, optimizer) def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None: super()._save(output_dir, state_dict) if self.processor is not None: output_dir = output_dir if output_dir is not None else self.args.output_dir getattr(self.processor, "image_processor").save_pretrained(output_dir)